当前位置:文档之家› MSX加压筛选与MTX加压筛选

MSX加压筛选与MTX加压筛选

MSX加压筛选与MTX加压筛选
MSX加压筛选与MTX加压筛选

蛋氨酸亚氨基代砜(methionine sulfoximine, MSX)筛选用的是谷氨酰胺合成酶基因(glutaminesynthetase, GS)系统压力;

氨甲喋呤(amethopterin, MTX)筛选用的是二氢叶酸还原酶基因(dihydrofolatereductase, dhfr)系统压力。

1. CHO细胞表达体系

常用的CHO细胞系有两种:CHO和CHO(dhfr-),CHO(dhfr-)是缺失二氢叶酸还原酶的细胞株。CHO表达系统是目前应用最广泛的真核表达系统之一,与其它表达系统相比,它具有许多优点:准确的转录后修饰功能,表达的糖基化药物蛋白在分子结构、理化特性和生物学功能方面最接近天然蛋白分子;表达产物胞外分泌,便于分离纯化;具有重组基因的高效扩增和表达能力;贴壁生长,有较高的耐受剪切力和渗透压能力,可进行悬浮培养或在无血清培养基中达到高密度,培养体积能达到1000L以上;CHO细胞属于成纤维细胞,很少分泌内源蛋白,利于外源蛋白的分离纯化。改造CHO 细胞,可更好地表达外源蛋白。为减少大规模细胞培养过程中凋亡的发生,将bcl-2基因(细胞凋亡抑制基因)导入细胞,bcl-2基因的过量表达能抑制Gln或氧缺乏引起的细胞凋亡,减少细胞特定营养成分的消耗,提高细胞密度和目的蛋白产量。向CHO细胞中导入p21、p27基因,可使细胞G1期延长(细胞静止),改造后细胞活力正常,营养成分消耗和代谢毒物含量有效降低,从而减少细胞凋亡、死亡,外源蛋白表达量提高,产品成本降低。

2. 载体系统

借助真核基因表达调控的理论,可将较强的顺式作用元件集中到一个载体中,使其方便高效地表达外源基因。目前,已经构建了许多真核表达载体,它们包含适当的顺式作用元件和选择标记。顺式作用元件主要有启动子—增强子元件、转录剪切和Poly A信号等;CHO细胞表达载体中主要有两类选择标记:非扩增基因和共扩增基因。

2.1启动子和增强子启动子是影响外源基因表达效率的关键因素。作为表达载体元件之一,启动子既需强的转录活性,又应具备较广的应用范围。细菌的主要启动子和增强子在动物细胞中不起作用,所以大多从启动效率高且生物背景清楚的病毒基因组中分离得到。SV40、LTR和CMV启动子在CHO 细胞中效果良好。有研究表明:在CHO细胞中,CMV启动子的转录活性分别是SV40启动子和LTR 启动子的10倍和30倍左右。来源于噬菌体的一些启动子,如T7启动子也可用于动物细胞。除了病毒来源的启动子,现在热衷于寻找细胞内源性的启动子,如肽链延长因子基因的启动子(EF-1α)、鸡胞浆β肌动蛋白启动子等。EF-1α启动子是迄今应用中最强的启动子之一。目前商业化的表达载体中主要使用SV40、CMV和EF-1α启动子。外源基因在哺乳动物细胞中的表达受许多因素的影响,如转录水平、转录后处理、翻译水平以及翻译后加工等方面,其中尤以转录水平的调节最为重要。在细胞中转录水平的调控是由基因的顺式作用元件与细胞内存在的反式作用因子之间的相互作用来

实现,由于在特定的细胞内,反式作用因子是固定的,不可改变的,因此基因的表达主要取决于其顺式作用元件的作用。对外源基因而言,也就是决定于特定的表达载体中的启动子,一个合适的启动子可将外源基因的表达水平提高几倍甚至几十倍。但是对于特定的基因和细胞,各启动子起始转录的效率有很大的差别,因此我们认为在进行外源基因的表达研究中,应考虑选用几种不同的强启动子,才有可能获得较为理想的表达效果。与启动子相连的是增强子元件,具种、组织特异性,CHO细胞中一般采用SV40和CMV增强子。

2.2选择标记和基因扩增CHO细胞表达载体主要有两类选择标记。一类是neo等非扩增基因,它对目的基因的拷贝数没有影响,用于构建瞬时表达载体。另一类具有基因扩增的功能,也称共扩增基因,如二氢叶酸还原酶基因(dihydrofolatereductase,dhfr),谷氨酰胺合成酶基因(glutaminesynthetase,gs)。外源基因在CHO细胞中扩增是提高表达水平的重要策略之一。dhfr基因扩增系统最常用,当携带dhfr基因的表达质粒转染CHO细胞后,或携带dhfr基因的标志质粒与携带外源基因的表达质粒共转染CHO-dhfr-细胞后,可以得到在选择培养基生长的细胞克隆,dhfr可被叶酸类似物氨甲喋呤(Amethopterin,MTX)所抑制,不断提高MTX浓度,绝大多数细胞死亡,但在极少数幸存下来的抗性细胞中,dhfr基因均得以扩增。进行性选择抗氨甲喋呤的细胞系,结果会导致与dhfr串联在一起的外源基因的共扩增,拷贝数可增加几百到几千倍,从而使目的基因高水平表达,从而抵消氨甲喋呤的抑制效应。更重要的是,扩增的区域远远大于dhfr基因本身,即与dhfr基因相邻的DNA区域同时被扩增。但它也有缺陷,表达细胞仅限dhfr缺陷型细胞,重复筛选抗性细胞费时费力,去除选择压力后,扩增基因不稳定。细胞遗传学表明,在选择压力下,扩增基因的大小和结构处在不断变化之中。在细胞分裂的不同时间,不同的宿主细胞和选择药物使基因的扩增范围处于不断变化之中,从100~1000kb。即使是同一种细胞,选择过程不同,基因扩增的范围也不同。谷氨酰胺合成酶(GS)扩增系统是新近发展的更有效的系统,具有更高的扩增效率,但细胞长期连续培养时,生长状况不佳,DHFR系统表达水平虽较GS系统低,但细胞生长稳定。基因扩增还可通过弱化选择标记基因表达来达到。弱化选择标记基因的表达,在使用与常规的表达载体相同的选择压力时,dhfr基因拷贝数更高,外源基因的表达水平也得到提高。如一种双顺反子载体将dhfr基因连在外源基因的3′端,从而位于外源基因3′端下游的dhfr基因的翻译起始效率大大降低,dhfr基因表达被弱化。另一种载体将dhfr基因插入人工合成的内含子内部,两边为剪接供体SD和剪接受体SA,外源基因在内含子的下游,mRNA剪切时,95%的dhfr mRNA被剪切掉。也有一些表达质粒不含选择基因,则必须共转染一个可表达选择基因的标志质粒,如pSV dhfr,该质粒由Psv2 dhfr去除SV40的增强子构建而成,起到弱化dhfr基因表达的作用。

2.3其它表达载体引入天然或人工合成的内含子序列,有利于外源基因组DNA转录的mRNA剪接内含子,增加稳定性,提高翻译效率,许多真核表达载体带有SV40的内含子。但因大多数插入的外源基因是cDNA,所以一般也用不着剪接信号。真核基因的mRNA加工需要多聚腺苷酸加尾信号(pA),实验表明,除去pA后,外源蛋白表达量降低90%。目前多采用SV40的晚期及早期pA、牛生长素基因的pA和人工合成的pA。

3. 外源基因

启动子之后是克隆的基因组DNA或cDNA。基因组DNA比cDNA表达量要高,应尽量使用基因组DNA。除此之外,可以通过下列方法增加外源基因的表达量:(1)在基因起始密码子的前后设置Kozak序列,即GCCGCCA-3/GCCA UGG+4,其中最重要的是-3位的嘌呤,其次是+4位的嘌呤。具有Kozak序列与否,翻译起始强弱会有一个数量级的差异;(2)尽量切除cDNA中的不必要序列,一方面降低转录、翻译时不必要的能量消耗,另一方面减少5′未翻译前导区和克隆中的GC尾部对表达水平的不良影响,以及减少3′未翻译区对mRNA稳定性的不良影响;(3)拼接一个重组蛋白的信号前导肽,它可以有效地指导合成、分泌蛋白的输出等;(4)在不改变蛋白氨基酸序列的前提下,修饰个别基因的编码序列,解决密码偏性问题。实际表达中,可根据表达效果,对基因加以改造,以提高表达量。

4. 表达克隆的筛选

不同的细胞克隆,外源蛋白表达水平高低不同,原因可能有二方面,一是外源质粒片段整合入细胞染色体的位置不同,有的区域转录活性高,有的转录活性低;二是不同的细胞克隆,质粒的拷贝数是不同的。挑选高表达的单克隆细胞株一般采用两种流程:第一种方案首先通过检测外源基因的表达,逐一筛选dhfr阳性单克隆,再转到浓度持续升高的MTX之下生长,分别进行扩增;另一种方法先把dhfr阳性单克隆合并,在不断升高的MTX之下加压扩增外源基因的表达,最后挑出稳定的、高表达的单克隆细胞株。加压扩增外源基因表达,除了单纯使用dhfr扩增系统或GS扩增系统外,也可采用G418与MTX联合作用细胞,G418与MSX(methioninesulphoximine,GS抑制物)联合作用细胞,或者利用dhfr扩增系统与GS扩增系统共加压。混合克隆的表达水平远赶不上表达较高的单个克隆,这是因为转染的CHO细胞中存在不表达或低表达的非生产细胞,并可在长期生存,甚至MTX加压时占生长优势,排斥其它高表达细胞,成为细胞群体中的主要部分,导致产量严重下降,并对MTX加压无反应。当撤除MTX,会发生外源蛋白表达量下降的情况,原因也可能在此。

5. 工程细胞大规模培养

细胞培养是现代生物学研究中应用最为广泛的技术之一。它的突出优点,一是研究对象是活的细胞,可长时期地监控、检测甚至定量评估其形态、结构和生命活动等;二是可以人为地严格控制研究条件,便于研究各种物理、化学、生物等外界因素对细胞生长、发育和分化等的影响,有利于单因子分析;三是研究的样本可以达到比较均一性。常用的细胞系均是性质均一的细胞,需要时还可采用克隆化等方法使细胞进一步纯化;四是研究的内容便于观察、检测和记录。体外培养的细胞可采用显微镜,电镜等直接观察记录,充分满足实验的要求。另外还具有研究范围比较广泛,研究费用相对经济等优点。然而,细胞培养也有其局限性。由于培养的细胞脱离了机体复杂的环境条件,其细胞形态和功能都会发生一定程度的改变。尤其是体外反复传代、长期培养的细胞,有可能发生染色体非二倍体改变等情况。因此,应将体外培养的细胞视为一种既保持动物体内原细胞一定的性状又具有某些改变的特定的细胞群体。由于细胞培养技术的优点是其他实验方法和技术所不能比拟的,所以近年来细胞培养技术在分子生物学、细胞生物学、遗传学、老年学、免疫学、肿瘤学和病毒学等很多领域都得到了广泛的应用,其中对于分子生物学家及细胞生物学家而言,应用细胞培养对感兴趣的基因产物进行定位、运动及功能研究变得越来越重要。在克隆一个基因后的下一步,往往是将其导入不同类型细胞,以分析其表达,测定表达对细胞生长的影响,或将高表达的基因产物纯化。

5.1 血清利用含血清培养基生产蛋白制品有许多不利,如增加培养成本和污染机会,增加纯化难度和成本,增加产品质控指标。因此,大规模生产临床使用的生物制品,应尽量减少血清的用量,最好用无血清培养基取代。为此,应尽可能增加大规模细胞培养的接种密度,以缩短生长延滞期,提高细胞比生长速率。如果接种密度较低时,在培养开始阶段,可使用含血清培养基,待细胞密度达到一定浓度(如>106/ml),细胞进入对数生长期,再降低血清浓度或使用无血清培养基。外源蛋白的实际产量无明显下降。许多实验表明,细胞的比生长速度相对降低时,产物的比生长速率提高,原因可能是用于细胞增殖的能量减少,有利于外源蛋白的生产。使用无血清培养墓代替含血清培养基,可克服血清带来的弊端。但失去血清中的促细胞生长因子,细胞生长减慢,密度降低,生存周期缩短,导致蛋白产最下降。因此,往往通过增加无血清培养基中的营养物质,以优化细胞培养,提高蛋白表达。用作血清替代成份的种类很多,大致可分为激素和生长因子、结合蛋白、贴壁和扩展因子及低分子量营养因子四类。有研究报道,添加BSA对促进细胞生长作用显著,丙酮酸钠、腐胺、丁酸钠有利于表达目的产物。不同的CHO工程细胞的培养基添加成份可能存在差异,一般需要自己进行摸索最优条件。

5.2 氧气和二氧化碳一般认为动物细胞培养的适宜溶氧在10%~60%之间,过高可损伤细胞膜甚至DNA,从而导致细胞死亡。而溶氧过低又会改变细胞的代谢,降低细胞蛋白表达水平,甚至因缺

氧而导致细胞逐渐死亡。胡显文等在利用多孔微载体大规模培养CHO细胞时发现,溶氧维持在20%~45%时,对细胞表达产物和葡萄糖代谢无明显影响,但溶氧降至7%~9%时,细胞表达水平明显降低,葡萄糖代谢转化为乳酸的比例上升,培养基的有效利用率明显降低。随着细胞培养规模和密度的增大,可导致CO2积聚,从而对细胞产生毒性作用或者改变细胞代谢水平。CHO细胞大规模培养的生物反应器中,最适CO2水平为4%~10%。当达到14%时便会阻碍细胞生长。高CO2分压使重组CHO细胞系的生长和组织型纤溶酶原激活剂(t-PA)产率均受到抑制,而且t-PA糖链中包含N-羟乙酰神经氨酸的唾液酸比例稍下降。

5.3 氮和乳酸氨和乳酸是细胞培养过程中的主要代谢副产品。与乳酸相比,较低浓度的氨就会对重组CHO细胞产生明显的抑制作用,最终的细胞密度随着氨浓度的提高而降低。氨来源于两方面:一是直接来源于培养基,一是细胞代谢产生。二者都涉及谷氨酸胺,因此需要防止培养基中Gln自然分解,限制Gln用量,并尽量去除培养基中的氨。乳酸是细胞糖代谢的产物,高浓度的乳酸也会抑制细胞的生长。氨和乳酸对细胞的毒性作用在多种不同的细胞系均存在,不同细胞系对于这两种代谢产物的耐受性差别很大,原因可能是不同细胞系葡萄糖和谷氨酰胺代谢过程中关键酶的敏感性不同,或者在不良的生长环境下,氨基酸代谢发生改变。由于Gln和葡萄糖代谢的相互影响,因此降低培养基中葡萄糖浓度以及减少乳酸产生的同时,必须平衡葡萄糖和Gln的比例。

6. 问题和展望

外源蛋白在CHO细胞中表达的影响因素非常复杂,建立稳定、高效表达的重组CHO细胞系并非易事。目前主要存在问题如下:重组CHO细胞生产效率低;某些糖基化表达产物不稳定,不易纯化;重组CHO细胞上游构建与下游分离纯化脱节,主要表现为上游构建时着重考虑它的高效表达,而对产物的分离纯化过程考虑较少;重组细胞培养费用昂贵,自动化水平低下。重组蛋白在CHO 细胞中高效表达是一个涉及多学科的问题,需多个研究领域的共同合作探讨。科研人员可能把以下问题作为今后的主攻方向:提高表达水平,如寻找一些新的强启动子和合适的增强子、在载体上装配适合基因高效表达的必要元件、根据CHO细胞翻译特点,调整外源基因密码子等;注重分离纯化的问题,如改变DNA中的个别序列,使表达产物在不影响生物活性的前提下,携带有利于分离纯化的基因;细胞培养的低成本、高密度、高产量和培养设备的大型化,自动化、精巧化;分离纯化的低成本和高活性回收率等方面。

讨论

有些天然的具有生物活性的蛋白类物质,在人类疾病的治疗中发挥着巨大的作用。但是这些活性物质,有些在自然界中含量很少,满足不了人们的需要;有些含异源蛋白太多,纯化难度大等缺点,基因工程药物的产生解决了这些难题,具有跨时代的意义,是生物技术水平发展的重要标志之一。重组蛋白质药物具有活性高、用量少、易于规模化生产等优点,是国内外生物药物开发的重点。

细胞表达源蛋白最重要的是要保持其天然结构及活性。而早期的原核表达系统不能分泌有活性的蛋白,都是以内涵体的形式存在的,真核表达系统因为具有转录后的修饰加工功能,包括蛋白折叠、二硫键形成、亚基多聚化、肚链裂解、蛋白磷酸化以及N型和O型糖基化等,因而表达的重组蛋白在结构和功能方面更接近于天然的蛋白分子,具有生物活性,可分泌胞外。CHO细胞是外源蛋白表

达运用得较为成功的哺乳动物细胞,其用于外源基因表达也具有很多优点,如外源基因能够稳定整合于细胞染色体内,易于规模化培养等。

由于CHO-dhfr-细胞自身缺失二氢叶酸还原酶(dhfr),无法自身合成四氢叶酸,所以必须在添加了次黄嘌呤(hypoxanthine)、胸腺嘧啶(Thymidine)和甘氨酸的培养液中才能得以存活。而通过目的基因与dhfr基因共转染,不仅得到在不含上述添加剂的培养基上也能生长的细胞克隆,更为重要的是由于dhfr可被叶酸类似物MTX所抑制,在MTX浓度选择压力下,dhfr基因必须扩增到很多的拷贝数才能生存,从而得到抗MTX细胞系;又由于与dhfr基因共转染的目的基因倾向于同它一起整合到细胞染色体上的同一区域,所以编码外源重组蛋白的序列片段也随着dhfr基因的扩增而扩增,我们就得到了能大量表达外源蛋白的细胞克隆,这在基因工程抗体及各种基因工程蛋白的表达中是可行度很高的一种措施。

上面也提到影响重组蛋白在CHO细胞中表达的因素很多,涉及CHO细胞表达体系、表达载体系统、外源基因、表达细胞株的加压扩增与筛选、细胞大规模培养等。我认为表达载体的构建是影响细胞能否表达的关键问题,因为dhfr基因及邻近区段染色体DNA拷贝数是共扩增的关系,因此必须将外源基因片段整合到dhfr基因的上游或者下游,位置不能太远,否则无论如何筛选也得不到表达外源基因产物的细胞,因此说它是能否表达的关键,当然其它步骤也不能忽略,如CHO-dhfr-细胞转染、使用强启动子等。如果构建成功可以产生外源蛋白,那么筛选高表达的细胞株等操作就是提高外源蛋白表达量的问题,使外源蛋白高效表达,也是很有意义的,为大规模培养奠定基础。

MTX筛选扩增系统,常需在MTX选择压力下,经过长期的筛选。因此MTX加压筛选是需要时间和耐心的,但是细胞培养的条件要合适,如培养基的选用(CHO细胞一般采用F-12培养基),营养成分的适量(L-谷氨酰胺),培养液的新鲜等,首先要保证细胞正常的生长和存活,这样才能缩短加压筛选的周期。另外也要等细胞适应这个压力并恢复正常生长后再继续加压,提高MTX浓度,可以成倍数递增,待细胞适应新的压力并恢复正常生长时再继续,同时还要保存每个MTX浓度下的细胞种子。因为在此后的细胞培养的过程中,随着MTX的撤离和细胞传代次数的增加,转染细胞高表达抗体的能力常会逐渐下降甚至丧失。因此,即使是来源于同一细胞株的各个亚克隆细胞之间,其抗体表达量也常不均一。CHO转染细胞的这种不稳定性,可能是由于细胞内外源基因拷贝数的丢失或转录效率下降等所致。对此尚有待进行深入地研究。但这一现象提示,在筛选建株的早期,应采取措施及早鉴定各个细胞克隆表达的稳定性,并及时大量保存稳定高表达的细胞种子,或适时地对细胞株用MTX再加压和克隆化筛选,以保持转染细胞高表达抗体的能力。应及时用MTX对细胞株进行再加压筛选,以保持细胞稳定表达抗体的能力。

有报道称加压方式对表达量的提高和细胞株表达的稳定性有较大的影响。小梯度多次加压有利于最终得到高表达细胞株,且细胞株表达稳定,比大幅度快速加压能够得到表达水平更高的克隆。大幅度加压可以在短期内得到高表达克隆株细胞,但是最终表达水平并不比小幅度多次加压得到的细胞株表达量高,而且细胞株表达往往不稳定,在撤掉筛选压力后,表达水平往往下降。在大幅度加压筛选过程中,可能由于种种原因dhfr基因发生突变,突变后的DHFR对MTX的亲和力降低,因而突变细胞株的基因扩增倍数也低,目的基因无法高表达,更易产生非生产性克隆。

整理)慢病毒稳转细胞株步骤

稳转慢病毒 一、所需试剂 1、慢病毒载体(详细信息见附录及《质粒的扩增提取》)(大肠杆菌-80℃保存2-3年,质粒-20℃保存2-3年,病毒液-80℃保存1年) (1)载体质粒:两端的LTR、剪切位点、包装信号Ψ以及抗性或荧光基因、gag基因5′端350bp的序列及位于env序列中的RRE,含宿主RNA聚合酶识别部分 (2)包装质粒(psPAX2):包含了pol、gag包装成分 (3)包膜质粒(pMD2.G):用其他病毒的包膜蛋白代替了env基因. 三种质粒共同转染产生不具有自我复制能力的病毒载体。 2、包装细胞:293T细胞 3、菌株:大肠杆菌,用于提取质粒 4、转染试剂:XTREME-GENE(-20℃保存,不可分装),一种脂质与其他组份构成的混合物 5、浓缩试剂(配好后4℃保存,原材料室温保存):5X PEG8000/NaCl溶液(聚乙二醇):NaCl 8.766 g; PEG8000 50g溶解在200ml Milli-Q纯水中,高压蒸汽灭菌 **也可直接从公司买来病毒液(-80℃封口膜封口冻存管保存,4℃保存3天):滴度一般为108TU/ml 6、10mg/ml polybrene(-20℃分装保存):溴化己二甲铵。是带正电的小分子,与细胞表面的阴离子结合,提高慢病毒对细胞的感染效率,通常加入polybrene 能提高感染效率2~10 倍。有一定细胞毒性,需要摸索浓度(1~10μg/ml) 7、无血清培养基:optimen 8、贴壁细胞(复后3代以上的细胞) 9、puromycin:嘌呤霉素,用于筛选稳转细胞 二、具体步骤 <一>病毒包装与收集(中皿,转染步骤类似于瞬转) 第一天 1、种板,10×105个293T细胞,加入全培养基双抗DMEM 4-5ml,过夜 2、配制5X PEG8000/NaCl溶液 称取NaCl 8.766 g; PEG8000 50g溶解在200ml Milli-Q纯水中;121摄氏度 30min 湿热灭绝 30min;保存在4℃ 第二天 2、加入2ml全培养基DMEM 3、将1加入2,孵育10h,换成5ml全培养基

转染步骤及经验(精华)

转染步骤及经验(精华) 一、基础理论 转染是将外源性基因导入细胞内的一种专门技术。分类:物理介导方法:电穿孔法、显微注射和基因枪;化学介导方法:如经典的磷酸钙共沉淀法、脂质体转染方法、和多种阳离子物质介导的技术;生物介导方法:有较为原始的原生质体转染,和现在比较多见的各种病毒介导的转染技术。理想细胞转染方法,应该具有转染效率高、细胞毒性小等优点。病毒介导的转染技术,是目前转染效率最高的方法,同时具有细胞毒性很低的优势。但是,病毒转染方法的准备程序复杂,常常对细胞类型有很强的选择性,在一般实验室中很难普及。其它物理和化学介导的转染方法,则各有其特点。需要指出的一点,无论采用哪种转染技术,要获得最优的转染结果,可能都需要对转染条件进行优化。影响转染效率的因素很多,从细胞类型、细胞培养条件和细胞生长状态到转染方法的操作细节(见后文)。 二、转染操作流程(以常用的6孔板为例) (1) 细胞培养: 取6孔培养板,以3x104/cm2密度铺板,37℃5%CO2培养箱中培养至70%~90%汇合。(不同细胞略有不同,根据实验室优化的条件进行,汇合过分,转染后不利筛选细胞)。 (2) 转染液制备: 在EP管中制备以下两液(为转染每一个孔细胞所用的量) A液:用不含血清培养基稀释1-10μg DNA,终量100μL, B液:用不含血清培养基稀释对应量的转染试剂,终量100μL; 轻轻混合A、B液(1:1混匀),室温中置15分钟,稍后会出现微浊现象,但并不妨碍转染。 (3) 转染准备:用2mL不含血清培养液漂洗两次,再加入2mL不含血清及PS的培养液。 (4) 转染:把A/B复合物缓缓加入培养液中(缓慢滴加),轻轻摇匀,37℃温箱置6~8小时,吸除无血清转染液,换入正常培养液继续培养。 三、转染注意事项 1. 血清 A. DNA-阳离子脂质体复合物形成时不能含血清,因为血清会影响复合物的形成。 B.一般细胞对无血清培养可以耐受几个小时没问题,转染用的培养液可以含血清也可以不加,但血清一度曾被认为会降低转染效率,转染培养基中加入血清需要对条件进行优化。 C. 对于对血清缺乏比较敏感的细胞,可以使用一种营养丰富的无血清培养基OPTI-MEMⅠ培养基, 或者在转染培养基中使用血清。对血清缺乏比较敏感的贴壁细胞,建议使用LIPOFECTAMINE 2000。无血清培养基OPTI-MEM(GIBICO)很好用,有条件的话,就用它代替PBS洗细胞两遍,注意洗的时候要轻,靠边缘缓缓加入液体,然后不要吹吸细胞,而是转动培养板让液体滚动在细胞表面。如果洗的太厉害,细胞又损失一部分,加了脂质体后,细胞受影响就更大了,死亡细胞会增多。 2.抗生素(PS) 抗生素,比如青霉素和链霉素,是影响转染的培养基添加物。这些抗生素一般对于真核细胞无毒,但阳离子脂质体试剂增加了细胞的通透性,使抗生素可以进入细胞。这降低了细胞的活性,导致转染效率低。所以,在转染培养基中不能使用抗生素,甚至在准备转染前进行细胞铺板时也要避免使用抗生素。这样,在转染前也不必润洗细胞。对于稳定转染,不要在选择性培养基中使用青霉素和链霉素,因为这些抗生素是GENETICIN选择性抗生素的竞争性抑制剂。另外,为了保证无血

最全的G418筛选稳定表达细胞系总结4

(一)筛选结果鉴定: (1)基因组DNA提取→PCR鉴定外源基因 (2)SHG-44-重组pcDNA3阳性细胞、SHG-44-vect裂解→聚丙烯酰胺凝胶电泳→免疫印迹鉴定P16蛋白表达(Western-blot)。 (3)测定外源性基因对SHG-44细胞增殖的影响 ①流式细胞仪分析:SHG-44、SHG-44-vect、SHG-44-重组pcDNA3→单细胞悬液→70%酒精固定→裂解细胞→核糖核酸酶消化→碘化丙啶染色→上机分析G1期和G2/M、S期比例。 ②细胞生长曲线测定:SHG-44、SHG-44-vect、SHG-44-重组pcD NA3→5×104/孔接种24孔培养板→24hr后各自用苔盼蓝染色计数细胞→计算细胞生长抑制百分率。 ③软琼脂克隆形成率分析:SHG-44、SHG-44-vect、SHG-44-重组pcDNA3→104细胞→0.3%低熔点琼脂糖培养→1-2周后计数不可少于50个细胞的克隆数→计算克隆形成率抑制率。 三、注意事项 1、优化转染条件(脂质体的用量、DNA密度、细胞密度、脂质体和DNA 混合孵育时间)每种细胞和质粒均须进行。用于转染的核酸应高度纯化。为避免微生物污染,所用溶液滤过灭菌,以及随后的使用应在无菌条件下,这是细胞惯常的做法。但是,脂质体以及脂质体/DNA混合物无需滤过除菌。 2、预备脂质体/DNA混合物必须在无血清下进行。但是在随后的脂质体/DNA与被转染细胞共孵育的过程中,血清又是培养基的一部分。 3、在转染之前更换培养基,可提高转染效率,但所用培养基必须37℃预温。 4、脂质体/DNA混合物应当逐滴加入,尽可能保持一致,从培养皿一边到另一边,边加入边轻摇培养皿,以确保均匀分布和避免局部高浓度。 常见问题和解答: Q:我觉得套环法操作不如96孔办法效率高。 A:也不一定.依据实验目的与要求而定.如果克隆效率较低的细胞,套环可能更好.用96孔板法,如果不是每孔单个细胞,就不能保证是单克隆.即使是增加到每

最全的G418筛选稳定表达细胞系总结5

Q:G418怎么配制? A:我觉得不能用水配,因为这样PH会变化很大,至少要用PBS。我是配在HEPES 溶液中的,具体方法如下:1g包装的G418瓶子中,加入10ml HEPES溶液,浓度为100 mg/ml完全溶解后,0.22 um过滤,-20度保存。HEPES缓冲液配方如下:90 ml 水中,0.8 g NaCl, 0.037 g KCl, 0.0135 g Na2HPO4.2H2O, 0.1 g 葡萄糖,0.5 g HEPES,溶解,NaOH调PH至7.05,定容至100ml。 Good answer: 推荐用HEPES。特别是当细胞对G418不敏感,G418使用浓度高时,如果用水、PBS配置,会极大的改变细胞培养基的pH值,影响细胞的生长。1mol/L HEPES 的简单配置:HEPES 11.91g,溶解于40ml的ddH2O,用10mol/L的NaOH调节pH至7.5-8.0,定容至50ml,0.22um小滤器过滤。HEPES最终使用浓度 15-20mM。 Q: 我想一步筛选出高拷贝整合的高表达的细胞克隆,如果我用很高浓度的G418直接加进培养瓶直接筛选,这样做可以吗?我做过G418杀伤曲线,300ug\ml 就基本上可以杀死细胞,我想直接用1000ug\ml来筛选,不知是否可行?会不会有什么问题? A: G418筛选要做预试验确定最佳浓度,将细胞稀释至1000cell/ml,每孔100ul 加入有培养基的24孔板,将每孔中的G418浓度稀释至0,,100, 200,300, 400,500, 600,700, 800,900, 1000,11 .00ng/ml等12个级别, 培养10-14天,以最低细胞全部死亡浓度为基准,一般400-800左右,筛选时比该浓度再高一个级别,维持使用筛选浓度的一半。 G418浓度太高也不好,会对细胞的损伤太大,影响增殖。我用过Zeocin,为了加速筛选,用了最低剂量的两倍浓度,结果一个阳性克隆都没筛到,欲速则不达。 Q: 我用24孔板做了G418筛选的浓度梯度,确定最低致死浓度为600mg/l。我现在用这个浓度筛选我转染后的细胞,我应该保持这个浓度多少天才能确保我筛选完成呢?在这期间可以换液吗?筛选完了之后存活的细胞再培养传代的话,培养基中是否还应该加一定浓度的G418?如果要加的话什么浓度比较合适?

各种转染试剂的中文转染方法

各种转染试剂的中文转染方法 FuGENE6(Roche)转染步骤: 转染前一天将细胞分至培养板,转染当天细胞应50-80%融合。将细胞以1-3×105/2 ml接种于6孔板后孵育过夜将达到如此密度。 将FuGENE6 Reagent在室温孵育10-15分钟。使用之前将FuGENE6颠倒混匀一下。 1. 在PCR管中加入不含血清和双抗的营养液以稀释FuGENE6,直至总体积到100 ul。 2. 将3-6 ul FuGENE6 Reagent直接加入营养液,轻弹管壁混合。 3. 加入1-2 ug的DNA溶液(0.02-2.0 ug/ul),轻弹管壁混合。 4. 室温孵育20分钟。 5. 将6孔板中的旧营养液吸出,加入约1 ml不含血清和双抗的营养液洗涤一次,再加入2 ml不含血清和双抗的营养液。 6. 将转染复合物加入细胞,混匀使之均匀分布。 7. 3-8小时后,加入血清或换成含血清的营养液。 Lipofectamine 2000(Invitrogen)转染试剂转染步骤(6孔板): 1. 转染前一天,胰酶消化细胞并计数,细胞铺板,使其在转染日密度为90-95%。细胞铺板在2 ml含血清,不含抗生素的正常生长的培养基中。 2. 对于每孔细胞,使用250 ul无血清培养基(如OPTI-MEM I培养基)稀释4.0 ugDNA,轻轻混匀。 3. 使用前将Lipofectamine 2000转染试剂轻轻混匀,用250 ul无血清培养基(如OPTI-MEM I培养基)稀释10 ul Lipofectamine 2000转染试剂,轻轻混匀。Lipofectamine 2000稀释后,在5分钟内同稀释的DNA混合(<30分钟)。NOTE:若使用DMEM培养基,则需在5分钟内同稀释的DNA混合。 4. 混合稀释的DNA(第二步)和稀释的Lipofectamine 2000(第三步)。室温放置20分钟。 5. (optional)将6孔板中的旧营养液吸出,用无血清培养基清洗两次。加入2 ml无血清配养基。 6. 直接将复合物加入到每孔中,摇动培养板,轻轻混匀。 中保温24-48小时。无需去掉复合物或更换培养基。 7. 在37℃,5%CO 2 或者在4-5小时后更换培养生长基也不会降低转染活性。 8. 在细胞中加入复合物24-72小时后,分析细胞抽提物或进行原位细胞染色,检测报告基因活性。这依赖于细胞类型和启动子活性。对稳定表达,在开始转染一天后将细胞传代至新鲜培养基中,两天后加入筛选抗生素。进行稳定表达需要数天或数周。 贴壁细胞的稳定转染: 转染后24小时,将细胞以≥1:10的比例传代至新鲜培养基中,次日加入选择性培养基。 Lipofectamine 2000转染试剂转染步骤(24孔板):

细胞转染操作步骤

RNAi or siRNA Transfection 以24孔板为例,其余规格的转染见表1 1 中板,细胞密度为30-50%适宜。 注意:根据转染后细胞检测时间长短决定细胞中板密度,如果转染后需要长时间后检测,则细胞中板密度适当降低,已避免细胞过度生长导致存活降低。 2 第二天(24-36小时后)每个孔转染方式如下: A 将20pmol siRNA溶于50ul Opti-mem无血清培养基中。 B 将1ul lipo2000溶于50ul Opti-mem无血清培养基中,混匀室温放置5min。 C 将A B两管混合,放置20min。 3 转染期间,将24孔板培养基换成无血清培养基,每孔400ul。将C管mix加入24孔板对应孔中,4-6小时候换成有血清培养基。 Plasmid DNA Transfection DNA(ug):lipo 2000(ul)=1:2-3 转染时细胞密度越高,转染效率,表达效率也越高,并且可以降低细胞毒性。 1 中板。 贴壁细胞:0.5-2X105 cells/well,第二天待细胞密度达到90%以上时转染 悬浮细胞:4-8X105 cells/well,中板后随即转染。 2 转染。 A 将0.8ug DNA溶于50ul Opti-mem无血清培养基中。 B 将2ul lipo2000溶于50ul Opti-mem无血清培养基中,混匀室温放置5min。 C 将A B两管混合,放置20min。 转染期间,将24孔板培养基换成无血清培养基,每孔400ul。将C管mix

加入24孔板对应孔中,4-6小时候换成有血清培养基。 Table 1. Culture Shared reagents DNA transfection RNAi transfection 中板密度*Culture vessel Surf. area per well Vol. of plating medium Vol. of dilution medium DNA Lipofectamine ?2000 cell/well 96-well0.3cm2100ul2X25ul0.2ug0.5ul 0.5-2X105 cell/well 24-well2cm2500ul2X50ul0.8ug 2.0ul 1-3X105 cell/well 12-well4cm21ml2X100ul 1.6ug 4.0ul 2-3X105 cell/well 6-well (35mm) 10cm22ml2X250ul 4.0ug**10ul 8-10X105 cell/dish 60mm20cm24ml2X0.5ml8.0ug***20ul 2-3X106 cell/dish 10cm60cm215ml2X1.5ml24ug60ul *:中板密度根据不同细胞不同实验有所不同,这里仅提的数据仅供参

如何选择合适的细胞稳转株

如何选择合适的细胞稳转株 细胞稳转株是一种经过特定基因修饰的细胞株,可根据实验所需表达外源基因、进行基因敲除、敲入、以及精确改变基因序列(如点突变)。对比一般瞬转方法,利用细胞稳转株开展实验能够获得长期而稳定的特定性状,因此有助于增强实验的可重复性。细胞稳转株除了可用于基因调控研究,也非常适合于长周期的药物筛选和药理学研究、重组蛋白和抗体生产等实验。载体家凭借其资源完备的载体定制平台,通过病毒转导常规肿瘤细胞的方式可构建多种应用类型的细胞稳转株。 过表达模型细胞稳转株 通过慢病毒系统或转座子系统将外源基因表达框稳定整合进靶细胞基因组,实现外源基因在靶细胞的长期稳定表达。对比瞬转方法,构建过表达稳转株可避免瞬转中因转染效率导致的表达效率不一致的问题。构建好的细胞株中的外源基因不会因为细胞传代而丢失,可以持续表达特定的基因或ncRNA序列用以基因功能研究,重复实验时不需要对细胞重新转染质粒,大为节省了实验时间。 诱导表达模型细胞稳转株 采用Tet-on系统进行诱导表达目的基因,虽然可以直接进行质粒瞬转,但是载体家亦提供该类载体的慢病毒包装以构建相关的稳转细胞株。构建好的Tet-On系统细胞株同时表达tTS和rtTA 两种转录调控因子,而目的基因的表达可受四环素调控。其中tTS在四环素不存在的情况下会结合目的基因的上游TRE启动子,抑制目的基因表达。在细胞体系中添加四环素或其类似物后,rtTA进行响应并结合TRE启动子,激活目的基因表达。 shRNA干扰模型细胞稳转株 shRNA稳转株一般使用慢病毒或逆转录病毒在靶细胞基因组中导入shRNA表达框,实现shRNA在细胞系中的长期稳定表达。不同于siRNA瞬转,shRNA稳转株可内源性地稳定表达siRNA效果,不受转染效率影响,从而获得更稳定的基因敲低效果 CRISPR基因编辑细胞稳转株 构建CRISPR基因编辑细胞稳转株是当今研究基因和细胞功能关系的流行工具。通过gRNA引导Cas9靶向靶细胞基因组特定序列的CRISPR基因编辑,如基因敲除、敲入和定点突变,可以从DNA水平修饰靶细胞的基因序列。载体家提供两种gRNA表达模式,第一种是转导gRNA/Cas9共表达载体,gRNA和Cas9在细胞株中同时表达。第二种是构建Cas9表达稳转株,再根据实验需求导入gRNA表达载体。使用单Cas9表达稳转株可以获得更大的实验灵活性,如导入多个gRNA打靶GOI,或者多个gRNA与多种Cas9(野生型Cas9, Cas9n, dCas9等)之间进行搭配等。

细胞转染的操作步骤

细胞转染的操作步骤 转染,是将外源性基因导入细胞内的一种专门技术。随着基因与蛋白功能研究的深入,转染目前已成为实验室工作中经常涉及的基本方法。转染大致可分为物理介导、化学介导和生物介导三类途径。电穿孔法、显微注射和基因枪属于通过物理方法将基因导入细胞的范例;化学介导方法很多,如经典的磷酸钙共沉淀法、脂质体转染方法、和多种阳离子物质介导的技术;生物介导方法,有较为原始的原生质体转染,和现在比较多见的各种病毒介导的转染技术。红外碳硫仪理想细胞转染方法,应该具有转染效率高、细胞毒性小等优点。病毒介导的转染技术,是目前转染效率最高的方法,同时具有细胞毒性很低的优势。但是,病毒转染方法的准备程序复杂,常常对细胞类型有很强的选择性,在一般实验室中很难普及。其它物理和化学介导的转染方法,则各有其特点。 >需要指出的一点,无论采用哪种转染技术,要获得最优的转染结果,可能都需要对转染条件进行优化。影响转染效率的因素很多,从细胞类型、细胞培养条件和细胞生长状态,到转染方法的操作细节,都需要考虑。 一、细胞传代 1. 试验准备:200ul/1mlTip头各一盒(以上物品均需高压灭菌),酒精棉球,废液缸,试管架,微量移液器,记号笔,培养皿,离心管。 2. 弃掉培养皿中的培养基,用1ml的PBS溶液洗涤两次。 3. 用Tip头加入1ml Trypsin液,消化1分钟。用手轻拍培养瓶壁,观察到细胞完全从壁上脱落下来为止。 4. 加入1ml的含血清培养基终止反应。 5. 用Tip头多次吹吸,使细胞完全分散开。 6. 将培养液装入离心管中,1000rpm离心5min。 7. 用培养液重悬细胞,细胞计数后选择0.8X106个细胞加入一个35mm培养皿。8. 将合适体积完全培养液加入离心管中,混匀细胞后轻轻加入培养皿中,使其均匀分布。 9. 将培养皿转入培养箱中培养,第二天转染。 二、细胞转染 1. 转染试剂的准备 ①将400ul去核酸酶水加入管中,震荡10秒钟,溶解脂状物。 ②震荡后将试剂放在-20摄氏度保存,使用前还需震荡。 2. 选择合适的混合比例(1:1-1:2/脂质体体积:DNA质量)来转染细胞。在一个转染管中加入合适体积的无血清培养基。加入合适质量的MyoD或者EGFP的DNA,震荡后在加入合适体积的转染试剂,再次震荡。 3. 将混合液在室温放置10―15分钟。 4. 吸去培养板中的培养基,用PBS或者无血清培养基清洗一次。 5. 加入混合液,将细胞放回培养箱中培养一个小时。 6. 到时后,红外碳硫仪根据细胞种类决定是否移除混合液,之后加入完全培养基继续培养24-48小时。三、第二次细胞传代1. 在转染后24小时,观察实验结果并记录绿色荧光蛋白表达情况。 2. 再次进行细胞传代,按照免疫染色合适的密度0.8X10 个细胞/35mm培养皿将细胞重新转入培养皿中。 3. 在正常条件下培养24小时后按照染色要求条件固定。

维真生物-稳转株的制备

稳转株的制备 实验原理: 利用哺乳动物系统生产蛋白的方式有两种:瞬时转染和稳转株筛选。通过稳定细胞系构建筛选稳定表达细胞株。针对瞬时转染,外源基因在短时间转录翻译得到的蛋白量较少,能够满足小量蛋白制备,大量生产成本很高。相对于此,稳定转染的是将外源基因整合到细胞自身的基因组上,随着细胞的生长分裂外源基因可以稳定转染表达,同时经过抗生素加压筛选,最终得到能够稳定转染表达蛋白的细胞株,稳转株生产蛋白稳定性更好,批次差异性更小。 稳定转染的应用

影响稳定转染的因素 1、外源基因整合的几率 决定了稳转株筛选的简易程度,有利于稳定转染细胞的获得; 2、插入外源基因片段的拷贝数 一般情况下,低拷贝或者单拷贝可以降低人为因素的干扰; 3、整合位点转录活跃度 整合位点转录活跃度决定了稳转株筛选细胞后稳转株中外源基因片段的表达质量; 4、外源基因片段整合到细胞后的稳定性 不同的整合位点决定了外源片段在染色体中的稳定性,有些区域易发生重组或者丢失,从而使稳转株筛选后出现丢失的现象。 制备稳转株的实验步骤

一.准备及预实验 1、确定细胞系相关信息:需包括如下内容 注:务必保证细胞无支原体污染,方可进行稳转株构建! 2、查阅慢病毒感染该细胞的MOI值 3、预实验确定筛选药物用量: (1)查阅Puromycin/Blastincidin在目的细胞中稳转株筛选的致死用量信息;参考查阅得到的数据,确定3个药物浓度梯度(如没有相关信息,则需将药物浓度梯度范围增大,数量增多至6个); (2)D0将细胞铺于6孔板中,使D1细胞融合度约90%;D1按(1)中设置的药物梯度,加入药物; (3)D4换液,并重新加入药物; (4)D7观察,找到致死率100%的孔,该孔使用的药物浓度,即为药物筛选浓度。 二.稳转株筛选及构建 注:以下实验参数,按1株稳转株为例描述,实验需考虑有无对照稳转株! 1、细胞铺板:D0将细胞接种于6孔板中(4个孔),使D1细胞融合度约70%

各种转染试剂中文说明

FuGENE6(Roche)转染步骤: 转染前一天将细胞分至培养板,转染当天细胞应50-80%融合。将细胞以1-3×105/2ml接种于6孔板后孵育过夜将达到如此密度。 将FuGENE6 Reagent在室温孵育10-15分钟。使用之前将FuGENE6颠倒混匀一下。 1.在PCR管中加入不含血清和双抗的营养液以稀释FuGENE6,直至总 体积到100ul。 2.将3-6ul FuGENE6 Reagent直接加入营养液,轻弹管壁混合。 3.加入1-2ug的DNA溶液(0.02-2.0ug/ul),轻弹管壁混合。 4.室温孵育20分钟。 5.将6孔板中的旧营养液吸出,加入约1ml不含血清和双抗的营养液 洗涤一次,再加入2ml不含血清和双抗的营养液。 6.将转染复合物加入细胞,混匀使之均匀分布。 7.3-8小时后,加入血清或换成含血清的营养液。 Lipofectamine 2000(Invitrogen)转染试剂转染步骤(6孔板): 1.转染前一天,胰酶消化细胞并计数,细胞铺板,使其在转染日密度为90-95%。 细胞铺板在2ml含血清,不含抗生素的正常生长的培养基中。 2.对于每孔细胞,使用250ul无血清培养基(如OPTI-MEM I培养基)稀释 4.0ugDNA,轻轻混匀。 3.使用前将Lipofectamine 2000转染试剂轻轻混匀,用250ul无血清培养基(如 OPTI-MEM I培养基)稀释10ul Lipofectamine 2000转染试剂,轻轻混匀。 Lipofectamine 2000稀释后,在5分钟内同稀释的DNA混合(<30分钟)。 NOTE:若使用DMEM培养基,则需在5分钟内同稀释的DNA混合。 4.混合稀释的DNA(第二步)和稀释的Lipofectamine 2000(第三步)。室温放 置20分钟。 5.(optional)将6孔板中的旧营养液吸出,用无血清培养基清洗两次。加入 2ml无血清配养基。 6.直接将复合物加入到每孔中,摇动培养板,轻轻混匀。

病毒转染原理及步骤

病毒转染原理及步骤 在细胞相关的实验操作中,对于一些按常规方法难以转染甚至无法转染的细胞,通过病毒介导的实验能够大大提高基因的转导效率,以达到目的基因的高效瞬时表达。 病毒转染包括以下步骤:1构建载体2包装提纯病毒3感染靶细胞。以慢病毒为例。 慢病毒(Lentivirus)载体是以HIV-1(人类免疫缺陷I型病毒)为基础发展起来的基因治疗载体。区别一般的逆转录病毒载体,它对分裂细胞和非分裂细胞均具有感染能力。慢病毒载体的研究发展得很快,研究的也非常深入。该载体可以将外源基因有效地整合到宿主染色体上,从而达到持久性表达。在感染能力方面可有效地感染神经元细胞、肝细胞、心肌细胞、肿瘤细胞、内皮细胞、干细胞等多种类型的细胞,从而达到良好的的基因治疗效果,在美国已经开展了临床研究,效果非常理想,因此具有广阔的应用前景。 一、慢病毒载体构建原理: 慢病毒载体的包装系统一般由两部分组成,即包装成分和载体成分。包装成分由HIV-1基因组去除了包装、逆转录和整合所需的顺式作用序列而构建,能够反式提供产生病毒颗粒所必需的蛋白;载体成分则与包装成分互补,即含有包装、逆转录和整合所需的顺式作用序列,同时具有异源启动子控制下的多克隆位点及在此位点插入的目的基因。将包装成分与载体成分的多个质粒共转染包装细胞,即可在细胞上清中收获携带目的基因的复制缺陷型慢病毒载体颗粒。 慢病毒表达载体包含了包装、转染、稳定整合所需要的遗传信息。慢病毒包装质粒可提供所有的转录并包装RNA 到重组的假病毒载体所需要的所有辅助蛋白。为产生高滴度的病毒颗粒,需要利用表达载体和包装质粒同时共转染细胞,在细胞中进行病毒的包装,包装好的假病毒颗粒分泌到细胞外的培养基中,离心取得上清液后,可以直接用于宿主细胞的感染,目的基因进入到宿主细胞之后,经过反转录,整合到基因组,从而高水平的表达效应分子。

G418筛选稳定表达细胞系经验总结

G418筛选稳定表达细胞系经验总结 我做了稳定转染,从G418浓度确定到最后的单克隆化鉴定。有自己的体会也有其他战友遇到的情况, 和大家分享. 没有总结好的地方,大家补充。 筛选之前确定G418浓度: 1、由于每种细胞对G418的敏感性不同,而且不同的厂家生产的G418有效成分的比重不同,一般1g的粉剂中有效的G418含量大约为0.722g。 2、G418是新霉素的类似物,两者都是通过抑制核糖体的功能和蛋白质的合成而杀死细胞的。但是新霉素对真核细胞无作用而G418对细菌和真核细胞都起作用。neo就是编码3‘磷酸转移酶的基因,它表达的蛋白能够分解新霉素G418。在进行转染时细胞膜受到影响,抗生素可能对细胞产生较大影响,加上G418有杀菌作用,所以有人主张转转染时不加其它抗生素。 3、汇合度对G418筛选结果的影响很大,一般筛选时汇合度不宜超过50% 4,G418的活性不尽相同,所以在筛选之前,一定要确定G418的最佳筛选浓度。具体如下:将细胞稀释到1000个细胞/ml,在100ug/ml~1mg/ml的G418浓度范围内进行筛选,选择出在10~14天内使细胞全部死亡的最低G418浓度来进行下一步的筛选试验。6个细胞电转后,分别接种1/4000,1/1000,1/300细胞到一个具体试验:3x1024孔板中,48h后加药筛选,此时1/300细胞孔内大约50%汇合度。理论上1/4000孔内应有4%的汇合度。筛选9天后,观察1/4000孔内有两三个克隆,按比例1/300孔内应该有几十个克隆,事实上,它们几乎全死光了,只有几个克隆。 加药时间和维持浓度 1,由于基因转染到细胞内之后要一段时间才能表达出蛋白质。所以筛选不能太早;但是也不能太晚,因为转染了外源基因的细胞代谢负荷较大,增值较慢,时间长了就会被没有外源基因转入的细胞所淹没,最终导致筛选不出阳性克隆,一般要在转染24小时之后才开始加G418筛选。随着细胞的代谢G418的浓度和活性都会下降,所以每3~5天都要更换一次含有G418的筛选液。这时药物浓度可以降至200ug/ml。 2,加抗生素的时机,主要是考虑插入到细胞基因组的抗性基因是否已经得到表达。一般是转染48小时后加入抗生素。挑出单克隆后就可以用维持浓度,一般是筛选浓度的。1/2. . 关于维持浓度,有人说细胞会出现对抗生素的抗性,应不断提高其浓度。而且,如果你要挑选到几个阳性克隆中较高表达的克隆的话,可以调整抗生素的浓度。当然,抗性基因高表达,目的基因不一定就跟着高表达。 筛选时的培养液 加药筛选约6天左右,细胞会大量死亡,孔中只剩下的细胞寥寥无几。这时会出现两个问题: 1,死亡的细胞会裂解释放出有害物质,导致那些有neo表达的阳性细胞死亡,

脂质体转染的几个实验方法

脂质体转染的几个实验方法 关键词:脂质体转染2013-08-28 14:32 来源:互联网点击次数:731 实验原理 脂质体(LR)试剂是阳离子脂质体DOTMA和DOPE的混合物(1:1)。它适用于把DNA 转染入悬浮或贴壁培养细胞中,是目前条件下最方面的转染方法之一。转染率高,优于磷酸钙法,比它高5-100倍,能把DNA和RNA转染到各种细胞。 用LR进行转染时,首先需要优化转染条件,应找出该批LR对转染某一特定细胞适合的用量、作用时间等,对每批LR都要做。先要固定一个DNA的量和DNA/LR混合物与细胞相互作用的时间,DNA可从1-5ug和孵育时间6h,开始,按这两个参数绘出相应LR需用量的曲线,再选用LR和DNA两者最佳的剂量,确定出转染时间。因LR对细胞有一定的毒性,转染时间以不超过24h为宜。 细胞种类:COS-7、BHK、NIH-3T3、Hela和Jurkat等任何一种细胞均可作为受体细胞。 实验步骤 1. 操作步骤(方法一): 1) 取6孔培养板,向每孔中加入2ml含(1-2) x 10 5个细胞的培养基,37℃、18% CO 2培养基40%-60%汇合时。 2) 转染液制备:在聚苯乙烯管中制备以下两液(为转染1个空细胞所用的量)。 A液:用不含血清培养基稀释DNA使浓度为1-10ug,终量100ul。 B液:用不含血清培养基稀释LR,使终浓度为2-50ug,终量100ul。 轻轻混合A液、B液,室温中置10-15min,稍后会出现微浊现象,但并不妨碍转染。 3) 转染准备:用2ml不含血清培养基漂洗2次,再加入1ml不含血清培养基。 4) 转染:把A/B复合物缓缓加入培养基中,摇匀,置37℃温箱中6-24h,吸除无血清转染液,换入正常培养基继续培养。 5) 其余处理:如观察、筛选、检测等与其他转染法相同。 6) 注意:转染时切勿加血清,血清对转染效率有很大影响。 2. 快速脂质体转染法操作步骤(方法二): 1) 将细胞以5 x 105个/孔接种于6孔板中培养24h,使其达到50%-60%板底面积。 2) 在试管中配制DNA-脂质体复合物。 a. 在1ml无血清DMEM中稀释PSV1-neo质粒DNA或供体DNA。 b. 旋转1s,再加入脂质体悬液,旋转。 c. 室温下放置5-10min,使DNA结合在脂质体上。 3) 弃去细胞中的旧液,用1ml无血清DMEM洗细胞1次后弃去,向每孔中直接加入1mlDNA-脂质体复合物,37℃培养3-5天。 4) 再于每孔中加入含20%胎牛血清的DMEM,继续培养14-24h。 5) 吸出DMEM-DNA-脂质体混合物加入新鲜含10%胎牛血清的DMEM,2ml/孔,再培养24-48h。 6) 用细胞刮或消化法收集细胞,以备分析鉴定。

脂质体转染实验原理与操作步骤总

脂质体转染的实验原理与操作步骤大全 日期:2012-06-25 来源:互联网作者:青岚点击:3644次 摘要: 细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等,理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等,本文主要介绍细胞转染常用的方法-脂质体转染的原理和操作步骤等。 找产品,上生物帮>> >> 细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等,理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等,本文主要介绍细胞转染常用的方法-脂质体转染的原理和操作步骤等。 脂质体(lipofectin regeant,LR)试剂是阳离子脂质体N-[1-2,3-Dioleyoxy,Propyl]-n,n,n-Trimethylammonium Chloride(DOTMA)和Dioleoyl photidye-thanolamine(DOPE)的混合物[1:1(w/w)]。它适用于把DNA转染入悬浮或贴壁培养细胞中,是目前条件下最方便的转染方法之一。转染率高,优于磷酸钙法,比它高5~100倍,能把DNA和RNA转染到各种细胞。 用LR进行转染时,首先需优化转染条件,应找出该批LR对转染某一特定细胞适合的用量、作用时间等,对每批LR都要做:第一,先要固定一个DNA的量和DNA/LR混合物与细胞相互作用的时间,DNA可从1~5μg和孵育时间6小时开始,按这两个参数绘出相应LR需用量的曲线,再选用LR和DNA两者最佳的剂量,确定出转染时间(2~24小时)。因LR对细胞有一定的毒性,转染时间以不超过24小时为宜。 细胞种类:COS-7、BHK、NIH3T3、Hela和Jurkat等任何一种细胞均可作为受体细胞。 一、脂质体(liposome)转染方法原理 脂质体(liposome)转染方法原理:脂质体((Iiposome)作为体内和体外输送载体的工具,已经研究的十分广泛,用合成的阳离子脂类包裹DNA,同样可以通过融合而进人细胞。使用脂质体将DNA带人不同类型的真核细胞,与其它方法相比,有较高的效率和较好的重复性。 中性脂质体是利用脂质膜包裹DNA,借助脂质膜将DNA导入细胞膜内。带正电的阳离子脂质体,DNA并没有预先包埋在脂质体中,而是带负电的DNA自动结合到带正电的脂质体上,形成DNA-阳离子脂质体复合物,从而吸附到带负电的细胞膜表面,经过内吞被导入细胞。 二、脂质体转染操作步骤 1、操作步骤[方法一]:

最全的G418筛选稳定表达细胞系总结2

Protocal 1.G418的配制:取1g G418溶于1ml 1M的HEPES液中,加蒸馏水至10ml,过滤消毒,4度保存。 2.细胞培养:取待测培养细胞,制备成细胞悬液,按等量接种入多孔培养板中,培养6小时左右开始加药。 3.制备筛选培养基:在100ug/ml~1000ug/ml范围内确定几个梯度,比如先做个100ug/ml、400ug/ml、800ug/ml、1000ug/ml,按梯度浓度用培养基稀释G418制成筛选培养基。 4.加G418筛选: 吸除培养孔中培养基,PBS洗涤一次,每孔中加入不同浓度的筛选培养基。 5.换液:根据培养基的颜色和细胞生长情况,每3~5天更换一次筛选培养基。方法同4。 6.确定最佳筛选浓度:在筛选10~14天内能够杀死所有细胞的最小G418浓度即为最佳筛选浓度。在第一轮就筛选出最佳G418浓度的可能性不大,最有可能的是出现这种情况:用某一浓度G418的量在筛选14天后还不能杀死细胞,而用下一个梯度的G418的量在10天前就看不到活细胞了。假如是400ug/ml不能杀死细胞,而800ug/ml在第5天就把所有细胞都杀死了,则可以再用 500ug/ml、600ug/ml、700ug/ml进一步筛选,以确定最佳筛选浓度!心得:由于特性明确的细胞系G418的最佳用量还是比较稳定的,所以有时候不需要在这么大范围内进行筛选。比如说你要转染NIH3T3细胞,现在我告诉你我测试过NIH3T3细胞对G418的敏感性,我用的筛选浓度是200 ug/ml。这时你就可以做150ug/ml、200ug/ml、300ug/ml三个浓度进行筛选。 通过预实验确定了最佳筛选浓度后,就可以做稳定转染了。 a 转染:转染后培养24小时或者更长,到细胞增长接近汇合时按1:4密度传代,继续培养,待细胞密度增至50%~70%汇合时; b 加G418:去掉培养液,PBS洗一次,加入按最佳筛选浓度配制好的G418筛选培养基。 c 换液:根据培养基的颜色和细胞生长情况,每3~5天更换一次筛选培养基。当有大量细胞死亡时,可以把G418浓度减半维持筛选。筛选10~14天后,可

转染实验方法 (全)

转染实验方案 1.LB培养基的配制:500ml(5皿+2锥形瓶) 准备:500ml玻璃瓶1个,250ml玻璃瓶2个,500ml容量瓶一个,平皿5个 称取:酵母浸提液 5.0g 蛋白胨10.0g 氯化钠10.0g 实验操作: 混合后加去离子水(或注射用水)水400ml,待充分溶解后加水定容至500ml,取100ml 做固体培养基用装入A瓶,余下装入500ml B瓶中(400ml/瓶) 称取1.5g琼脂粉加入A瓶中 另取一瓶(C瓶)接100ml水(稀释氨苄西林用) 将以上3瓶高压灭菌:121°C , 30min 取氨苄西林一支:规格:1g/支 加水于安瓶中溶解后,移入C瓶中,浓度:10mg/ml 按照50μg/ml氨苄西林的浓度加到A B C三瓶中 A瓶:0.5ml(即为LB固体培养基)——松弛型100μg/ml,严紧型50μg/ml B瓶:2ml(即为LB液体培养基) 将A瓶按20ml/平皿,分别移到5个平皿中,待冷却后即为固体培养基。 用膜封口放入4℃保存。 2.感受态转化与培养(TOP10) 准备:37℃摇床,37℃烘箱,10cm培养皿(LB琼脂凝胶+氨苄=50 ml LB+0.75 g琼脂+50μl氨苄),冰盒,42℃水浴,无菌牙签,氨苄溶液40~60 μg/ml 实验前:水浴调至42℃,SOC培养液放至室温,LB加氨苄培养皿于37度烘箱中加热半小时 实验操作: 1)将质粒短暂离心后迅速放入冰浴中 2)冰上解冻TOP10 3)吸取1到10μl质粒加入TOP10中,轻轻敲打混匀(切记不可用移液枪混匀)。剩 余的质粒可储存于-20℃中 4)冰上孵育TOP10离心管30min。 5)42℃水浴30s(精确),不要晃动离心管 6)迅速转入冰浴2-3min,加入250μl预热的soc溶液,保证过程无菌 7)37℃摇床水平225 rpm摇1h 8)吸取200μl用三角耙铺板(最好同时做不同加入量的2个皿,LA培养皿预热), 剩余溶液储存于4 ℃ 9)正置20min,倒置37 ℃培养过夜 10)第二天取出平皿,观察菌落,选择较大菌落,用牙签挑取菌落放入对应的试管中, 加入15 μl氨苄西林(C瓶母液),最后加3ml LB液体培养基,试管放架子上37 ℃ 摇4-6 h(预培养) 11)按照培养基:菌液=200ml:2ml进行转菌,剩余菌液放入EP管中-20℃保存(复苏 加时100μl菌液预培养)。37℃摇床过夜(约12h),收集菌体。

稳定细胞株筛选

稳定株构建 FAQ 转自微博思路迪慢病毒包装 1,什么是瞬时转染和稳定转染? 答:瞬时转染:顾名思义,外源片段的表达时间短暂。这主要是因为外源导入的裸露的载体整合入基因组的几率非常低,所以以染色体外(episomal)形式存在,不能随细胞分裂而一同复制导致最后拷贝数被稀释导致的。而且考虑到细胞分裂会稀释质粒的量,所以起初转染的质粒拷贝数极高。这就导致瞬时转染呈现一个高拷贝到低拷贝迅速降低的过程,且无法在这个系统上实现可诱导表达。稳定转染:是相对瞬时转染而言,进入细胞的质粒整合入细胞基因组中,并能随细胞分裂稳定传递下去。在这个系统中,质粒表达稳定,拷贝数低,且能实现诱导表达。稳定转染并不是一种与瞬时转染不同的方法,只是对瞬时转染的细胞进行筛选,得到稳定整合的细胞株。稳定整合的几率因基因传递的方法而异,跨度可以从10-8到10-1。因此,对于有的转染方法,比如化学试剂介导的转染,其整合几乎可以忽略不计。质粒载体整合的位点并不是完全随机分布,依据不同的基因传递方法,呈现不同的靶向倾向性,所以是一种半随机整合。不同基因传递方法对质粒稳定表达的影响见表XXXX。 2,设计稳定株构建实验需要考虑的因素有哪些? ?答:稳定整合试验中需要考虑的几个关键因素有: ?1),外源插入片段的拷贝数。多数情况下,低拷贝甚至是单拷贝可以减少人为实验因素的干扰。 ?2),整合的几率,这不仅决定了稳定株筛选的难易程度,而且还可以帮助人们更容易得到混合稳定株。 ?3),整合位点的转录活跃度,决定了稳定株中外源片段的表达质量。最理想的状况是单拷贝,但转录活性比较高。 ?4),整合后的稳定性。不同的整合位点决定了外源片段在染色体中的稳定性,有些区域易发生重组或者丢失,从而导致稳定株再次丢失的情况。 ?5),最好使用混合稳定株或者获得多个不同单克隆稳定株。因为稳定整合往往伴随这插入失活宿主内源基因,所以实验时通过使用混合稳定株, 或者对多个单克隆稳定株进行比较,可以帮助研究人员获得更精确的实 验数据。 3,什么时候需要稳定细胞株? ?答:以下实验,构建稳定细胞株而不是瞬时转染更能满足实验要求:

各种转染方法比较

各种转染方法比较 转染方法原理主要应 用 特点主要的厂家及产品 DEAE-葡聚糖法带正电的DEAE-葡聚糖与核酸 带负电的磷酸骨架相互作用形成 的复合物被细胞内吞 瞬时转 染 相对简便、重复比磷酸钙好,但对细 胞有一定的毒副作用,转染时需除血 清且一般只用于BSC-1,CV-1,COS 细胞系 Sigma-Aldrich(DEAE-Dextran Transfection Kit) DNA复合物吸附细胞膜稳定转 染,染瞬 转染 不适用于原代细胞(所需的DNA浓 度较高),操作简便但重复性差,有些 细胞不适用 细胞建议用CSCL梯度离心,转染 是拷贝数较多 GIBCO BRL,Promega 阳离子脂质体法带正电的脂质体与核酸带负电的 磷酸基团形成复合物,然后脂质 体上剩余的电核与细胞膜上的唾 液酸残基的负电核结合;另一种 解释是通过细胞是内吞作用而被 进入细胞。(若DNA浓度过高, 中和脂质体表面电核,而降低了 与细胞的结合能力) 稳定转 染,瞬时 转染,所 有细胞 使用方法简单,可携带大片段DNA, 通用于各种类型的裸露DNA或 RNA,能转染各种类型的细胞,没 有免疫原性。虽在体外基因转染中 有很高的效率,但在体内,能被血 清清除,并在肺组织内累积,诱发 强烈的抗炎反应,导致高水平的毒 性,这在很大程度上限制了其应用 Invitrogen(Lipofectamine 2000,Lipofectamine, Lipofectin,Lipofectamine Plus,Cellfectin) Roche(Dosper,DOTAP,FuGENE 6) CPG Biotech Co(GeneLimo Plus,GeneLimo Super) Promega(Transfast,Tfx, Transfectam)

相关主题
文本预览
相关文档 最新文档