当前位置:文档之家› 基于-单片机的烘箱温度控制器设计

基于-单片机的烘箱温度控制器设计

基于-单片机的烘箱温度控制器设计
基于-单片机的烘箱温度控制器设计

基于单片机的烘箱温度控制器设计

目录

1.项目概述 (1)

1.1.该设计的目的及意义 (1)

1.2.该设计的技术指标 (2)

2.系统设计 (3)

2.1.设计思想 (3)

2.2.方案可行性分析 (4)

2.3.总体方案 (5)

3.硬件设计 (6)

3.1.硬件电路的工作原理 (6)

3.2.参数计算 (7)

4.软件设计 (8)

4.1.软件设计思想 (8)

4.2.程序流程图 (9)

4.3.程序清单 (10)

5.系统仿真与调试 (11)

5.1.实际调试或仿真数据分析 (11)

5.2.分析结果 (13)

6.结论 (12)

7.参考文献 (13)

8.附录 (14)

1.项目概述:

1.1.该设计的目的及意义

温度的测量及控制,随着社会的发展,已经变得越来越重要。而温度是生产过程和科学实验中普遍而且重要的物理参数,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。

而本设计正是为了保证生产过程的稳定运行并提高控制精度,采用以51系列单片机为控制核心,对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。

通过本设计的实践,将以往学习的知识进行综合应用,是对知识的一次复习与升华,让以往的那些抽象的知识点在具体的实践中体现出来,更是对自己自身的挑战。

1.2.该设计的技术指标

设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。炉温可以在一定围由人工设定,并能在炉温变化时实现自动控制。若测量值高于温度设定围,由单片机发出控制信号,经过驱动电路使加热器停止工作。当温度低于设定值时,单片机发出一个控制信号,启动加热器。通过继电器的反复开启和关闭,使炉温保持在设定的温度围。

(1) 1KW 电炉加热(电阻丝),最度温度为120℃(软件实现)

(2)恒温箱温度可设定,温度控制误差≦±2℃(软件实现PID)

(3)实时显示温度和设置温度,显示精度为1℃(LED)。

(4)温度超过设置温度±5℃,发出超限报警,升温和降温过程不作要求。

(5)升温过程采用PID算法,控制器输出方式为PWM输出方式,降温采用自然冷却。

(6)功率电路220 VAC供电,强弱电气电隔离

2.系统设计

2.1.设计思想

以87C51单片机为整个温度控制系统的核心,为解决系统出现一时的死机的问题,需构建复位电路,来重新启动整个系统。要想控制温度,首席必须能够测量温度,就需要一温度传感器,将测量得到的温度传给单片机,经单片机处理后,去控制继电器等器件实现电炉的断与通来达到温度期望值,当温度超过设定上下限值时,可以通过中断信号,控制指示灯的亮灭,来提醒温

度过高或过低,以便采取必要的措施,来阻断或导通电炉进行加热或者冷却,以使温度保持在设定值,更可以通过LED显示设定值和温度实时值,可以设定一功能键,来切换是显示设定值还是温度实时值,另外如果想更改设定温度值,可以通过设定加减键来实现温度设定值的增减,而温度的控制过程可以通过软件编程实现最优控制,比如PID算法。

2.2.可行性方案分析

实现温度控制的方法主要有以下几种。

1.方案一:采用纯硬件的闭环控制系统。该系统的优点在于速度较快,但可靠性比较差控制精度比较低、灵活性小、线路复杂、调试、安装都不方便。且要实现题目所有的要求难度较大。

2.方案二:FPGA/CPLD或采用带有IP核的FPGA/CPLD方式。即用FPGA/CPLD完成采集,存储,显示及A/D等功能,由IP核实现人机交互及信号测量分析等功能。这种方案的优点在于系统结构紧凑,可以实现复杂的测量与与控制,操作方便;缺点是调试过程复杂,成本较高。

3.方案三:单片机与高精度温度传感器结合的方式。即用单片机完成人机界

面,系统控制,信号分析处理,由前端温度传感器完成信号的采集与转换。

这种方案克服了方案一、二的缺点,所以本课题任务是基于单片机和温度传感器实现对温度的控制。

2.3. 总体方案

(1)系统结构框图:

3.硬件设计 3.1.硬件电路的工作原理

3.1.1单片机选择

单片机是整个控制系统的核心,要满足大存、高速率、通用性、价格便宜等要求,本设计选择87C51作为主控芯片。

87C51是INTEL 公司MCS-51系列单片机中

基本型产品,它采用INTEL 公司可靠的CHMOS

工艺技术制造的高性能8位单片机,属于标准

的MCS-51的体系结构和指令系统。。它结合了

HMOS 的高速和高密度技术及CHMOS 的低功耗特

征,是80C51BH 的EPROM 版本,电改写光擦除

的片4kB EPROM 。

87C51置中央处理单元、128字节部数据存储器

RAM 、32个双向输入/输出(I/O)口、2个16位

定时/计数器和5个两级中断结构,一个全双工

串行通信口,片时钟振荡电路。快速脉冲编

程,如编写4kB 片ROM 仅需12秒。

此外,87C51还可工作于低功耗模式,可通过

两种软件选择空闲和掉电模式。在空闲模式下

冻结CPU 而RAM 定时器、串行口和中断系统维

持其功能。掉电模式下,保存RAM 数据,时钟

振荡停止,同时停止芯片其它功能。87C51有

PDIP 和PLCC 两种封装形式。

单 片 机 87C51 引 脚 图 主要功能特性:

· 标准MCS-51核和指令系统

· 4kB 部ROM (外部可扩展至64kB ) · 32个可编程双向I/O 口 · 128x8bit 部EPRAM(可扩充64kB 外

给定

值 87C51 单片机

驱动电路 晶闸管主电路 被控对象 输出温度 采 样 电 路

部存储器)

· 2个16位可编程定时/计数器· 时钟频率0-16MHz

· 5个中断源· 5.0V工作电压

· 可编程全双工串行通信口· 布尔处理器

· 2层优先级中断结构· 电源空闲和掉电模式

· 快速脉冲编程· 2层程序加密位

· PDIP和PLCC封装形式· 兼容TTL和CMOS逻辑电平

(1)电源引脚Vcc和Vss

Vcc(40脚):接+5V电源正端;

Vss(20脚):接+5V电源正端。

(2)外接晶振引脚XTAL1和XTAL2

XTAL1(19脚):接外部石英晶体的一端。在单片机部,它是一个反相放大器的输入端,这个放大器构成采用外部时钟时,对于HMOS单片机,该引脚接地;对于CHOMS单片机,该引脚作为外部振荡信号的输入端。

XTAL2(18脚):接外部晶体的另一端。在单片机部,接至片振荡器的反相放大器的输出端。当采用外部时钟时,对于HMOS单片机,该引脚作为外部振荡信号的输入端。对于CHMOS芯片,该引脚悬空不接。

(3)控制信号或与其它电源复用引脚有RST/VPD、ALE/P、PSEN和EA/VPP等4种形式。

RST/VPD(9脚):RST即为RESET,VPD为备用电源,所以该引脚为单片机的上电复位或掉电保护端。当单片机振荡器工作时,该引脚上出现持续两个机器周期的高电平,就可实现复位操作,使单片机复位到初始状态。

当VCC发生故障,降低到低电平规定值或掉电时,该引脚可接上备用电源VPD(+5V)为部RAM供电,以保证RAM中的数据不丢失。

ALE/ P (30脚):当访问外部存储器时,ALE(允许地址锁存信号)以每机器周期两次的信号输出,用于锁存出现在P0口的地址信号。

PSEN(29脚):片外程序存储器读选通输出端,低电平有效。当从外部程序存储器读取指令或常数期间,每个机器周期PESN两次有效,以通过数据总线口读回指令或常数。当访问外部数据存储器期间,PESN信号将不出现。

EA/Vpp(31脚):EA为访问外部程序储器控制信号,低电平有效。当EA 端保持高电平时,单片机访问片程序存储器4KB(MS—52子系列为8KB)。若超出该围时,自动转去执行外部程序存储器的程序。当EA端保持低电平时,无论片有无程序存储器,均只访问外部程序存储器。对于片含有EPROM的单片机,在EPROM编程期间,该引脚用于接21V的编程电源Vpp。

(4)输入/输出(I/O)引脚P0口、P1口、P2口及P3口

P0口(39脚~22脚):这8条引脚有两种不同功能,分别适用于两种不同情况。第一种情况是89S51不带片外存储器,P0口可以作为通用I/O口使用,P0.0-P0.7用于传送CPU的输入/输出数据。第二种情况是89S51带片外存储器,P0.0-P0.7在CPU访问片外存储器时用于传送片外存储器的低8位地址,然后传送CPU对片外存储器的读写数据。

P1口(1脚~8脚):这8条引脚和P0口的8条引脚类似,P1.7为最高位,P1.0为最低位。当P1口作为通用I/O口使用时,P1.0-P1.7的功能和P0口的第一功能相同,也用于传送用户的输入和输出数据。

P2口(21脚~28脚):这组引脚的第一功能和上述两组引脚的第一功能相同,既它可以作为通用I/O口使用。它的第二功能和P0口引脚的第二功能相配合,用于输出片外存储器的高8位地址。

P3口(10脚~17脚):P3.0~P3.7统称为P3口。它为双功能口,可以作为一般的准双向I/O接口,也可以将每1位用于第2功能,而且P3口的每一条引脚均可独立定义为第1功能的输入输出或第2功能。

引脚第二功能

P1.1 TXD(串行口输出端)

P1.2 INT0(外部中断0请求输入端,低电平有效) P1.3 INT1(外部中断1请求输入端,低电平有效) P1.4 T0(定时器/计数器0计数脉冲端)

P1.5 T1(定时器/计数器1计数脉冲端)

P1.6 WR(外部数据存储器写选通输出端,低电平有效)

P1.7 RD(外部数据存储器读选通输出端,低电平有效)

3.1.2.温度传感器的选择

本系统采用DALLAS半导体公司生产的一线式数字温度传感器DS18B20采集温度数据,DS18B20属于新一代适配微处理器的智能温度传感器,可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。它具有体积小,接口方便,传输距离远等特点。

1、DS18B20的主要特性

1.1. 适应电压围更宽,电压围:3.0~5.5V,在寄生电源方式下可由

数据线供电

1.2. 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条

口线即可实现微处理器与DS18B20的双向通讯

1.3. DS18B20在使用中不需要任何外围元件,全部传感元件及转换电

路集成在形如一只三极管的集成电路

1.4. 温围-55℃~+125℃,在-10~+85℃时精度为±0.5℃

1.5.可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、

0.25℃、0.125℃和0.0625℃,可实现高精度测温

1.6. 在9位分辨率时最多在93.75ms把温度转换为数字,12位分辨

率时最多在750ms把温度值转换为数字,速度更快

1.7. 用户可分别设定各路温度的上、下限

2、DS18B20的外形和部结构

DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非

挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的外形及管脚排列如下图

DS18B20引脚定义:

(1)DQ为数字信号输入/输出端;

(2)GND为电源地;

(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

DS18B20部结构图

3、DS18B20工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振

荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器

1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应

的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法

计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数

器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生

的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度

寄存器值的累加,此时温度寄存器中的数值即为所测温度。图3中的

斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计

数器1的预置值。

图3: DS18B20测温原理框图

表2 DS18B20高速暂存器

序号寄存器名称作用序号寄存器名称作

0 1 2 3 温度低字节

温度高字节

TH/用户字节1

HL/用户字节2

以16位补码形式存放

以16位补码形式存放

存放温度上限

存放温度下限

4、5

6

7

8

保留字节1、2

计数器余值

计数器/℃

CRC

以12位转化为例说明温度高低字节存放形式及计算:12位转化后得到的12位数据,存储在18B20的两个高低两个8位的RAM中,二进制中的前面5位是符号位。如果测得的温度大于0,这5位为0,只要将测到的数值乘于

0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625才能得到实际温度。

表3 温度高低字节存放形式

高8位S S S S S 262524

低8位232221202-12-22-32-4

在硬件上,DS18B20与单片机的连接有两种方法,一种是Vcc接外部电源,GND接地,I/O与单片机的I/O线相连;另一种是用寄生电源供电,此时UDD、GND接地,I/O接单片机I/O。无论是部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。

DS18B20有六条控制命令,如表4所示:

表4 DS18B20控制命令

指令约定代

操作说明

温度转换

读暂存器

写暂存器

复制暂存器重新调E2RAM

读电源供电方式44H

BEH

4EH

48H

B8H

B4H

启动DS18B20进行温度转换

读暂存器9个字节容

将数据写入暂存器的TH、TL字节

把暂存器的TH、TL字节写到E2RAM中

把E2RAM中的TH、TL字节写到暂存器TH、

TL字节

启动DS18B20发送电源供电方式的信号给主

CPU

CPU对DS18B20的访问流程是:先对DS18B20初始化,再进行ROM操作命令,最后才能对存储器操作,数据操作。DS18B20每一步操作都要遵循严格的工作时序和通信协议。如主机控制DS18B20完成温度转换这一过程,根据

DS18B20的通讯协议,须经三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。

4.温度传感器DS18B20的引脚

3.1.3.单片机控制模块

控制模块是整个设计方案的核心,它控制了温度的采集、处理与显示、温度值的设定与温度越限时控制电路的启动。本控制模块由单片机AT89S51及其外围电路组成。

(1)复位和时钟脉冲电路

该电路采用按键加上电复位,S1为复位按键,复位按键按下后,复位端通过小电阻R1与电源接通,迅速放电,使RST引脚为高电平,复位按键弹起后,电源通过大电阻对电容C3重新充电,RST引脚端出现复位正脉冲.

87C51部有一个高增益反相放大器,用于构成振荡器,但要形成时钟脉冲,外部还需附加电路,本设计采用部时钟方式,利用芯片部的振荡器,然后在引脚XTAL1和XTAL2两端跨接晶体振荡器,就构成了稳定的自激振荡器,发出的脉冲

直接送入部时钟电路,C1和C2的值通常选择为30pF左右,晶振Y选择12MHz.为了减小寄生电容,更好地保证振荡器稳定、可靠地工作,振荡器电容应尽可能安装得与单片机引脚XTAL1和XTAL2靠近。

3.1.

4.温度数据采集模块

温度由DALLAS 公司生产的一线式数字温度传感器DS18B20 采集。DS18B20 测温围为-55°C~+125°C,测温分辨率可达0.0625°C,被测温度用符号扩展的16 位补码形式串行输出。CPU 只需一根端口线就能与诸多DS18B20 通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

本设计采用三引脚PR-35封装的DS18B20,其引脚图见图3。Vcc接外部

+5V电源,GND接地,I/O与单片机的P3.4(T0)引脚相连。

3.1.

4.显示模块

显示部分采用LED静态显示方式,共阴极的数码管的公共端COM连接在一起接地,每位的段选线与74HC164的8位并口相连,只要在该位的段选线上保持段选码电平,该位就能保持相应的显示字符,考虑到节约单片机的I/O资源,因而采用串行接口方式,外接8位移位寄存器74HC164构成显示电路,电路如图5所示。

74HC164的逻辑功能介绍如下:

当清除端(CLEAR)为低电平时,输出端(QA-QH)均为低电平。串行数据输入端(A,B)可控制数据。当 A、B 任意一个为低电平,则禁止新数据输入,在时钟端(CLOCK)脉冲上升沿作用下 Q0 为低电平。当 A、B 有一个为高电平,则另一个就允许输入数据,并在 CLOCK 上升沿作用下决定 Q0 的状态。真值表如表5所示。

在单片机的TXD(P3.1)运行时钟信号,将显示数据由RXD

(P3.0)口串行输出至74HC164的A、B端。

3.1.5. 温度设置模块

温度设置部分采用独立式按键,S4为温度值加1按键,与单片机的P0.0口相连;S3为温度值减1按键,与单片机的P0.1口相连。当没有键按下时,单片机与之相连的输入口线为高电平,当任何一个按键按下时,与之相连的输入口线被置为低电平,产生外中断条件,在中断服务程序中读取键盘值。温度设置电路如图7所示。

开关作用

S2 温度设置加1键

S3 温度设置减1键

S4 功能转换键,按下LED显示温度设定值,不按,LED显示实时温度3.1.6.控制电路

控制电路与单片机的P0.6口相连,由于单片机输出控制信号非常微弱,需要用三极管来驱动外围电路,三极管选用NPN型的,当检测温度低于设定温度时,在单片机的P0.6口输出高电平控制信号,使三极管导通,使继电器两控制端产生压差,从而使继电器吸合,常开触点接通,控制外部电路对锅炉进行加热;当检测温度高于设定温度时,单片机输出低电平信号,三极管截止,继电器不吸合,外部电路停止加热。控制电路电路图如图所示。

3.2.参数计算

4.软件设计

4.1.软件设计思想:

纵观硬件设计,可以知道,主程序在执行过程中要调用五个子程序,分别是温度采集程序,键盘处理程序,数码管显示程序,温度处理程序和数据存储程序:

(1)温度采集程序:对温度传感器送过来的数据进行处理,进行判别和显示。

(2)键盘处理程序:实现键盘的输入案件的识别以及相关处理。

(3)数码管显示程序:向数码管的显示送数据,控制系统的显示部分。

(4)温度处理程序:对采集的温度和设置的上下限进行比较,做出判断,并由二极管和指示灯输出。

(5)数据存储程序:对键盘的设置的数据进行存储。

4.2.程序流程图:

系统框图

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

基于PLC的锅炉温度控制系统毕业设计

基于PLC的锅炉温度控制系统 作者姓名xxx 专业自动化 指导教师姓名xxx 专业技术职务讲师

目录 摘要 (1) 第一章绪论 (3) 1.1课题背景及研究目的和意义 (3) 1.2国内外研究现状 (3) 1.3项目研究内容 (4) 第二章 PLC和组态软件基础 (5) 2.1可编程控制器基础 (5) 2.1.1可编程控制器的产生和应用 (5) 2.1.2可编程控制器的组成和工作原理 ··············错误!未定义书签。 2.1.3可编程控制器的分类及特点 (7) 2.2组态软件的基础 (8) 2.2.1组态的定义 (8) 2.2.2组态王软件的特点 (8) 2.2.3组态王软件仿真的基本方法 (8) 第三章 PLC控制系统的硬件设计 (9) 3.1 PLC控制系统设计的基本原则和步骤 (9) 3.1.1 PLC控制系统设计的基本原则 (9) 3.1.2 PLC控制系统设计的一般步骤 (9) 3.1.3 PLC程序设计的一般步骤 (10) 3.2 PLC的选型和硬件配置 (11) 3.2.1 PLC型号的选择 (11) 3.2.2 S7-200CPU的选择 (12) 3.2.3 EM235模拟量输入/输出模块 (12) 3.2.4 热电式传感器 (12) 3.2.5 可控硅加热装置简介 (12) 3.3 系统整体设计方案和电气连接图 (13) 3.4 PLC控制器的设计 (14) 3.4.1 控制系统数学模型的建立 (14)

3.4.2 PID控制及参数整定 (14) 第四章 PLC控制系统的软件设计 (16) 4.1 PLC程序设计的方法 (16) 4.2 编程软件STEP7--Micro/WIN 概述 (17) 4.2.1 STEP7--Micro/WIN 简单介绍 (17) 4.2.2 计算机与PLC的通信 (18) 4.3 程序设计 (18) 4.3.1程序设计思路 (18) 4.3.2 PID指令向导 (19) 4.3.3 控制程序及分析 (25) 第五章组态画面的设计 (29) 5.1组态变量的建立及设备连接 (29) 5.1.1新建项目 (29) 5.2创建组态画面 (33) 5.2.1新建主画面 (33) 5.2.2新建PID参数设定窗口 (34) 5.2.3新建数据报表 (34) 5.2.4新建实时曲线 (35) 5.2.5新建历史曲线 (35) 5.2.6新建报警窗口 (36) 第六章系统测试 (37) 6.1启动组态王 (37) 6.2实时曲线观察 (38) 6.3分析历史趋势曲线 (38) 6.4查看数据报表 (40) 6.5系统稳定性测试 (42) 结束语 (43) 参考文献 (44) 致谢 (45)

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

基于单片机的温控器

天津理工大学 课程设计报告 题目:基于单片机的温控器设计 学生姓名李天辉学号 20101009 届 2013 班级电气4班 指导教师专业电气工程及其自动化

说明 1. 课程设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成课程设计工作。 3. 设计报告内容建议主要包括:概述、系统工作原理、系统组成、设计内容、小结和参考资料。 4. 设计报告字数应在3000-4000字,采用电子绘图、采用小四号宋 体、1.25倍行距。 5.课程设计成绩由平时表现(30%)、设计报告(30%)和提问成绩(40%) 组成。

课程设计任务书、指导书 课程设计题目: Ⅰ.课程设计任务书 一、课程设计的内容和要求(包括原始数据、技术要求、工作量) 当今社会,温控器已经广泛应用于电冰箱、空调和电热毯等领域中。其优点是控制精度高,稳定性好,速度快自动化程度高,温度和风速全自动控制,操作简单可靠,对执行器要求低,故障率低,效果好。目前国内外生产厂家正在研究开发第三代智能型室温空调温控器,应用新型控制模型和数控芯片实现智能控制。现在已有国内厂家生产出了智能型室温空调温控器,并已应用于实际工程。 本课程设计要求设计温度控制系统,主要由温度数据采集、温度控制、按键和显示、通讯等部分组成。温度采集采用NTC或PTC热敏电阻(或由电位器模拟)或集成温度传感器、集成运算放大器构成的信号调理电路、AD转换器组成。温控部分采用交流开关BT136通过改变导通角进行调压限流达到控制加热丝温度的目的。 温度控制算法采用PID控制,可以采用普通PID或模糊PID。对控制PID参数进行整定,进行MATLAB仿真,说明控制效果。进行程序编制。 设计通讯协议,并能够通过RS485总线将数据传回上位机。2.课程设计的要求 1、选择相应元器件设计温度控制系统原理图并绘制PCB版图。 2、进行PID控制算法仿真,设计PID参数,或模糊PID规则。 3、系统功能要求:a要能够显示实时温度;b能够进行温度设置;c 能够进行PID参数设定;d能够把数据传回上位机;e可以设定本机地址。F温度控制范围0~99.9度。 4、编制程序并调试通过,并有程序流程图。

数电-可调温度控制器

数电-可调温度控制器

绍兴文理学院电子设 计竞赛 2012年6月5日 作者:郭鹏程程攀邵美才

可调温度控器 【大二组】 目录: 目录: (3) 摘要 (4) 1.方案设计与论证 (5) 2.理论计算与分析 (5) 1.加热电阻功率10%~90%连续可调部分: (6) 3.电路图 (8) 4.测试方法与测试数据 (11) 5.对测试结果分析总结 (11)

摘要 本设计利用1N4148二极管的正面压降守温度影响的特性,来检测电路加热器的温度是否超过最大值;再通过最大温度值对应的二极管正面压降与一定值压降比较,若加热器温度达到最大值,则比较器输出高电平,比较器的输出接场效应管(IRF540)来控制电路的导通与断开,同时实现加热器功率连续可调并有八档循环控制与显示。模拟小汽车乘员使用的加热座椅垫功能。 关键词 占空比;PN结;比较器;555多谐振荡器;4051;40161;4511;LM324

1.方案设计与论证 方案一: 一个八选一模拟开关CD4051控制电路输出电压改变,功率电阻两端电压八 档变化。串联滑动变阻器接入电路控制功率电阻连续变化。一个四位二进制同步计数器CD40161和一个BCD —7段锁存译码驱动器CD4511通过按键(档位控制)间断闭合使一个共阴7段数码管显示0~7数字实现八档数字显示。 方案二: 555多谐振荡器和电位器通过调节输出电压的占空比使加热电阻的功率从 10%~90%可调。一个八选一模拟开关CD4051分别对应电阻接入控制555多谐振荡器输出电平占空比使加热电阻的功率1~8档循环调节。一个四位二进制同步计数器CD40161和一个BCD —7段锁存译码驱动器CD4511通过按键(档位控制)间断闭合使一个共阴7段数码管显示0~7数字实现八档数字显示。方案二符合设计要求。 2.理论计算与分析 电路断路 调节电位器阻值 555充电时间变化 电阻超温 按键改变阻值 555充电时间变化 占空比改变 电阻功率改变 占空比改变

基于单片机的温度控制器设计

技术参数和设计任务:1、利用单片机AT89S51实现对温度物理量的控制,以实现对温度控制的目的;2、为达到电源输出5V电压目标,完成电源电路的设计;3、为达到数码管显示目标,完成显示电路的设计;4、为达到键盘控制的目标,完成键盘电路的设计;5、为达到检测温度的目标,完成检测电路的设计;6、完成报警设计;7、进行软件设计[分配系统资源,编写系统初始化和主程序模块;编写数字调节器软件模块;编写A/D转换器处理程序模块;编写输出控制程序模块;其它程序模块(数字滤波、显示与键盘等处理程)等等。一、本课程设计系统概述1、系统原理温度传感器 DS18B20 从设备环境的不同位置采集温度,单片机 AT89S51 获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备 (压缩制冷器) ,当采集的温度经处理后低于设定温度的下时 , 单片机通过三极管驱动继电器开启升温设备 (加热器) 。当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声。系统中将通过串口通讯连接PC机存储温度变化时的历史数据,以便观察整个温度的控制过程及监控温度的变化全过程。2、系统结构图本设计以AT89S51单片机为主控核心设计的一个温度控制系统,低温时可控制加热设备,高温时控制风扇,超出设定最高温度值时蜂鸣器发出声响报警。 图1 总体硬件方框图 3、文字说明控制方案(1)温度测量部分方案 DS18B20是DALLAS公司生产的一线式数字温度传感器,它具有微型化、低功耗、高性能抗干扰能力、强易配处理器等优点,特别适合用于构成多点温度测控系统,可直接将温度

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

温度测控仪设计-毕业设计

温度测控仪设计 学生:XXX 指导教师:XXX 容摘要:本文主要介绍了智能温度测量仪的设计,包括硬件和软件的设计。先对该测量仪进行概括性介绍,然后介绍该测量仪在硬件设计上的主要器件:“Pt100热电阻”、AT89C51单片机和LCD显示器以及描述测量仪的总体结构原理。在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D 转换器进行温度信号的采集。总体来说,该设计是切实可行的。 关键词:温度 Pt100热电阻 AT89C51单片机 LCD显示器

Design of and control instrument Abstract: This paper describes the design of the intelligent temperature measuring instrument, including hardware and software design. Be the first general description of the measuring instrument, and then describes the hardware design of the measuring instrument's main device: "Pt100 thermal resistance", AT89C51 microcontroller and LCD display, and describe the principle of measuring the overall structure. In this design, as is the PT100 platinum resistance temperature sensor, temperature measurement using constant current method, through the microcontroller to control, amplifier, A/D converter for temperature signal acquisition. Overall, the design is feasible. Keywords:temperature Pt100 thermal resistance AT89C51 microcontroller LCD monitor .

单片机智能温控器课程设计

单片机课程设计 说明书 专业:机械设计制造及其自动化 设计题目:智能温控器 设计者: 指导老师: 设计时间:

一、课题名称:一个基于51单片机的智能温控器课程 设计 二、主要技术指标及工作内容和要求:本设计以MCS-51系列单片机为核心,采用常用电子 器件设计,一个电源开关,两个控制温度设定按键(增大/减小),四位数码管分别显示设 定温度和实际温度,量程为0~99度,打开电源开关后设定温度初始化为26度。 1,按键输入采用中断方式,两个按键分别接INT0和INT1。 2,采用铂电阻(Pt100)温度传感器进行温度测量,模数转换采用ADC0809。 3,单片机根据设定温度S和实测温度P控制继电器R的动作,死区设为2度:当P<=S-1时,控制R接通电加热回路; 当P>S+1时,控制R断开电加热回路; 当S-1

自制恒温控制器

自制恒温控制器 该恒温控制器电路能使电器按预定的温度自动开启或关闭。可用于恒温箱的温度自动控制、电风扇的自动开启,具有制作简单,用途广泛等优点。其电路原理图如下图所示。 A1为三端稳压集成块,它输出稳定的12V直流电压供整机用电。RP、R1和Rt组成温度检测电路,Rt为负温度系数的热敏电阻器,它的阻值随环境温度升高而下降。555时基电路A2接成触发延迟电路,当②脚电位低于l/3V DD时,555时基电路置位,③脚输出高电平,继电器K得电吸合,其触点K一1闭合,接通电器电源使电器得电工作。此时电路为暂稳态,正电源即通过R2向C4充电,使阈值端⑥脚电位不断上升,当升至复位电平时,电路翻转复位,③脚输出低电平,继电器释放,触点K一1跳开,电器就停止工作。本电路设计巧妙之处是在其控制端⑤脚与电源正端之间串接了一只二极管VD5,使控制端⑤脚电位被钳位在12V—0.7V=11.3V 左右,从而使⑥脚复位电平由原来的2/3VDD(即8V)抬高到11.3V。其目的可采用较小定时阻容元件R2与C4,即可获得较长的定时时间。采用图示数据,延迟时间约3min。设置延迟电路的目的是为了避免在预定温度附近可能造成电器M频繁开机与停机的不良现象。

恒温控制的具体工作过程是:当室内温度升高到预定值时,Rt阻值小于(R RP+R1)的一半,此时A2的②脚电位低于1/3VDD,电路翻转置位,③脚输出高电平,继电器K吸合,电器运转。室内温度逐渐下降后,Rt的阻值随之增大,②脚电位开始升高并大于1/3VDD,此时电路仍处在暂态,即C4继续充电,电路不会翻转,电器仍运转。直至C4电压充至11.3V左右时,电路翻转复位,③脚输出低电平,继电器K释放,电器才停止运转。显然电路设置的延迟电路可解决当室内温度迅速变化时造成电路在预定温度附近频繁开机与关机。倘若室内温度又升高到预定温度时,电路能重复上述过程使电器自动重新开机。 Rt可选用NTH2074型负温度系数热敏电阻。VD5、VD6均为1N4148型硅开关二极管。K用JZC一22F、DCl2V小型中功率电磁继电器,其触点容量可达5A。

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

简易温度控制器制作

电子技术综合训练 设计报告 题目:简易温度控制器制作 姓名:谢富臣 学号:08220404 班级:控制工程2班 学院:电信学院 日期:2010.07.16

摘要 我们本次课程设计的主题是做一个简易温度控制器。具体方法是采用热敏电阻作为温度传感器,将温度模拟量转化为数字量,再利用比较运算放大器与设置温度值进行比较,输出高或低电平至电路控制元件从而对控制对象进行控制。整个电路分为四个部分:测温电路,比较电路,报警电路,控制电路。其中后三者为技术重点。

目录 第一部分:任务要求 (4) 第二部分:概述 (5) 第三部分:技术要求及方案 (6) 第四部分:工作原理 (7) 第五部分:单元电路 (8) 第六部分:参考文献 (10) 第七部分:总结及体会 (11) 第八部分:附录 (12)

一:任务要求 2010 年春季学期

二:概述 设计并制作一个温度监控系统,用温度传感器检测容器内水的温度,以检测到的温度信号控制加热器的开关,将水温控制在一定的范围之内。具体要求如下: 1、当水温小于50℃时,H1、H2两个加热器同时打开,将容器内的水加热,; 2、当水温大于50℃,但小于60℃时,H1加热器打开,H2加热器关闭; 3、当水温大于60℃时,H1、H2两个加热器同时关闭; 4、当水温小于40℃,或者大于70℃时,用红色发光二极管发出报警信号; 5、当水温在40℃~70℃之间时,用绿色发光二极管指示水温正常; 6、电源:220V/50HZ的工频交流电供电。 (注:直流电源部分仅完成设计即可,不需制作,用实验室稳压电源调试) 按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim或OrCAD/PspiceAD9.2进行必要的仿真,仿真通过后购买元器件,用万用板焊接电路,然后对制作的电路完成调试,撰写设计报告,通过答辩。设计电路时,应考虑方便调试。 三:技术要求及方案

基于单片机的空调温度控制器设计设计

基于单片机的空调温度控制器设计设计

接口技术课程设计报告基于单片机的空调温度控制器设计 摘要 设计了基于AT89C52的高精度家用空调温度控制系统,系统硬件主要由电源电路、温度采集电路(DS18B20)、键盘、显示电路、输出控制电路及其他辅助电路组成;软件采用8051C语言编程;该系统可以完成温度的显示、温度的设定、空调的控制等多项功能。 关键词:单片机;DS18B20;温度检测;显示

目录 1 设计目的及要求 (1) 1.1 设计目的和意义 (1) 1.2 设计任务与要求 (1) 2 硬件电路设计 (2) 2.1 总体方案设计 (2) 2.2 功能模块电路设计 (3) 2.2.1 单片机的选型 (3) 2.2.2 振荡电路设计 (5) 2.2.3 复位电路设计 (5) 2.2.4 键盘接口电路设计 (6) 2.2.5 温度测量电路设计 (6) 2.2.6 系统显示电路设计 (7) 2.2.7 输出控制电路设计 (8) 2.3 总电路设计 (8) 2.4 系统所用元器件 (9) 3 软件系统设计 (10) 3.1 软件系统总体方案设计 (10) 3.2 软件流程图设计 (10) 4 系统调试 (12) 5 总结 (13)

5.1 本系统存在的问题及改进措施 (13) 参考文献 (14) 附录1:系统的源程序清单 (15) 附录2:系统的PCB图 (39)

1 设计目的及要求 1.1 设计目的和意义 21世纪的人们生活质量不断提高,同时也对高科技电子产业提出了更高的要求,为了使人们生活更人性化、智能化。我设计了这一基于单片机的空调温度控制系统,人们只有生活在一定的温度环境内才能长期感觉舒服,才能保证不中暑不受冻,所以对室内温度要求要高。对于不同地区空调要求不同,有的需要升温,有的需要降温。一般都要维持在21~26°C。 目前,虽然我国大量生产空调制冷产品,但由于我国人口众多,需求量过盛,在我国的北方地区,还有好多家庭还没有安装有效地室内温控系统。温度不能很好的控制在一定的范围内,夏天室内温度过高,冬天温度过低,这些均对人们正常生活带来不利的影响,温度、湿度均达不到人们的要求。以前温度控制主要利用机械通风设备进行室内、外空气的交换来达到降低室内温度,实现室内温度适宜人们生活。以前通风设备的开启和关停,均是由人手动控制的,即由人们定时查看室内外的温度、湿度情况,按要求开关通风设备,这样人们的劳动强度大,可靠性差,而且消耗人们体力,劳累成本过高。为此,需要有一种符合机械温控要求的低成本的控制器,在温差和湿度超过用户设定值范围时,启动制冷通风设备,否则自动关闭制冷通风设备。鉴于目前大多数制冷设备现在状况,我设计了一款基于MCS51单片机的空调温度控制系统。 1.2 设计任务与要求 系统要求利用单片机设计一空调温度控制器,能够实时检测并显示室温,能够利用键盘设定温度,并且和室温进行比较,当室温低于设定温度时,系统能够驱动加热系统工作,当室温高于设定温度时,系统能够驱动制冷系统工作,当两者温度相等时,不做动作。

基于51单片机的多功能温度控制器的设计

基于51单片机的多功能温度控制器的设计 在某些工业生产过程中,如恒温炉、仓库储藏、花卉种植、小型温室等领域都对温度有着严格的要求,需要对其加以检测和控制。传统的温度测量方法是将温度传感器输出的模拟信号放大后送至远端A/D转换器,最后单片机对A/D转换后的数据进行分析处理。这种方法的缺点是模拟信号在传输的过程中存在损耗并且容易受到外界的干扰,导致测量的温度精度不高。 文中以STC89C52RC单片机为控制核心,利用美国Dallas公司最新推出的单总线数字温度传感器DSl8820测量温度,单片机处理后对温度进行控制,并将温度显示在LCDl602上,还可通过按键设置温度上下限值实现温度超限报警等功能。 1 系统的组成和工作原理 多功能温度控制系统的结构,系统由六部分组成:控制核心部分、温度数据采集部分、加热装置控制部分、液晶显示部分、按键输入部分和报警提示部分。单片机启动温度采集电路完成温度的一次转换,然后读出转换后的数字量并转化成当前的温度呈现在显示模块中,并将当前的温度与通过按键输入电路设定的保持恒温度数进行比较,以实现温度的控制。还可以通过按键设置温度的上下限值以实现超温或低温报警提示功能。本系统的设计目标要对温度的控制精度达到0.1℃。 1.1 报警电路 报警电路采用蜂鸣器作为发声装置,当温度高于设定的上限值或低于下限值,给蜂鸣器送周期为1s,占空比为50%的方波,报警的时间可以持续1分钟或等待按键解除报警,这由软件控制实现。 1.2 按键电路 采用2×3的小键盘,键盘的识别可以采用两种方法:行扫描法和行反转法。两种方法都要注意消除按键的抖动。文中采用行扫描法并做成子程序,出口参数为按键的键值。定义键K1设置TH,K2设置TL,K3调高TH或TL,K4调低TH或TL,K5对TH或TL的数值进行确认。 1.3 温度检测电路 温度检测电路采用智能温度传感器DSl8820,它与单片机相连只需要3线,减少了外部的硬件电路。DSl8820主要性能特点如下: (1)测温的范围为-55~125℃,最大分辨率可以达到0.0625℃; (2)电源电压范围为3.0~5.5V; (3)供电模式:寄生供电和外部供电; (4)封装形式有两种:3脚的TO-92封装和8脚的SOIC封装; (5)可编程的温度转换分辨率,分辨率为9~12位(包括1位符号位),由配置寄存器决定具体位数,配置寄存器的格式如表1所示。 其中RlR0是用来设定分辨率的,分辨率的定义如表2所示。 由表2可以看出,分辨率设定得越高,温度转换所需要的时间就越长,因此应根据实际应用的需要来选择合适的分辨率。本文中选取12位分辨率,每隔1秒检测一次温度。12位分辨率的温度数据值格式如下: 当S=0表示测得的温度为正值,当S=l表示测得的温度为负值。 1.3.1 DSl8820的存储器结构 DSl8820的存储器有高速暂存RAM和非易失性电擦写EEPROM。高速暂存RAM的内容从低

相关主题
文本预览
相关文档 最新文档