当前位置:文档之家› 某35kv变电所主变压器继电保护

某35kv变电所主变压器继电保护

某35kv变电所主变压器继电保护
某35kv变电所主变压器继电保护

目录

摘要 (2)

第一章继电保护综述 (3)

1.1 继电保护综述 (3)

1.2 继电保护装置组成 (3)

1.3 继电保护装置基本任务 (3)

1.4 对继电保护装置的基本要求 (4)

1.5 继电保护技术发展简介 (5)

第二章电力变压器保护方案 (6)

2.1 短路电流及其计算 (6)

2.2 变压器的故障和不正常运行状态分析 (21)

2.3 电力变压器的保护方案分析 (22)

2.4 电力变压器的保护方案确定 (24)

第三章电力变压器的保护原理 (25)

3.1 电力变压器的保护原理分析 (25)

3.2 瓦斯保护原理 (25)

3.2.1 瓦斯继电器选型 (28)

3.3 定时限过流保护原理及整定计算 (29)

3.3.1 各种继电器选型 (31)

3.4 变压器的纵差动保护其原理及计算 (31)

3.4.1 构成变压器纵差动保护基本原则 (32)

3.5 不平衡电流产生的原因与消除方法 (33)

3.6 躲过励磁涌流 (35)

3.7 整定计算及灵敏度校验 (35)

3.8 电流互感器选择及差动继电器选型 (37)

3.9 过负荷保护原理 (38)

3.9.1 过负荷保护整定计算.................... 错误!未定义书签。

3.10 各种继电器选型............................ 错误!未定义书签。第四章电力变压器保护及主接线图 .. (40)

4.1 所有保护接线配置图 (40)

4.2 变电所主接线图 (41)

致谢词 (42)

参考文献 (42)

摘要:随着经济的发展和现代工业建设的迅速崛起,供电系统的设计越来越全面、系统,工厂用电量迅速增长,对电能质量、技术经济状况‘供电的可靠性也日渐提高,因此对供电系统的设计也有了更高、更完善的要求。设计是否合理,不仅直接影响投资、运行费用和有色金属的消耗量,也反映在供电的可靠性和安全生产方面,它和企业的经济效益、设备人生安全密切相关。

变电站是电力系统中的一个重要组部分,由电气设备及配电网络按一定的连接方式所构成,它从电力系统中取得电能,通过变换、分配、运输与保护等功能,然后将电能安全、可靠、经济的输送到每一个用电设备的专设场所。

变压器是电力系统中较为重要的电气原件, 且作为变电所的核心设备,它具有故障小,结构可靠的特点,但是在实际的运行过程中,还是会产生一定的故障和异常情况。因此,为了减少故障对电力系统造成的影响,保护电力系统的安全运行,必须根据电力变电站的容量、电压的等级情况, 从反应各种不同故障的可靠、快速、灵敏及提高系统的安全性出发,安装可靠性较高的继电保护装置。

关键词:设计;方案;变压器;继电保护

第一章继电保护综述

1.1 继电保护综述

对电力系统中发生的故障或异常情况进行检测,从而发出报警信号,或直接将故障部分隔离、切除的一种重要措施。

1.2 继电保护装置组成

继电保护装置:就是指反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

继电保护装置的组成:

继电保护一般由三个部分组成:测量部分、逻辑部分和执行部分,其原理结构如下图所示。

测量部分逻辑

部分

执行

部分

故障参数量输出信号

整定值

图1—3继电保护装置的原理结构图

1.3 继电保护装置基本任务

(1)发生故障时,自动、迅速、有选择地将故障元件从电力系统中切除,使非故障部分继续运行。

(2)反应电气元件的不正常运行状态,并根据运行维护的条件而动作于信号,以便值班员及时处理,或由装置自动进行调整,或将那些继续运行就会引起损坏或发展成为事故的电气设备予以切除。

(3)继电保护装置还可以与电力系统中的其他自动化装置配合,在条件允许时,采取预定措施,缩短事故停电时间,尽快恢复供电,从而提高电力系统运行的可靠性。

继电保护的基本原理:

继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。故障后,工频电气量变化的主要特征及可以构成的保护

(1)电流增大,构成电流保护。

(2)电压降低,构成低电压保护。

(3)电流与电压之间的相位角改变,构成功率方向保护。

(4)测量阻抗发生变化,构成距离保护。

(5)故障时被保护元件两端电流相位和大小的变化,构成差动保护。

(6)不对称短路时,出现相序分量,构成零序电流保护、负序电流保护和负序功率方向保护。

电力系统的继电保护根据被保护对象不同,分为发电厂、变电所电气设备的继电保护和输电线路的继电保护。前者是指发电机、变压器、母线和电动机等元件的继电保护,简称为元件保护;后者是指电力网及电力系统中输电线路的继电保护,简称线路保护。

按作用的不同继电保护又可分为主保护、后备保护和辅助保护。

主保护是指被保护元件内部发生的各种短路故障时,能满足系统稳定及设备安全要求的、有选择地切除被保护设备或线路故障的保护。

后备保护是指当主保护或断路器拒绝动作时,用以将故障切除的保护。后备保护可分为远后备和近后备保护两种。

远后备是指主保护或断路器拒绝时,由相邻元件的保护部分实现的后备;

近后备是指当主保护拒绝动作时,由本元件的另一套保护来实现的后备,当断路器拒绝动作时,由断路器失灵保护实现后备。

继电保护装置需有操作电源供给保护回路,断路器跳、合闸及信号等二次回路。按操作电源性质的不同,可以分为直流操作电源和交流操作电源。通常在发电厂和变电所中继电保护的操作电源是由蓄电池直流系统供电,因蓄电池是一种独立电源,最大的优点是工作可靠,但缺点是投资较大、维护麻烦。交流操作电源的优点是投资少、维护简便,但缺点是可靠性差。因此,交流操作电源的继电保护适合于小型变电所使用。

1.4 对继电保护装置的基本要求

一、选择性

选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。

当d1点发生短路故障时,应由故障线路上的保护P1和P2动作,将故障线路WL1切除,这时变电所B则仍可由非故障线路WL2继续供电。当d2点发生短路故障时,应由线路的保护P6动作,使断路器6QF跳闸,将故障线路WL4切除,这时只有变电所D停电。由此可见,继电保护有选择性的动作可将停电范围限制到最小,甚至可以做到不中断对用户的供电。

考虑后备保护的问题。当的d2点发生短路故障时,距短路点最近的保护P6应动作切除故障,但由于某种原因,该处的保护或断路器拒动,故障便不能消除,此时如其前面一条线路(靠近电源测)的保护P5动作,故障也可消除。此时保护P5所起的作用就称为相邻元件的后备保护。同理保护P1和P3又应该作为保护

P5的后备保护。

二、速动性

速动性就是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。

故障切除时间包括保护装置和断路器动作时间,一般快速保护的动作时间为0.04s~0.08s,最快的可达 0.01s~0.04s,一般断路器的跳闸时间为 0.06s~0.15s,最快的可达0.02s~0.06s。

三、灵敏性

灵敏性是指电气设备或线路在被保护范围内发生故障或不正常运行情况时,保护装置的反应能力。保护装置的灵敏性,通常用灵敏系数来衡量,灵敏系数越大,则保护的灵敏度就越高,反之就越低。

四、可靠性

可靠性包括安全性和信赖性,是对继电保护最根本的要求。所谓安全性是要求继电保护在不需要它动作时可靠不动作,即不发生误动。所谓信赖性是要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作,即不拒动。

以上四个基本要求是设计、配置和维护继电保护的依据,又是分析评价继电保护的基础。这四个基本要求之间是相互联系的,但往往又存在着矛盾。因此,在实际工作中,要根据电网的结构和用户的性质,辩证地进行统一。

1.5 继电保护技术发展简介

继电保护的发展是随着电力系统和自动化技术的发展而发展的。熔断器就是最早的、最简单的过电流保护。1890年后出现了电磁型过电流继电器。1901年出现了感应型过电流继电器。1908年提出了电流差动保护原理。1910年方向电流保护开始得到应用,1920年后距离保护装置出现。在1927年前后,出现了高频保护装置。20世纪70年代诞生了行波保护装置。显然,随着光纤通信将在电力系统中的大量采用,利用光纤通道的继电保护必将得到广泛的应用。

继电保护装置的元件、材料、保护装置的结构形式和制造工艺也发生了巨大的变革。经历了机电式保护装置、静态保护装置和数字式保护装置三个发展阶段。20世纪50年代,随着晶体管的发展,出现了晶体管保护装置。20世纪70年代,晶体管保护在我国被大量采用。随着集成电路的发展,出现了体积更小、工作更可靠的集成电路保护。在20世纪70年代后期,便出现了性能比较完善的微机保护样机并投入运行。进入 90年代,微机保护已在我国大量应用,主运算器由8位机、16位机发展到目前的32位机;数据转换与处理器件由A/D转换器、压频转换器(VFC),发展到数字信号处理器(DSP)。这种由计算机技术构成的继电保护称为数字式继电保护。

这种保护可用相同的硬件实现不同原理的保护,使制造大为简化,生产标准化、批量化,硬件可靠性高;具有强大的存储、记忆和运算功能,可以实现复杂原理的保护,为新原理保护的发展提高了实现条件。除了实现保护功能外,还可兼有故障录波、故障测距、事件顺序记录和保护管理中心计算机及调度自动化系统通信等功能,这对于保护的运行管理、电网事故分析及事故后的处理等均有重

要意义。另外它可以不断地对本身的硬件和软件自检,发现装置的异常情况并通知运行维护中心。

由于网络的发展与电力系统中的大量采用,微机硬件和软件功能的空前强大并成为维护电力系统整体安全稳定运行的计算机自动控制系统的基本组成单元。微机保护不仅要能实现被保护设备的切除、或自动重合,还可作为自动控制系统的终端,接收调度命令实现跳、合闸等操作,以及故障诊断、稳定预测、安全监视、无功调节、负荷控制等功能。

此外,由于计算机网络提供数据信息共享的优越性,微机保护可以占有全系统的运行数据和信息,应用自适应原理和人工智能方法使保护原理、性能和可靠性得到进一步的发展和提高,使继电保护技术沿着网络化、智能化、自适应和保护、测量、控制、数据通信于一体的方向不断发展。

第二章电力变压器保护方案

2.1 短路电流及其计算

短路:是指一切不正常的相与相之间或相与地(对于中性点接地的系统)发生通路的情况。

短路的原因:

⑴元件损坏

如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路.

⑵气象条件恶化

如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等.

⑶违规操作

如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压.

⑷其他原因

如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等

短路的危害后果:

随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。

(1)电动力效应

短路点附近支路中出现比正常值大许多倍的电流,在导体间产生很大的机械应力,可能使导体和它们的支架遭到破坏。

(2)发热

短路电流使设备发热增加,短路持续时间较长时,设备可能过热以致损坏。

(3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃及周围设备. (4)电压大幅下降,对用户影响很大.

(5)如果短路发生地点离电源不远而又持续时间较长,则可能使并列运行的发电厂失去同步,破坏系统的稳定,造成大片停电。这是短路故障的最严重后果。(6)不对称短路会对附近的通讯系统产生影响。

短路计算的目的:

(1)选择电气设备的依据;

(2)继电保护的设计和整定;

(3)电气主接线方案的确定;

(4)进行电力系统暂态稳定计算,研究短路对用户工作的影响。

短路电流计算的方法,常用的有欧姆法和标幺值法。本设计采用标幺值法。以下是本设计的短路电流计算。

15KM 200MV·A

最大运行方式:

短路电流计算图

等效电路图

取基准值:S d =100MV ·A ,U 1c =37KV ,U 2C =10.5KV I 1d =

13c d U S =

373100?KA=1.56KA

I 2d =

2

3c d U S =

5

.103100

?KA=5.50KA

X *1=

oc d S S =200

100

=0.5

X *2=0.4?15?

2

37100

=0.44 X *3= X *4=N d k S S U 10000?=6300

100101005.73???=1.19

K-1

X *)1(∑-K = X *

1+ X *2=0.5+0.44=0.94 I )3(1-K =

*)

1(1∑

-k d X I =

94

.056

.1KA=1.66KA I )3(''k =I )

3(∞=I )3(1-k =1.66KA

i )3(sh =2.55 I )3(''k =4.23KA I )3(sh =1.51 I )3(''k =2.51KA

S )3(1-k =

*)1(∑

-k d X S =

94

.0100

MV ·A=106.38MV ·A

K-2

X *)2(∑-K = X *

1+ X *2+ X *3// X *4=0.94+1.19/2=1.54 I )3(2-K =

*)

2(2∑

-k d X I =5.50/1.54KA=3.57KA

I )3(''k =I )

3(∞=I )3(1-k =3.57KA

i )3(sh =2.55 I )3(''k =9.10KA I )3(sh =1.51 I )3(''k =5.39KA

S )

3(2-k =

*)2(∑

-k d X S =

54

.1100

MV ·A=64.94MV ·A 折算到35KV 侧: I d21max = I 1d / X

*

)

2(∑-K =1.56/1.54=1.01(KA)

最小运行方式:

短路电流计算图

等效电路图

取基准值:S d =100MV ·A ,U 1c =37KV ,U 2C =10.5KV I 1d =

13c d U S =

373100?=1.56KA

I 2d =

2

3c d U S =

5

.103100

?=5.50KA

X *1=

oc d S S =200

100

=0.5

X *2=0.4?15?

2

37

100

=0.44

X *

3

= X *4

=N d k S S U 10000?=6300

100101005.73

???=1.19 K-1

X *)1(∑-K = X *

1+ X *2=0.5+0.44=0.94 I )3(1-K =

*)

1(1∑

-k d X I =

94

.056

.1KA=1.66KA I )3(''k =I )

3(∞=I )3(1-k =1.66KA

i )3(sh =2.55 I )3(''k =4.23KA I )3(sh =1.51 I )3(''k =2.51KA

S )3(1-k =

*)1(∑

-k d X S =

94

.0100

MV ·A=106.38MV ·A

K-2

X *)2(∑

-K = X *

1+ X *2+ X *3=0.94+1.19=2.13 I )

3(2-K =

*)

2(2∑

-k d X I =5.50/2.13KA=2.58KA

I )3(''k =I )

3(∞=I )3(1-k =2.58KA

i )3(sh =2.55 I )3(''k =6.58A I )3(sh =1.51 I )3(''k =3.90KA

S )3(2-k =

*)2(∑

-k d X S =

13

.2100

MV ·A=46.95MV ·A 折算到35KV 侧: I d21max = I 1d / X

*

)

2(∑-K =1.56/2.13=0.73(KA)

15KM 250MV ·A 最大运行方式:

短路电流计算图

等效电路图 取基准值:S d =100MV ·A ,U 1c =37KV ,U 2C =10.5KV I 1d =

13c d U S =

373100?=1.56KA

I 2d =

2

3c d U S =

5

.103100

?=5.50KA

X *1=

oc d S S =250

100

=0.4

X *2=0.4?15?

2

37

100

=0.44

X *

3

= X *4

=N d k S S U 10000?=6300

100101005.73

???=1.19 K-1

X *)1(∑-K = X *

1+ X *2=0.4+0.44=0.84 I )3(1-K =

*)

1(1∑

-k d X I =

84

.056

.1KA=1.86KA I )3(''k =I )

3(∞=I )3(1-k =1.86KA

i )

3(sh =2.55 I )3(''k =4.74KA I )3(sh =1.51 I )3(''k =2.81KA

S )3(1-k =

*)1(∑

-k d X S =

84

.0100

MV ·A=119.05MV ·A

K-2

X *)2(∑-K = X *

1+ X *2+ X *3// X *4=0.84+1.19/2=1.44 I )3(2-K =

*)

2(2∑

-k d X I =5.50/1.44KA=3.82KA

I )3(''k =I )

3(∞=I )3(1-k =3.82KA

i )3(sh =2.55 I )3(''k =9.74KA I )3(sh =1.51 I )3(''k =5.77KA

S )3(2-k =

*)2(∑

-k d X S =

44

.1100

MV ·A=69.44MV ·A 折算到35KV 侧: I d21max = I 1d / X

*

)

2(∑-K =1.56/1.44=1.08(KA)

最小运行方式:

短路电流计算图

等效电路图 取基准值:S d =100MV ·A ,U 1c =37KV ,U 2C =10.5KV I 1d =

13c d U S =

373100?=1.56KA

I 2d =

2

3c d U S =

5

.103100

?=5.50KA

X *1=

oc d S S =250

100

=0.4

X *2=0.4?15?

2

37100

=0.44 X *3= X *4=N d k S S U 10000?=6300

100101005.73???=1.19

K-1

X *)1(∑-K = X *

1+ X *2=0.4+0.44=0.84 I )3(1-K =

*)

1(1∑

-k d X I =

84

.056

.1KA=1.86KA I )3(''k =I )

3(∞=I )3(1-k =1.86KA

i )3(sh =2.55 I )3(''k =4.74KA I )3(sh =1.51 I )3(''k =2.81KA

S )3(1-k =

*)

1(∑

-k d X S =

84

.0100

MV ·A=119.05MV ·A K-2

X *)2(∑

-K = X *

1+ X *2+ X *3=0.84+1.19=2.03 I )

3(2-K =

*)

2(2∑

-k d X I =5.50/2.03KA=2.71KA

I )3(''k =I )

3(∞=I )3(1-k =2.71KA

i )3(sh =2.55 I )3(''k =6.91A I )3(sh =1.51 I )3(''k =4.09KA

S )

3(2-k =

*)

2(∑

-k d X S =

03

.2100

MV ·A=49.26MV ·A 折算到35KV 侧: I d21max = I 1d / X

*

)

2(∑-K =1.56/2.03=0.77(KA)

10KM 200MV ·A 最大运行方式:

短路电流计算图

等效电路图 取基准值:S d =100MV ·A ,U 1c =37KV ,U 2C =10.5KV I 1d =

13c d U S =

373100?=1.56KA

I 2d =

2

3c d U S =

5

.103100

?=5.50KA

X *1=

oc d S S =200

100

=0.5

X *2=0.4?10?

2

37100

=0.29 X *3= X *4=N d k S S U 10000?=6300

100101005.73???=1.19

K-1

X *)1(∑-K = X *

1+ X *2=0.5+0.29=0.79 I )3(1-K =

*)

1(1∑

-k d X I =

79

.056

.1KA=1.97KA I )3(''k =I )

3(∞=I )3(1-k =1.97KA

i )3(sh =2.55 I )3(''k =5.02KA I )3(sh =1.51 I )3(''k =2.97KA

S )3(1-k =

*)1(∑

-k d X S =

79

.0100

MV ·A=126.58MV ·A K-2

X *)2(∑-K = X *

1+ X *2+ X *3// X *4=0.79+1.19/2=1.39 I )3(2-K =

*

)

2(2∑-k d X

I =5.50/1.39KA=3.96KA

I )3(''k =I )3(∞=I )3(1-k =3.96KA

i )

3(sh =2.55 I )3(''k =10.10KA I )3(sh =1.51 I )3(''k =5.98KA

S )3(2-k =

*)2(∑

-k d X S =

39

.1100

MV ·A=71.94MV ·A 折算到35KV 侧: I d21max = I 1d / X

*

)

2(∑-K =1.56/1.39=1.12(KA)

最小运行方式:

短路电流计算图

等效电路图

取基准值:S d =100MV ·A ,U 1c =37KV ,U 2C =10.5KV I 1d =

13c d U S =

373100?=1.56KA

I 2d =

2

3c d U S =

5

.103100

?=5.50KA

X *1=

oc

d S S =200100

=0.5

X *2=0.4?10?

2

37

100

=0.29 X *3= X *4=N d k S S U 10000?=6300

100101005.73???=1.19

K-1

X *)1(∑-K = X *

1+ X *2=0.5+0.29=0.79 I )3(1-K =

*)

1(1∑

-k d X I =

79

.056

.1KA=1.97KA I )3(''k =I )

3(∞=I )3(1-k =1.97KA

i )3(sh =2.55 I )3(''k =5.02KA I )3(sh =1.51 I )3(''k =2.97KA

S )3(1-k =

*)

1(∑

-k d X S =

79

.0100

MV ·A=126.58MV ·A K-2

X *)2(∑

-K = X *

1+ X *2+ X *3=0.79+1.19=1.98 I )

3(2-K =

*

)

2(2∑-k d X

I =5.50/1.98KA=2.78KA

I )3(''k =I )3(∞=I )3(1-k =2.78KA

i )3(sh =2.55 I )3(''k =7.09A I )3(sh =1.51 I )3(''k =4.20KA

S )

3(2-k =

*)2(∑

-k d X S =

98

.1100

MV ·A=50.51MV ·A 折算到35KV 侧: I d21max = I 1d / X

*

)

2(∑-K =1.56/1.98=0.79(KA)

10KM 250MV ·A

最大运行方式:

短路电流计算图

等效电路图 取基准值:S d =100MV ·A ,U 1c =37KV ,U 2C =10.5KV

I 1d =

13c d U S =

373100?=1.56KA

I 2d =

2

3c d U S =

5

.103100

?=5.50KA

X *1=

oc d S S =250

100

=0.4

X *2=0.4?10?

2

37

100

=0.29 X *3= X *4=N d k S S U 10000?=6300

100101005.73???=1.19 K-1

X *)1(∑-K = X *

1+ X *2=0.4+0.29=0.69 I )3(1-K =

*)

1(1∑

-k d X I =

69

.056

.1KA=2.26KA I )3(''k =I )

3(∞=I )3(1-k =2.26KA

i )3(sh =2.55 I )3(''k =5.76KA I )3(sh =1.51 I )3(''k =3.41KA

S )3(1-k =

*)1(∑

-k d X S =

69

.0100

MV ·A=144.93MV ·A

K-2

X *)2(∑-K = X *1+ X *2+ X *

3// X *4=0.69+1.19/2=1.29 I )3(2-K =

*

)

2(2∑-k d X

I =5.50/1.29KA=4.26KA

I )3(''k =I )

3(∞=I )3(1-k =4.26KA

i )3(sh =2.55 I )3(''k =10.86KA I )3(sh =1.51 I )3(''k =6.43KA

S )

3(2-k =

*)2(∑

-k d X S =

29

.1100

MV ·A=77.52MV ·A 折算到35KV 侧: I d21max = I 1d / X

*

)

2(∑-K =1.56/1.29=1.21(KA)

最小运行方式:

短路电流计算图

等效电路图

取基准值:S d =100MV ·A ,U 1c =37KV ,U 2C =10.5KV I 1d =

13c d U S =

373100?=1.56KA

I 2d =

2

3c d U S =

5

.103100

?=5.50KA

X *1=

oc d S S =250

100

=0.4

X *2=0.4?10?

2

37100

=0.29 X *3= X *4=N d k S S U 10000?=6300

100101005.73???=1.19

K-1

变电站及线路继电保护设计和整定计算

继电保护科学和技术是随电力系统的发展而发展起来的。电力系统发生短路是不可避免的,为避免发电机被烧坏发明了断开短路的设备,保护发电机。由于电力系统的发展,熔断器已不能满足选择性和快速性的要求,于1890年后出现了直接装于断路器上反应一次电流的电磁型过电流继电器。19世纪初,继电器才广泛用于电力系统保护,被认为是继电保护技术发展的开端。1901年出线了感应型过电流继电器。1908年提出了比较被保护元件两端电流的电流差动保护原理。1910年方向性电流保护开始应用,并出现了将电流与电压相比较的保护原理。1920年后距离保护装置的出现。1927年前后,出现了利用高压输电线载波传送输电线路两端功率方向或电流相位的高频保护装置。1950稍后,提出了利用故障点产生的行波实现快速保护的设想。1975年前后诞生了行波保护装置。1980年左右工频突变量原理的保护被大量研究。1990年后该原理的保护装置被广泛应用。与此同时,继电保护装置经历了机电式保护装置、静态继电保护装置和数字式继电保护装置三个发展阶段。20世界50年代,出现了晶体管式继电保护装置。20世纪70年代,晶体管式保护在我国被大量采用。20世纪80年代后期,静态继电保护由晶体管式向集成电路式过度,成为静态继电保护的主要形式。20世纪60年代末,有了用小型计算机实现继电保护的设想。20世纪70年代后期,出现了性能比较完善的微机保护样机并投入系统试运行。80年代,微机保护在硬件结构和软件技术方面已趋成熟。进入90年代,微机保护以在我国大量应用。20世纪90年代后半期,继电保护技术与其他学科的交叉、渗透日益深入。为满足电网对继电保护提出的可靠性、选择性、灵敏性、速动性的要求,充分发挥继电保护装置的效能,必须合理的选择保护的定值,以保持各保护之间的相互配合关系。做好电网继电保护定值的整定计算工作是保证电力系统安全运行的必要条件。 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新活力。未来继电保护的发展趋势是向计算机化、网络化保护、控制、测量、数据通信一体化智能化发展。 随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,发展到一个新的水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择 为了保证变电站的稳定运行,就需要对相应设备进行更正改革。目前,计算机智能化技术对电力工作的影响较大,大部分电压变更以智能操作为主,这种自动化的电力变更技术在最大程度上降低了电力工作的人工成本。因此,为了保证更高效的完成电力运输工作,相关技术人员就需要以可靠性、适应性、可操控性等为主要目标,以智能系统为辅助工具,设计出适合现阶段电力发展的主接线。 标签:变电站;主接线设计;主变压器选择 引言 目前,电力系统已经成为生产生活中的重要支撑,其中电气主接线是以电源和出线为主体,是构成电力系统的重要环节,由各种电力设备和连接线组成。因此,重视电力系统电气主接线基本要求和关键因素,才能够使电力系统更好地为生产生活服务,才能让变电站的电力系统发挥更大的作用。电气主接线与电力系统、电站规模、枢纽布置、地形条件、动能参数以及电站运行方式等因素密切相关,而且对变电站电气设备布置、选择、继电保护和控制方式有较大影响。变电站电气主接线的合理设计与否,关系变电站的长期安全、可靠、经济运行。继电保护与控制方式有密切联系,是变电站供电设计的重要环节之一。本文以中小型变电站电气主接线设计为例,根据变电站电气主接线的类型、基本要求以及实际情况,对中小型变电站中电气主接线进行方案设计选择,最后从设计的经济方面和技术方面提出中小型变电站中不同电压等级的电气主接线设计方案。 1变电站电气一次主接线的设计步骤 1)明确主接线设计要求以及详细情况。在对220kV变电站进行一次主接线的设计过程中,最开始要做的就是熟悉了解变电站的具体情况,随后根据变电站电气一次主接线的实际需求入手,秉承“灵活、可靠、经济”的原则,结合实地考察的资料来开展一次主接线设计,制定出优良的主接线方案。2)方案的筛选与确定。在设计过程中,需要结合变电站的实际情况来筛选出最科学、最合适的方案。这是因为对数据资料进行分析后,会在设计过程中呈现不同的方案,在这些方案中往往会存在些许不足,有的还会与变电站的实际运行不相符,所以要进行方案的筛选与确定。3)高压电器设备的选择。针对电气一次主接线的设计方案进行电压、电流的分析,使其能充分满足系统运行的需求,同时将对变压器的损坏程度降到最低。对220kV变电站来讲,其运行需要连接很多的电器设备,一次主接线设计方案的目的是保证电器设备的稳定运行,要在方案确定后,根据设计方案来选择合适的高压电器设备。不论是变电站一次主接线设计,还是高压电器设备的选择,都需要充分考虑变电站的实际情况,三者之间要相互配合。 2设计主接线的合理方式 2.1110千伏的主接线

110kv变电站继电保护课程设计

110kv变电站继电保护课程设计 110kV变电站继电保护设计 摘要 继电保护是电网不可分割的一部分,它的作用是当电力系统发生故障时,迅速 地有选择地将故障设备从电力系统中切除,保证系统的其余部分快速恢复正常运行; 当发生不正常工作情况时,迅速地有选择地发出报警信号,由运行人员手工切除那些继续运行会引起故障的电气设备。可见,继电保护对保证电网安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。因此,合理配置继电保护装置,提高整定和校核工作的快速性和准确性,对于满足电力系统安全稳定的运行具有十分重要的意义。 继电保护整定计算是继电保护工作中的一项重要工作。不同的部门其整定计算 的目的是不同的。对于电网,进行整定计算的目的是对电网中已经配置安装好的各种继电保护装置,按照具体电力系统的参数和运行要求,通过计算分析给出所需的各项整定值,使全网的继电保护装置协调工作,正确地发挥作用。因此对电网继电保护进行快速、准确的整定计算是电网安全的重要保证。 关键词:110kV变电站,继电保护,短路电流,电路配置 目录 0 摘 要 .................................................................... 第一章电网继电保护的配置 ............................................... 2 1.1 电网继电保护的作 用 .................................................. 2 1.2 电网继电保护

的配置和原理 ............................................ 2 1.3 35kV线 路保护配置原则 ................................................ 3 第二章3 继电保护整定计算 .................................................2.1 继电保护整定计算的与基本任务及步骤 . (3) 2.2 继电保护整定计算的研究与发展状况 .................................... 4 第三章线路保护整定计 算 ................................................. 5 3.1设计的原始材 料分析 ................................................... 5 3.2 参数计 算 ............................................................ 6 3.3 电流保护的整定计算 .................................................. 7 总结 .. (9) 1 第一章电网继电保护的配置 1.1 电网继电保护的作用 电网在运行过程中,可能会遇到各种类型的故障和不正常运行方式,这些都可 能在电网中引起事故,从而破坏电网的正常运行,降低电力设备的使用寿命,严重的将直接破坏系统的稳定性,造成大面积的停电事故。为此,在电网运行中,一方面要采取一切积极有效的措施来消除或减小故障发生的可能性:另一方面,当故障 一旦发生时,应该迅速而有选择地切除故障元件,使故障的影响范围尽可能缩小,这一任务是由继电保护与安全自动装置来完成的。电网继电保护的基本任务在于: 1(有选择地将故障元件从电网中快速、自动切除,使其损坏程度减至最轻,并 保证最大限度地迅速恢复无故障部分的正常运行。 2(反应电气元件的异常运行工况,根据运行维护的具体条件和设各的承受能 力,发出警报信号、减负荷或延时跳闸。

主变压器的选择

变电站的主变压器选择 一、环境条件 环境包括温、湿度,海拔等大环境,也包括变压器所接入点的电网环境。 1、正常使用环境 DL/T5222-2005规定,电器正常使用的环境条件为:周围空气温度不高于40℃,海拔不超过1000m。 GB1094.1-2013进一步规定变压器冷却设备入口处的空气温度:任何时候不超过40℃(水冷却变压器为20℃),最热月平均不超过30℃,年平均不超过20℃,户外变压器不低于-25℃,户内变压器不低于-5℃。 2、环境对负荷的影响 当变压器工作处空气温度高于40℃,但不高于60℃时,允许降低负荷长期使用,但空气温度每降低1K,减少额定电流负荷1.8%;空气温度每降低1K,增加额定负荷的0.5%,但最大过负荷不超过额定电流负荷的20%。 3、环境对温升的影响 GB1094.1-2013规定绝缘系统温度为105℃的固体绝缘,且绝缘液体为矿物油或燃点不大于300℃的合成液体(冷却方式第一个字母为O)的变压器的温升限值见表1: 表1变压器的温升限值 部位温升限值(K) 顶层绝缘液体60 绕组平均(用电阻法测量): ——ON或OF冷却方式——OD冷却方式65 70 绕组热点78 上述限值对牛皮纸和改性纸均适用。 特殊运行条件下推荐的温升限值的修正值见表2: 表2温升限值的修正值 环境温度(℃) 温升限值修正值(K)年平均月平均最高 152535+5 2030400 253545-5 304050-10 354555-15 此表中温升限值为相对应于表1的值,可用插值法求得。 海拔超过1000米时,对于自冷式变压器(冷却方式后两位字母为AN)每增加400米,温升限值减少1K,对于风冷式变压器(冷却方式后两位字母为AF),每增加250米,温升限值减少1K。 海拔高度低于1000米时,可做逆修正。 4、特殊使用条件 根据DL/T5222,下述环境条件为特殊使用条件,设计时应采取防护措施,否则应与制造厂协商。 1)有害的烟或蒸汽,灰尘过多或带有腐蚀性,易爆的灰尘或气体的混合物、蒸汽、盐雾、过潮或滴水等;

电力变压器继电保护技术的应用与发展

电力变压器继电保护技术的应用与发展 【摘要】本文首先论述了电力变压器的继电保护措施,继而分析了继电保护装置在电力变压器故障中的应用,接着就继电保护装置在实际应用中应考虑的问题和应对措施进行了简要阐述,最后对继电保护的未来发展趋势谈了一点看法,仅供参考。 【关键词】电力变压器;继电保护技术;应用;发展 继电保护是一个自动化的装置设备,它的目的是当其保护的系统中电路或元器件出现故障或不正常运行时,这个系统的额保护装置能及时根据设定的程序在系统相应的部位实现跳闸或短路等既定操作,使故障电路或元器件从系统中脱离或者发出信号通知管理人员处理,以达到最大限度地降低电路或元器件的损坏,使被保护系统稳定运行。在电力系统中,电力变压器作为其大量使用的关键设备,其运行的可靠性是整个电力系统安全运行的重要保证。一旦其发生故障,却又无相应的保护装置对其进行保护,就会使整个电力系统无法正常运行。为此,应用继电保护装置对其进行保护显得尤为重要。 1.电力变压器的继电保护措施 1.1瓦斯保护 瓦斯保护是大中型变压器不可缺少的安全保护,其分为轻瓦斯保护动作于信号、重瓦斯保护动作于断路器跳闸。(1)轻瓦斯保护动作:当变压器局部产生击穿或短路故障时,其变压器内会产生气体,这时继电保护装置会根据气体的速度、特征以及成分等,来推测其故障的原因、部位和严重程度。当因为是滤油、加油或气动强油循环装置而产生气体,或是因温度下降或漏油使油面下降,再或是因为变压器轻微故障而产生气体等原因时,保护装置会发出瓦斯信号。(2)重瓦斯保护动作:当变压器内油面剧烈下降或保护装置二次回路故障,或是检修后油中空气分离太快等,均会导致瓦斯动作于跳闸。 1.2差动保护 差动保护是电力系统中,被保护设备发生短路故障,流进被保护设备的电流和流出的电流不相等,从而产生差电流,当产生的差电流大于差动保护装置的整定值时而动作的一种保护装置。 1.3后备保护 当回路发生故障时,回路上的保护将在瞬间发出信号断开回路的开断元件(如断路器),这个立即动作的保护就是主保护。当主保护因为各种原因没有动作,在延时很短时间后(延时时间根据各回路的要求),另一个保护将启动并动作,将故障回路跳开。这个保护就是后备保护。

10kV变电所继电保护设计和分析报告

继电保护毕业设计 课题:110kV变电所继电保护设计及分析导师: 姓名: 班级: 日期:2011年3月10日

前言 电力生产过程有别于其他工业生产过程的一个重要特点,就是它的生产、输送、变换、分配、消费的几个环节是在同一个时间内同步瞬间完成。电力生产过程要求供需严格动态平衡,一旦失去平衡生产过程就要受到破坏,甚至造成系统瓦解,无法维持正常生产。随着经济的快速发展,负荷大幅度增加,使得电网规模不断扩大,高电压、大机组、长距离输电、电网互联的趋势,使电网结构越来越复杂,加强电力资源的优化配置,最大限度满足电力需求,保证电网的安全稳定成为人们探讨的问题之一。虽然系统中有可能遭受短路电流破坏的一次设备都进行了短路动、热稳定度的校验,但这只能保证它们在短时间内能承受住短路电流的破坏。时间一长,就会无一例外地遭受破坏。而在供电系统中,要想完全杜绝电路事故是不可能的。继电保护是一种电力系统的反事故自动装置,它能在系统发生故障或不正常运行时,迅速,准确地切除故障元件或发出信号以便及时处理。可见继电保护是任何电力系统必不可少的组成部分,对保证系统安全运行、保证电能质量、防止故障的扩大和事故的发生,都有极其重要的作用。因此设置一定数量的保护装置是完全必要的,以便在短路事故发生后一次设备尚未破坏的数秒内,切除短路电流,使故障点脱离电源,从而保护短路回路内的一次设备,同时迅速恢复系统其他正常部分的工作。随着变电站继

电保护技术进一步优化,大大提高了整个电网运行的安全性和稳定性,大大降低运行检修人员的劳动强度,继电保护技术将引起电力行业有关部门的重视,成为变电站设计核心技术之一。

变压器的选择

第三章变压器的选择 3.1 主变压器台数的确定 变压器设计规范中一、二级负荷的变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上的主变压器,如变电所中可由中、低压侧电力网取得足够容量的备用电源时,可装设一台主变压器。装有两台及两台以上主变压器的变电所,当断开一台时,其余变压器的容量不应小于60%的全部负荷并应保证用户的一、二级负荷。已知系统情况为本站经2回110kv线路与系统相连,分别用于35kv和10kv向本地用户供电。在该待设计变电所供电的负荷中,同时存在有一、二级负荷。故在本设计中选择两台主变压器。 3.2 主变压器型号和容量的确定: 1.主变容量一般按变电所建成后5~10年的规划负荷来进行选择,并适当考虑远期10~20年的负荷发展。对于城郊变电所,主变压器容量应与城市规划相结合。 2.根据变电所所带负荷的性质和电网结构来确定主变的容量。对于有重要负荷的变电所,应考虑当一台主变压器停运时,其余主变压器的容量一般应满足60%。考虑变压器有1.3倍事故过负荷能力,则0.6*1.3=78%,即退出一台时,可以满足78%的最大负荷。本站主要负荷占60%,在短路时(2小时)带全部主要负荷和一半左右Ⅰ类负荷。在两小时内进行调度,使主要负荷减至正常水平。 主变压器的容量为: S n=0.6P max/ cos(2-1) =0.6×(10+3.6)/0.85 =9.6MV A =9600KV A 3.相数选择 变压器有单相变压器组和三相变压器组。在330kv及以下的发电厂和变电站中,一般选择三相变压器。单相变压器组由三个单相的变压器组成,造价高、占地多、运行费用高。只有受变压器的制造和运输条件的限制时,才考虑采用单相变压器组,因此在本次设计中采用三相变压器组。 4.绕组数选择:在具有三种电压等级的变电所中,如果通过主变各绕组的功 率达到该 变压器容量的15%以上,或在低压侧虽没有负荷,但是在变电所内需要装无功补偿设备时,主变压器宜选用三绕组变压器。

继电保护设计

摘要 电力变压器是电力系统中十分重要的供电元件,为了供电的可靠性和系统正常运行,就必须视其容量的大小、电压的高低和重要程度,设置相应的继电保护装置。本设计结合电力变压器运行中的故障,分析了电力变压器纵联差动保护、瓦斯保护及过电流保护等继电保护装置配置原则和设计方案。 关键词:电力变压器继电保护装置保护配置

Abstract Power transformer is very important in power system,power components in order to power supply reliability and system normal operation,you must see the size of its capacity,voltage and important degree of on any account,set up corresponding relay protection device.This paper according to the operation of power transformer fault and analyzed the power transformer longitudinal differential peotection,gas protection and over-current protection rely protection device configuration principle and design scheme. Keywords: Power transformer Relay protection device Protection configuration

10kV变电站继电保护标准设计

沈阳地区10kV变电站继电保护标准设计浅谈 摘要:本文介绍了沈阳地区10kV变电站继电保护标准设计的概况,阐述了二次设备的组合方式及10kV间隔保护的具体配置方案,统一端子排及编号的设计原则,对一些复杂的接线形式及连锁问题提出了一些解决方法,供设计参考。 关键词:10kV变电站继电保护设计统一原则 1 引言:沈阳地区由于历史原因一直存在配电网自动化水平不高,二次设计标准不统一,二次设备配置不合理等诸多问题。随着沈阳地区配电网改造步伐的加快,对电气二次设备可靠性,二次设备配置及接线合理性的要求会越来越高,是配电网自动化能否实现的关键因素。 将二10kV变电站次设计典型化,模块化是工程设计的方向。 2 总体思路 在对10kV变电站设计电气二次设计中我们发现,由于用户的需要不同主接线的形式多种多样,有单电源,双电源,有不带母线、有单母线、分段母线等等,这样如果规定变电站主接线做总体的标准设计难度非常大。在设计中我们总结出无论哪种接线样式其间隔开关柜的样式都为确定,这样我们将标准设计分块化,既以间隔为标准,将固有的间隔电气二次回路设计成标准样式,不同的接线样式也是固有的间隔组成,这样根据间隔的标准设计完成整个变电站的设计工作。 3 保护的配置原则 对继电保护装置的基本要求有四点:即选择性、灵敏性、速动性和可靠性。按照工厂企业10KV供电系统和民用住宅的设计规范要求,在10KV的供电线路、配电变压器和分段母线上一般应设置以下保护装置: (1) 10KV线路应配置的继电保护 10KV线路一般均应装设过电流保护。当过电流保护的时限不大于0.5s~0.7s,并没有保护配合上的要求时,可不装设电流速断保护;自重要的变配电所引出的线路应装设瞬时电流速断保护。当瞬时电流速断保护不能满足选择性动作时,应装设略带时限的电流速断保护。 (2)10KV配电变压器应配置的继电保护 1)当配电变压器容量小于400KV A时:一般采用高压熔断器保护; 2)当配电变压器容量为400~630KV A,高压侧采用断路器时,应装设过电流保

变电所主变压器台数和容量及主接线方案的选择资料讲解

三、变电所主变压器及主接线方案的选择 3.1变电所主变压器台数的选择 变压器台数应根据负荷特点和经济运行进行选择。当符合下列条件之一时, 宜装设两台及以上变压器:有大量一级或二级负荷;季节性负荷变化较大;集中负荷较大。结合本厂的情况,考虑到二级重要负荷的供电安全可靠,故选择两台主变压器。 3.2变电所主变压器容量选择。 每台变压器的容量N T S ?应同时满足以下两个条件: 1) 任一台变压器单独运行时,宜满足:30(0.6~0.7)N T S S ?=? 2) 任一台变压器单独运行时,应满足:30(111)N T S S ?+≥,即满足全部一、二级负 荷需求。 代入数据可得:N T S ?=(0.6~0.7)×1169.03=(701.42~818.32)kV A ?。 又考虑到本厂的气象资料(年平均气温为20C o ),所选变压器的实际容量:(10.08)920N T NT S S KVA ?=-?=实也满足使用要求,同时又考虑到未来5~10年的负荷发展,初步取N T S ?=1000kV A ? 。考虑到安全性和可靠性的问题,确定变压器为SC3系列箱型干式变压器。型号:SC3-1000/10 ,其主要技术指标如下表所示: (附:参考尺寸(mm ):长:1760宽:1025高:1655 重量(kg ):3410) 3.3电气主接线的概念

发电厂、变电所的一次接线是由直接用来生产、汇聚、变换、传输和分配电能的一次设备的一次设备构成的,通常又称为电气主接线。主接线代表了发电厂(变电所)电气部分的主体结构,是电力系统网络结构的重要组成部分。它对电气设备选择、配电装置布置、继电保护与自动装置的配置起着决定性的作用,也将直接影响系统运行的可靠性、灵活性、经济性。因此,主接线必须综合考虑各方面因素,经技术经济比较后方可确定出正确、合理的设计方案。 3.4电气主接线设计需要考虑的问题 在进行变电站电气接线设计时,需要重点考虑以下一些问题:(1)需要考虑变电所在电力系统中的位置,变电所在电力系统中的地位和作用是决定电气主接线的主要因素。变电所是枢纽变电所、地区变电所、终端变电所、企业变电所、还是分支变电所,由于它们在电力系统中的地位和作用不同,对其电气主接线的可靠性、灵活性和经济性的要求了也不同。(2)要考虑近远期的发展规模,变电所电气主接线的设计,应根据5到10年电力发展规划进行。根据负荷的大小、分布、增长速度、根据地区网络情况和潮流分布,分析各种可能的运行方式,来确定电气主接线的形式以及连接电源灵数和出线回数。(3)考虑负荷的重要性分级和出线回数多少对电气主接线的影响,对一级负荷,必需有两个独立电源供电,且当一个电源失去后,应保证全部一级负荷不间断供电,且当一个电源失去后,应保证大部分二级负荷供电。(4)考虑主变台数对电气主接线的影响,变电所主变的台数对电气主接线的选择将产生直接的影响,传输容量不同,对主接线的可靠性,灵敏性的要求也不同。(5)考虑备用容量的有无和大小对电气主接线的影响,发、送、变的备用容量是为了保证可靠的供电,适应负荷突增、设备检修、故障停运情况下的应急要求。电气主接线的设计要根据备用容量的有无有所不同,例如,当断路器或母线检修时,是否允许线路、变压器停运;当线路故障时允许切除线路、变压器的数量等,都直接影响着电气主接线的形式。 3.5主接线方案的选择 3.5.1 电气主接线设计的基本要求 电气主接线应满足以下基本要求: a具有一定的灵活性 主接线在力求简单、明了、操作方便的同时,也要求有一定的灵活性,以适

2021年电力变压器运行的安全与继电保护

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2021年电力变压器运行的安全 与继电保护 Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

2021年电力变压器运行的安全与继电保护 1电力变压器的故障分为内部和外部两种故障。内部故障指变压器油箱里面发生的各种故障,主要靠瓦斯和差动保护动作切除变压器;外部故障指油箱外部绝缘套管及其引出线上发生的各种故障,一般情况下由差动保护动作切除变压器。速动保护(瓦斯和差动)无延时动作切除故障变压器,设备是否损坏主要取决于变压器的动稳定性。而在变压器各侧母线及其相连间隔的引出设备故障时,若故障设备未配保护(如低压侧母线保护)或保护拒动时,则只能靠变压器后备保护动作跳开相应开关使变压器脱离故障。因后备保护带延时动作,所以变压器必然要承受一定时间段内的区外故障造成的过电流,在此时间段内变压器是否损坏主要取决于变压器的热稳定性。因此,变压器后备保护的定值整定与变压器自身的热稳定要求之间存在着必然的联系。

2变压器设计热稳定指标 文献[1]中要求“对称短路电流I的持续时间:当使用部门未提出其它要求时,用于计算承受短路耐热能力的电流I的持续时间为2s。注:对于自耦变压器和短路电流超过25倍额定电流的变压器,经制造厂与使用部门协商后,采用的短路电流持续时间可以小于2s。” 按以上设计考虑,一台220kV/120MVA普通三卷变压器,取变压器典型参数(高低压阻抗比为22.4)计算可知:低压侧能够承受的热稳定电流标幺值约为0.51。当两台这样的变压器并列运行,低压侧母线故障本侧分段开关跳开时,变压器低压绕组中可能的短路电流可达到0.75倍标幺值,比设计值增大了近50%。若三台这样的变压器并列运行,变耦变压器,按技术规程[2]要求,装设瓦斯保护、过激磁保护、双重差动保护,同时在其高、中压侧均装设了阻抗保护及零序方向电流保护,低压侧装设过流保护。这些保护均作用于跳闸。高、中压侧的阻抗保护和低压侧过流保护属变压器的相间后备保护。由于500kV变压器多为单相式变压器,所以变压器本体不会

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

变压器的选择介绍

变压器选型计算(主变、厂变、集电变、启动/备用变等) 风电场电气主接线(方案B) 电气设备选型计算(2班4组) 目录 1.前言 (2) 2.变压器选择原则 (3) 3.变压器选型计算 (3) (1)主变压器 (3) (2)集电变压器 (5) (3)场用变压器 (5) (4)启/备变压器 (6)

4.心得体会 (8) 5.参考资料 (9)

一.前言 本学期在石阳春老师的带领下我们学习了《风电场电气系统》课程,主要讲述风电场电气部分的系统构成和主要设备,包括与风电场电气相关的各主要内容。主要内容为风电场电气系统的基本构成、主接线设计,风电场主要电气一次设备的结构、原理、型式参数及电气一次设备的选取,风电场电气二次系统、风电场的防雷和接地,风电场中的电力电子技术应用等。课程设计是对学生所学课程内容掌握情况的一次自我验证,有着极其重要的意义。通过课程设计能提高学生对所学知识的综合应用能力,能全面检查并掌握所学内容。通过本课程的课程设计,使学生巩固风电场电气工程的基础理论知识和基本计算方法,了解电力工业的内在关系和电气系统设计原理,熟悉电力行业规范和标准,具备应用理论知识分析和解决实际问题的能力和工程意识,为将来从事工程设计、设备安装、系统调试、维护保养等工作打下良好的基础。本次课程设计2班4组的主要任务是完成方案电气设备选型计算,并与2班1组配合,对所设计的方案进行经济性分析计算;完成方案A的电气设备选型。我在小组中负变压器的选型和相关计算。

二.变压器选择原则 风电场中的变压器包括主变压器、集电变压器和场用变压器。 风电场各种变压器容量的确定方法如下: (1)集电变压器 集电变压器的选择,可以按照常规电厂中单元接线的机端变压器的选择方法进行。即:按发电机额定容量扣除本机组的自用负荷后,留10%的裕度确定 (2)升压站的主变压器 对于升压站中的主变压器,则参照常规发电厂有发电机电压母线的主变压器进行选择: ①主变容量的选择应满足风电场对于能量输送的要求,即主变压器应能够将低压母线上的最大剩余功率全部输送入电力系统。 ②有两台或多台主变并列运行时,当其中容量最大的一台因故退出运行时,其余主变在允许的正常过负荷范围内,应能输送母线最大剩余功率。 (3)场用变压器 风电场场用变压器的选择,容量按估算的风电场内部负荷并留一定的裕度确定。 变压器的台数与电压等级、接线形式、传输容量、与系统的联系紧密程度等因素有密切关系: ①与系统有强联系的大型、特大型风电场,在一种电压等级下,升压站中的主变应不少于2台。 ②与系统联系较弱的中、小型风电场和低压侧电压为6-10kV的变电所,可只装1台主变压器。 三.变压器选型计算 1.主变压器 1)风电场全场总装机容量为: Pn=69×1.5MW=103.5MW 2)主变压器台数的选择: 本方案采用单母线分段设计,应有两台主变压器同时工作,考虑变压器检修,应设一台备用变压器,所以风电场中应装设三台主变压器。 3)主变压器容量的选择: =Pn/0.8=129375 kVA 总容量 Sn 总 每台容量 Sn=0.5×Sn =64687.5 kVA 总

主变压器容量的选择讲解学习

主变压器容量的选择 2.1主变压器的选择 主变压器是主接线的中心环节,其台数、容量和型式的初步选择是构成各种主接线的基础,并对发电厂和变电所的技术经济性有很大影响。 2.1.1主变容台数的选择 (1)对大城市郊区的一次变,在中、低压侧构成环网情况下,装两台主变为宜。 (2)对地区性孤立的一次变或大型的工业专用变电所,设计时应考虑装三台的可能性。 (3)对规划只装两台主变的变电所,其主变基础宜大于变压器容量的1-2级设计,以便负荷发展时更换主变。 变压器的容量、台数直接影响到变电站的电气主接线形式和配电装置的结构。它的确定除了依据传递容量基本原始资料外,还要根据电力系统5—10年的远景发展计划,输送功率的大小、馈线回路数、电压等级以及接入电力系统中的紧密程度等因素,进行综合分析与合理的选择。 (4)在有一级,二级负荷的变电站中,应该装设两台主变电压器。当技术经济比较合理时主变压器的台数也可以多于两台。如果变电站可由中、低压侧电力 网中取得足够能量的备用电源时,可以装设一台主变压器。 (5)装设两台及其以上主变压器的变电站中,当断开一台时,其余主变压器的容量应保证用户一级负荷和部分二级负荷(一般不应小于主变压器容量的60%)。具有三种电压等级的变电站中,如果通过主变压器各侧绕组的功率均达到主变压器容量的15%时,主变电压器宜采用三绕组变压器。 2.1.2主变容量选择 根据“35~110KV变电所设计规范”主要变压器的台数和容量,应根据地区供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。在有一、二级

负荷变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。具有三种电压的变电所,如通过主变压器各侧线圈的功率均达到该变压器的15%以上,主要变压器宜采用三线圈变压器。 由于我国电力不足、缺电严重、电网电压波动较大。变压器的有载调压是改善电压质量、减少电压波动的有效手段。对电力系统,一般要求110KV 及以下变电所至少采用一级有载调压变压器,因此城网变电所采用有载调压变压器的较多。 2.1.3 主变容量选择原则 (1)主变容量选择一般应按变电所建成后5-10年的规划负荷选择,并适当考虑到远期几年发展,对城郊变电所,主变容量应与城市规划相结合。 (2)根据变电所带负荷性质和电网结构来确定主变容量,对有重要负荷的变电站应考虑一台主变压器停运时,其余主变压器容量在计及过负荷能力后的允许时间内,应保证用户的一、二级负荷;对一般性变电站,当一台主变停运时,其余主变压器应能保证全部负荷的60%。 (3)同级电压的单台降压变压器容量的级别不宜太多,应从全网出发,推行系列化,标准化。(主要考虑备用品,备件及维修方便) 2.1.4主变容量和台数选择计算 (1)35KV 中压侧: 其出线回路数为6回,85.0=t K ,结合“1. 2变电站的负荷分析”35kv 负荷情况分析表1-1知: t k P P P P S kv %)51(cos 水泥厂二 水泥厂一郊二35++++=?郊一 =85.005.185 .08.48.44.82.7??+++ =27.048MVA (2)10KV 低压侧: 由于其出线回路数共12回,故可取Kt=0.85,结合10kv 负荷情况分析可知:

电力变压器继电保护设计

1 引言 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过分析,找到符合电网要求的继电保护方案。 继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。 在电力系统发生故障中,继电保护装置能够及时地将故障部分从系统中切除,从而保证电力设备安全和限制故障波及范围,最大限度地减少电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全水平。 2 课程设计任务和要求

通过本课程设计,巩固和加深在《电力系统基础》、《电力系统分析》和《电力 系统继电保护与自动化装置》课程中所学的理论知识,基本掌握电力系统继电保护设计的一般方法,提高电气设计的设计能力,为今后从事生产和科研工作打下一定的基础。 要求完成的主要任务: 要求根据所给条件确定变电所整定继电保护设计方案,最后按要求写出设计说明书,绘出设计图样。 设计基本资料: 某变电所的电气主接线如图所示。已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数:MVA S N 5.31=,电压:kV 11/%5.225.38/%5.24110?±?±,接线:)1211//(//011--?y Y d y Y N 。短路电压:5.10(%)=HM U ; 6(%);17(%),==ML L H U U 。两台变压器同时运行,110kV 侧的中性点只有一台接地; 若只有一台运行,则运行变压器中性点必须接地,其余参数如图所示。(请把图中的L1的参数改为L1=20km ) ~ 图2.1变电所的电气主接线图

110kv变电站继电保护课程设计

110k v变电站继电保护课程设计 110kV变电站继电保护设计 摘要 继电保护是电网不可分割的一部分,它的作用是当电力系统发生故障时,迅速地有选择地将故障设备从电力系统中切除,保证系统的其余部分快速恢复正常运行;当发生不正常工作情况时,迅速地有选择地发出报警信号,由运行人员手工切除那些继续运行会引起故障的电气设备。可见,继电保护对保证电网安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。因此,合理配置继电保护装置,提高整定和校核工作的快速性和准确性,对于满足电力系统安全稳定的运行具有十分重要的意义。 继电保护整定计算是继电保护工作中的一项重要工作。不同的部门其整定计算的目的是不同的。对于电网,进行整定计算的目的是对电网中已经配置安装好的各种继电保护装置,按照具体电力系统的参数和运行要求,通过计算分析给出所需的各项整定值,使全网的继电保护装置协调工作,正确地发挥作用。因此对电网继电保护进行快速、准确的整定计算是电网安全的重要保证。 关键词:110kV变电站,继电保护,短路电流,电路配置 目录 0摘要....................................................................第一章电网继电保护的配置...............................................21.1电网继电保护的作用..................................................21.2电网继电保护的配置和原理............................................21.335kV线路保护配置原则................................................3第二章3继电保护整定计算.................................................2.1继电保护整定计算的与基本任务及步骤..................................32.2继电保护整定计算的研究与发展状况....................................4第三章线路保护整定计算.................................................53.1设计的原始材料分析...................................................53.2参数计

主变压器容量的选择

主变压器容量的选择 2.1 主变压器的选择 主变压器是主接线的中心环节,其台数、容量和型式的初步选择是构成各种 主接线的基础,并对发电厂和变电所的技术经济性有很大影响。 2.1.1 主变容台数的选择 (1)对大城市郊区的一次变,在中、低压侧构成环网情况下,装两台主变为宜。 (2)对地区性孤立的一次变或大型的工业专用变电所,设计时应考虑装三台的可能性。 (3)对规划只装两台主变的变电所,其主变基础宜大于变压器容量的1-2级设计,以便负荷发展时更换主变。 变压器的容量、台数直接影响到变电站的电气主接线形式和配电装置的结构。它的确定除了依据传递容量基本原始资料外,还要根据电力系统5—10 年的远景 发展计划,输送功率的大小、馈线回路数、电压等级以及接入电力系统中的紧密 程度等因素,进行综合分析与合理的选择。 (4)在有一级,二级负荷的变电站中,应该装设两台主变电压器。当技术经济比较合理时主变压器的台数也可以多于两台。如果变电站可由中、低压侧电力网中取得足够能量的备用电源时,可以装设一台主变压器。 (5)装设两台及其以上主变压器的变电站中,当断开一台时,其余主变压器的容量应保证用户一级负荷和部分二级负荷(一般不应小于主变压器容量的60%)。具有三种电压等级的变电站中,如果通过主变压器各侧绕组的功率均达到主变压器容量的15%时,主变电压器宜采用三绕组变压器。 2.1.2 主变容量选择 根据“ 35?110KV变电所设计规范”主要变压器的台数和容量,应根据地区 供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。在有一、二级负荷变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。具有三种电压的变电所,如通过主变压器各侧线圈的功率均达到该变压器的15%以上,主要变 压器宜采用三线圈变压器。 由于我国电力不足、缺电严重、电网电压波动较大。变压器的有载调压是改善电压质量、减少电压波动的有效手段。对电力系统,一般要求110KV及以下变电所至少采用一级有载调压变压器,因此城网变电所采用有载调压变压器的较多。 2.1.3 主变容量选择原则 1)主变容量选择一般应按变电所建成后5-10年的规划负荷选择,并适当

110kv变电站继电保护设计

目录 第一部分设计说明书 第一章主变压器的选择 (1) 第二章主接线选择 (2) 第三章短路计算 (5) 第四章主变压器的选择 (7) 第五章配置全所的继电保护 (11) 第六章变电站自动化 (14) 第二部分110KV变电所初步设计计算书 第七章短路电流计算 (19) 第八章计算各回路最大持续工作电流 (22) 第九章高压断路器选择和校验 (23) 第十章隔离开关的选择和校验 (31) 第十一章母线的选择和校验 (33) 第十二章电压互感器的选择 (38) 第十三章电流互感器的选择 (39) 第十四章.配置全所的继电保护 (42) 参考文献 (45) 附110kV地方变电所电气主接线图

前言 根据变电站电气部分课程的要求,为了让同学们能够更好的掌握电气部分的发电、变电、输电、主系统的构成、设计和运行的基本理论及计算方法、并注重加强对电气设备性能和原理灵活应用于实践,培养自己的分析和计算能力,特此制定出了该毕业设计。 此设计分为十个部分:第一章对待设计变电所的分析;第二章主变压器选择;第三章变电所的主接线设计;第四章变电所自用电接线及自用变压器的确定;第五章短路电流的计算;第六章断路器和隔离开关的选择;第七章导体的选择;第八章变电所的防雷保护规划;第九章变电所的继电保护规划;第十章变电所的仪表配置规划;附电气主接线。 该设计由西安电力高等专科学校11044班杨婷同学设计,由西安电力高等专科学校李依凡老师指导。可供同类专业的同学参考。 由于设计时间仓促,难免会有错误和不足之处,恳切希望审阅该设计的老师和同学们提出批评指正意见。

第一部分 110KV变电所初步设计说明书 第一章主变压器的选择 一、主变压器的选择 概述:在合理选择变压器时,首先应选择低损耗,低噪音的S9,S10,S11系列的变压器,不能选用高能耗的电力变压器。应选是变压器的绕组耦合方式、相数、冷却方式,绕组数,绕组导线材质及调压方式。 二、变电所主变压器的容量和台数的确定 1.主变压器容量的确定 1.1主变器容量一般按变电所建成5-10年的规划负荷选择,并适当考虑到远期。 10-20年的负荷发展 1.2根据变电所所带负荷的性质,和电网结构,来确定主变压器的容量。 1.3同等电压的单台降压变压器容量的级别不宜太多,应从全网出发,推行系列化, 标准化。 35KV负荷计算 10KV负荷计算

相关主题
文本预览
相关文档 最新文档