当前位置:文档之家› 半导体器件复习题与参考答案

半导体器件复习题与参考答案

半导体器件复习题与参考答案
半导体器件复习题与参考答案

第二章

1 一个硅p -n 扩散结在p 型一侧为线性缓变结,a=1019cm -4,n 型一侧为均匀掺杂,杂质浓度为3×1014cm -3,在零偏压下p 型一侧的耗尽层宽度为0.8μm,求零偏压下的总耗尽层宽度、建电势和最大电场强度。

解:)0(,22≤≤-=x x qax dx

d p S εψ

)0(,2

2n S

D x x qN dx d ≤≤-=εψ 0),(2)(22

≤≤--=-

=E x x x x qa dx d x p p S

εψ n n S

D

x x x x qN dx d x ≤≤-=-

=E 0),()(εψ x =0处E 连续得x n =1.07μm x 总=x n +x p =1.87μm

??

=--=-n

p

x x bi V dx x E dx x E V 0

516.0)()(

m V x qa E p S

/1082.4)(25

2max ?-=-=

ε,负号表示方向为n 型一侧指向p 型一侧。 2 一个理想的p-n 结,N D =1018cm -3,N A =1016cm -3,τp=τn=10-6s ,器件的面积为1.2×10-5cm -2,计算300K 下饱和电流的理论值,±0.7V 时的正向和反向电流。

解:D p =9cm 2/s ,D n =6cm 2/s

cm D L p p p 3103-?==τ,cm D L n n n 31045.2-?==τ

n

p n p

n p S L n qD L p qD J 0

+

=

I S =A*J S =1.0*10-16A 。 +0.7V 时,I =49.3μA , -0.7V 时,I =1.0*10-16A

3 对于理想的硅p +-n 突变结,N D =1016cm -3,在1V 正向偏压下,求n 型中性区存

贮的少数载流子总量。设n 型中性区的长度为1μm,空穴扩散长度为5μm。

解:P +

>>n ,正向注入:0)(20

202=---p

n n n n L p p dx p p d ,得:

)

sinh()

sinh()

1(/00p

n

n p

n kT

qV n n n L x W L x

W e p p p ---=- ??=-=n

n

W x n n A dx p p qA Q 20010289.5)(

4一个硅p +-n 单边突变结,N D =1015cm -3

,求击穿时的耗尽层宽度,若n 区减小到5μm,计算此时击穿电压。 解:m V N E B g c /1025.3)1

.1E )q

(

101.148

14

32

1S

7

?=?=(

ε

V qN E V B

C

S B 35022

==

ε

m qN V x B

B

S mB με5.212==

n 区减少到5μm 时,V V x W x V B mB

mB B

9.143])(1[2

2

/=--= 第三章

1 一个p +-n-p 晶体管,其发射区、基区、集电区的杂质浓度分别是5×1018,1016,1015cm -3,基区宽度W B 为1.0μm,器件截面积为3mm 2。当发射区-基区结上的正向偏压为0.5V ,集电区-基区结上反向偏压为5V 时,计算(a)中性基区宽度,(b)发射区-基区结的少数载流子浓度,(c)基区的少数载流子电荷。

解:(a )热平衡下,建电势2

ln i D

A bi n N N q kT V =

EB 结,V bi =0.857V ;m V V N N N N q x eb bi B

B E E

S neb με217.0)()(2=-+=

CB 结,V bi =0.636V ;m V V N N N N q x cb bi B

B E C

S ncb με261.0)()(2=-+=

W =W B -x neb -x ncb =0.522μm

(b )312/01073.4)0(-?==cm e p p kT qV n n BE

(c )C qAWp Q n B 131093.52

)

0(-?==

2 推导基区杂质浓度为l x B B e N x N /)0()(-=时的基区建电场公式及基区少子浓度分布表达式。

解:不妨设为NPN 晶体管,由于基区中杂质存在浓度梯度,其多数载流子(空穴)的分布也存在浓度梯度,它使空穴作扩散运动,这一运动的产生破坏了基区中的电中性,为维持电中性,基区中就产生一电场来阻止基区中空穴的扩散运动。电场的大小是恰好使电场产生的空穴漂移流与因杂质浓度梯度所引起的扩散流相抵消,这一电场就称为缓变基区建电场。考虑基区中自建电场对电流的贡献,热平衡时,净空穴电流为零。即0)

()()(00=-=dx

x dp qD x x p q J B pB

B B pB pB εμ 由此求得εB 为 dx

x dp x p D x B B pB

pB

B )

()(1)(00?

=

με

平衡时基区中的空穴浓度P B0等于基区的杂质浓度N B ,于是上式写为

dx x dN x N q kT x B B B )()(1)(=

ε,代入l

x B B e N x N /)0()(-= 则有l

q kT B 1?-=

ε 考虑电子电流密度:dx

x dn qD x x n q J B nB

B B nB nB )

()()(+??=εμ 将εB (x )代入上式,可得 ))

()()()((

dx

x dn dx x dN x N x n qD J B B B B nB nB +?= 若忽略基区中空穴的复合,即J nB 为常数,我们可以用N B (x )乘上式两端,并从x 到W B 积分,得

?

?

=B

B

W x

B B W x

B nB

nB dx dx

x n x N d dx x N qD J ))

()(()(

近似认为在x=W B 处,n B =0,有

?-

=B W x B B nB nB

B dx x N x N qD J x n )()

()(

积分之得到 {}]/)(ex p[1)(l x W l qD J x n B nB

nB

B ----

= 若忽略发射极电子电流在发射结势垒区中的复合,即用J nE 代替上式中的J nB ,有

{}]/)(ex p[1)(l x W l qD J x n B nB

nE

B ----

= 3 一个硅n +-p-n 晶体管的发射区和集电区两侧的掺杂是突变的。其发射区、基区、集电区的杂质浓度分别为1019,3×1016,5×1015cm -3,(a)求集电区-基区电压的上限,在该电压下,发射结偏置电压已不再能控制集电极电流,设基区宽度为0.5μm。(b)若截止频率主要受少子穿过基区的渡越时间限制,求在零偏压下共基极和共发射级的电流截止频率(晶体管的发射效率为0.999,基区传输因子为0.99)。 解:(a )热平衡下,V n N N q T k V i B

C B biCB 707.0ln 2

==

当B bc bi B

B E C

S p W V V N N N N q x =-+=

)()(2ε时穿通,可得:

V V V PT BC 5.39==

(b )s D W n

B 112

1068.32-?==τ

而f T 主要受B τ限制,GHz f B

T 32.421==

πτ

9010=-=

T T γαγαβ,MHz f

f T 1.480

==ββ,GHz f f T 38.4)1(0=+=βα

4 一个开关晶体管,基区宽度为0.5μm,扩散系数为10cm 2/s ,基区的少数载流子寿命为10-7s ,晶体管加偏压V CC =5V ,负载电阻为10KΩ,若在基极上加2μA 的脉冲电流,持续时间为1μs,求基区的存贮电荷和存贮延迟时间。 解:不妨设为N +PN 管,)1()(/n t n B B e I t Q ττ--=

在t 1时刻达到饱和,相应集电极电流为mA R V V I C

CE

CC CS 5.0=-=

s D W n

B 102

1025.12-?==τ

C I Q B CS S 141025.6-?==τ

s Q I t S

n

B n S 71016.1ln

-?==ττ 存储电荷为C e I s Q n t n B B 13/102)1()1(--?=-=ττμ

5. 一理想的PNP 晶体管,其发射区、基区、集电区的杂质浓度分别为1019、1017、5×1015cm-3,而少数载流子的寿命分别为10-8、10-7和10-6s ,假设器件有效横截

面积A 为0.05mm 2

,且射基结上正向偏压为0.6V ,请求出晶体管的共基极电流增益。晶体管的其他参数为:D E =1cm 2/s , Dp=10cm 2/s , D C =2cm 2/s , W =0.5μm 。 解:

0γααT =

6. 欲设计一双极型硅晶体管,其截止频率f T 为5GHz ,请问中性基区宽度W 需为

多少?假设Dp 为10cm 2

/s ,并可忽略发射极和集电极延迟。 解:PNP 管,f T 忽略E τ和C τ,主要受B τ限制,GHz f B

T 521==

πτ

p

B D W 22

=τ=3.2*10-11s 则:B p D W τ2==2.53*10-5cm=0.253μm

第四章

1、求势垒高度为0.8V 的Au -Si 肖特基二极管的空穴电流和电子电流的比值。硅为n 型,电阻率为1Ωcm,寿命τp=100μs,μp=400cm 2/(Vs)。 解:

电阻率为1Ωcm ,查n -Si 的电阻率和浓度的关系图可得N D =4.5×1015cm -3。

s cm q

kT

D p p /4.102==

μ,m D L p p p μτ2.32==,

空穴电流密度为D

p i p p N L n qD J 20=

=2.41×10-12A/cm 2,

电子电流密度为kT

q S Bn e

T A J φ-

=2*=4.29×10-7A/cm 2,其中A *=110A/K 2cm 2。

401062.5-?=S

p J J

2、一个欧姆接触的面积为10-5cm 2,比接触电阻为10-6Ωcm 2,这个欧姆接触是在一个n 型硅上形成的。若N D =5×1019cm -3,ФBn=0.8V ,电子有效质量为0.26m 0,求有1A 正向电流通过时,欧姆接触上的电压降。 解:

比接触电阻为10-6Ωcm 2, N D =5×1019cm -3,是高掺杂,因此隧道电流起主要支配作用,

))

(2exp(D

Bn S n N V m AK I η--

=φε,1)])(2exp(2[

--

=D

Bn S n D

S n C N m K N m ηηφεερ,其

中K 是常数。由此得到

)2exp(21V N m N A m I D

S n D

S n C

ηηεερ-

=

,计算得,V =3.53mV 。

由此在流过1A 的大电流下欧姆接触结上电压降才为3.53mV 。

3. 当T=300K 时,考虑以金作接触的n 沟GaAs MESFET ,假设势垒高度为0.89V ,n 沟道浓度为2×1015cm -3,沟道厚度为0.6μm ,计算夹断电压和建电势。(GaAs 介电常数为12.4) 解: 夹断电压为:

4.1210854.82)106.0(102106.1214

2

4151902????????==---GaAs D P a qN V εε=0.525V n -GaAs 材料的导带有效态密度为4.7×1017 cm -3, 故V N N q kT

V D

C n 142.0)ln(==

, 建电势为:

V V V n Bn bi 748.0=-=φ

因此,阈值电压也可以求得:

0223.0>=-=V V V V p bi T ,因此是增强型的。

第五章

1. 对于n 沟和p 沟两种类型的n +多晶硅-SiO 2-Si MOSFET ,已知其衬底掺杂浓度都是1017cm -3, 其Φms 分别为-0.98eV 和-0.18eV,Qf/q=5×1010cm -2,d =10nm ,试分别计算上述两种类型MOS 器件的阈值电压。 解:

εSi =11.8, εSiO2=3.9

对n 沟MOSFET 的阈值电压为

ox

ox

ox B F ms Tn C Q C Q V --

+=max 2φφ

其中,)ln(i

A F n N q kT

=

φ=0.41V ox

SiO

ox d C 2

0εε=

=3.453*10-7F/cm 2

F A Si B qN Q φεε0max 4-==-1.65*10-7C/cm 2

Q ox =Q f =5×1010×1.6×10-19=8×10-9C/cm 2

代入上式得:7

9

7-7Tn 10453.310810453.3101.65--0.41298.0V ---??-???+-==0.29V

因为V T >0,且为n 沟MOSFET ,所以该器件是增强型的。

同理可得,pMOSFET 的阈值电压为

ox

ox

ox B F ms Tp C Q C Q V --

+=max 2φφ

其中,)ln(D

i F N n q kT

=

φ=-0.41V ox

SiO

ox d C 2

0εε=

=3.453*10-7F/cm 2

)(40max F D Si B qN Q φεε-==1.65*10-7C/cm 2

Q ox =Q f =5×1010×1.6×10-19=8×10-9C/cm 2

代入上式得:7

9

7-7Tp 10453.310810453.3101.65-0.41218.0V ---??-???--==-0.54V

因为V Tp <0,为p 沟MOSFET ,所以该器件是增强型的。

2. 一个n 沟MOSFET ,Z=300μm ,L=1μm,沟道电子迁移率750cm 2/Vs ,Cox=1.5×10-7F/cm 2,V T =1V ,求长沟道情况下,V GS =5V 时的I DSat 、速度饱和时的I DSat ,及两种情况下的跨导。(载流子饱和速度为9×106cm/s ) 解:

对于长沟道器件:

24

742)15(10

12105.175010300)(2-???????=-=---T GS ox n Dsat

V V L C Z I μ=0.27A )(T GS ox

n m V V L

C Z g -=

μ=0.135S 饱和速度模型下,

)(T GS S ox Dsat V V v ZC I -==0.162A ox S m C Zv g ==0.0405S

半导体器件物理 试题库

半导体器件试题库 常用单位: 在室温(T = 300K )时,硅本征载流子的浓度为 n i = 1.5×1010/cm 3 电荷的电量q= 1.6×10-19C μn =1350 2cm /V s ? μp =500 2 cm /V s ? ε0=8.854×10-12 F/m 一、半导体物理基础部分 (一)名词解释题 杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消 的作用,通常称为杂质的补偿作用。 非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度, 额外产生的这部分载流子就是非平衡载流子。 迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。 晶向: 晶面: (二)填空题 1.根据半导体材料内部原子排列的有序程度,可将固体材料分为 、多晶和 三种。 2.根据杂质原子在半导体晶格中所处位置,可分为 杂质和 杂质两种。 3.点缺陷主要分为 、 和反肖特基缺陷。 4.线缺陷,也称位错,包括 、 两种。 5.根据能带理论,当半导体获得电子时,能带向 弯曲,获得空穴时,能带 向 弯曲。 6.能向半导体基体提供电子的杂质称为 杂质;能向半导体基体提供空穴的杂 质称为 杂质。 7.对于N 型半导体,根据导带低E C 和E F 的相对位置,半导体可分为 、弱简 并和 三种。 8.载流子产生定向运动形成电流的两大动力是 、 。

9.在Si-SiO 2系统中,存在 、固定电荷、 和辐射电离缺陷4种基 本形式的电荷或能态。 10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向 移动;对于P 型半 导体,当温度升高时,费米能级向 移动。 (三)简答题 1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么? 2.说明元素半导体Si 、Ge 中主要掺杂杂质及其作用? 3.说明费米分布函数和玻耳兹曼分布函数的实用范围? 4.什么是杂质的补偿,补偿的意义是什么? (四)问答题 1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同? 要获得在较高温度下能够正常工作的半导体器件的主要途径是什么? (五)计算题 1.金刚石结构晶胞的晶格常数为a ,计算晶面(100)、(110)的面间距和原子面密度。 2.掺有单一施主杂质的N 型半导体Si ,已知室温下其施主能级D E 与费米能级F E 之差为 1.5B k T ,而测出该样品的电子浓度为 2.0×1016cm -3,由此计算: (a )该样品的离化杂质浓度是多少? (b )该样品的少子浓度是多少? (c )未离化杂质浓度是多少? (d )施主杂质浓度是多少? 3.室温下的Si ,实验测得430 4.510 cm n -=?,153510 cm D N -=?, (a )该半导体是N 型还是P 型的? (b )分别求出其多子浓度和少子浓度。 (c )样品的电导率是多少? (d )计算该样品以本征费米能级i E 为参考的费米能级位置。 4.室温下硅的有效态密度1932.810 cm c N -=?,1931.110 cm v N -=?,0.026 eV B k T =,禁带 宽度 1.12 eV g E =,如果忽略禁带宽度随温度的变化

第1章半导体器件习题及答案教学总结

第 1 章半导体器 件 习题及答案

第1章半导体器件 一、是非题(注:请在每小题后[]内用” V"表示对,用” X "表示错) 1、P型半导体可通过在本半导体中掺入五价磷元素而获得。() 2、N型半导体可以通过在本征半导体中掺入三价元素而得到。() 3、在N型半导体中,掺入高浓度的三价杂质可以发型为P型半导体。() 4、P型半导体带正电,N型半导体带负电。() 5、N型半导体的多数载流子是电子,所以它带负电。() 6半导体中的价电子易于脱离原子核的束缚而在晶格中运动。() 7、半导体中的空穴的移动是借助于邻近价电子与空穴复合而移动的。() 8、施主杂质成为离子后是正离子。() 9、受主杂质成为离子后是负离子。() 10、PN结中的扩散电流是载流子在电场作用下形成的。() 11、漂移电流是少数载流子在内电场作用下形成的。() 12、由于PN结交界面两边存在电位差,所以,当把PN结两端短路时就有电流流过。() 13、PN结在无光照、无外加电压时,结电流为零。() 14、二极管的伏安特性方程式除了可以描述正向特性和反向特性外,还可以描述 二极管的反向击穿特性。() 15、通常的BJT管在集电极和发射极互换使用时,仍有较大的电流放大作用。 () 16、有人测得某晶体管的U BE=0.7V, I B=20^A,因此推算出r be=U BE/|B=0.7V/20 卩A=35k Q()

17、 有人测得晶体管在U BE =0.6V , I B =5^A,因此认为在此工作点上的r be 大约为 26mV/l B =5.2k ◎() 18、 有人测得当U BE =0.6V , I B =10^A O 考虑到当U BE =0V 时I B =0因此推算得到 、选择题 (注:在每小题的备选答案中选择适合的答案编号填入该题空白处 .1、在绝对零度(0K )时,本征半导体中 __________ 载流子 A.有 B.没有 C.少数 D.多数 2、在热激发条件下,少数价电子获得足够激发能,进入导带,产生 ___________ F 很大关系。A.温度B. 掺杂工艺C.杂质浓度C.晶体缺陷 7、当PN 结外加正向电压时,扩散电流 _____ 漂移电流,耗尽层 _____ 。当PN 结 外加反向电压 时,扩散电流 _____ 漂移电流,耗尽层 ____ 。 A.大于B.小于C.等于D.变宽E.变窄F.不变 8、二极管正向电压从0.7V 增大15%时,流过的电流增大 ________ 。( A 1. 15% B 1 ?大于 仅供学习与交流,如有侵权请联系网站删除谢谢2 U BE 1 B 0.6 0 10 0 60(k ) ,多选或不选按选错论) A.负离子 B. 空穴 C. 3、 半导体中的载流子为 ________ 。 空穴 4、 N 型半导体中的多子是 ________ < 5、 P 型半导体中的多子是 _________ < &在杂质半导体中,多数载流子的浓度 度则与 ______ 有 正离子 D. 电子-空穴对 \.电子 B. 空穴 C. 正离子 D. 电子和 A.电子 B. 空穴 C. 正离子 D. 负离子 A.电子 B. 空穴 C. 正离子 D. 负离子 _____ ,而少数载流子的浓

半导体器件基础测试题

第一章半导体器件基础测试题(高三) 姓名班次分数 一、选择题 1、N型半导体是在本征半导体中加入下列物质而形成的。 A、电子; B、空穴; C、三价元素; D、五价元素。 2、在掺杂后的半导体中,其导电能力的大小的说法正确的是。 A、掺杂的工艺; B、杂质的浓度: C、温度; D、晶体的缺陷。 3、晶体三极管用于放大的条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 4、晶体三极管的截止条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 5、晶体三极管的饱和条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 6、理想二极管组成的电路如下图所示,其AB两端的电压是。 A、—12V; B、—6V; C、+6V; D、+12V。 7、要使普通二极管导通,下列说法正确的是。 A、运用它的反向特性; B、锗管使用在反向击穿区; C、硅管使用反向区域,而锗管使用正向区域; D、都使用正向区域。 8、对于用万用表测量二极管时,下列做法正确的是。 A、用万用表的R×100或R×1000的欧姆,黑棒接正极,红棒接负极,指针偏转; B、用万用表的R×10K的欧姆,黑棒接正极,红棒接负极,指针偏转; C、用万用表的R×100或R×1000的欧姆,红棒接正极,黑棒接负极,指针偏转; D、用万用表的R×10,黑棒接正极,红棒接负极,指针偏转; 9、电路如下图所示,则A、B两点的电压正确的是。 A、U A=3.5V,U B=3.5V,D截止;

半导体器件物理试题

1.P-N结雪崩击穿、隧道击穿和热击穿的原理 2.简述晶体管开关的原理 3.简述晶体管4个频率参数的定义并讨论它们之间的大小关系 4.简述弗仑克耳缺陷和肖特基缺陷的特点、共同点和关系 5.以NPN型晶体管为例,试论述晶体管在不同工作模式下基区少数载流子分 布特征及与晶体管输出特性间的关系 6.请阐述MOSFET的基本结构并结合示意图说明在不同外置电压情况下其工 作状态和输出特性 7.叙述非平衡载流子的产生和复合过程,并描述影响非平衡载流子寿命的因素 8.论述在外加直流电压下P-N结势垒的变化、载流子运动以及能带特征 9.试叙述P-N结的形成过程以及P-N结外加电压时其单向导电特征 10.何谓截止频率、特征频率及振荡频率,请叙述共发射极短路电流放大系数与 频率间的关系 11.请叙述晶体管四种工作模式并分析不同模式下基区少数载流子的分布特征 12.请画出P型半导体理想MOS的C-V曲线,并叙述曲线在不同外加电信号作 用下的曲线特征及原因 13.影响MOS的C-V特性的因素有哪些?它们是如何影响C-V曲线的 14.MOS中硅-二氧化硅,二氧化硅层中有哪些影响器件性能的不利因素 15.介绍MIS结构及其特点,并结合能带变化论述理想MIS结构在加不同偏压 时半导体表面特征 16.晶体管具备放大能力须具备哪些条件 17.饱和开关电路和非饱和开关电路的区别(各自有缺点)是什么 18.简述势垒区正负空间电荷区的宽度和该区杂质浓度的关系 19.结合能带图简述绝缘体、半导体及导体的导电能力 20.说明晶体管具有电信号放大能力的条件并画出不同情况下晶体管的输入输 出曲线并描述其特征 21.请画图并叙述晶体管电流放大系数与频率间的关系 22.请画出MOSFET器件工作中的输出特性及转移特性曲线并描述其特征 23.请叙述双极型晶体管和场效应晶体管的工作原理及区别 24.画出CMOS倒相器的工作图并叙述其工作原理 25.提高双极型晶体管功率增益的途径有哪些 26.请描述双极型晶体管大电流特性下的三个效应 27.画出共基极组态下的晶体管输入及输出特性曲线

《半导体器件》习题及参考答案

第二章 1 一个硅p -n 扩散结在p 型一侧为线性缓变结,a=1019cm -4,n 型一侧为均匀掺杂,杂质浓度为3×1014cm -3,在零偏压下p 型一侧的耗尽层宽度为0.8μm,求零偏压下的总耗尽层宽度、内建电势和最大电场强度。 解:)0(,22≤≤-=x x qax dx d p S εψ )0(,2 2n S D x x qN dx d ≤≤-=εψ 0),(2)(22 ≤≤--=- =E x x x x qa dx d x p p S εψ n n S D x x x x qN dx d x ≤≤-=- =E 0),()(εψ x =0处E 连续得x n =1.07μm x 总=x n +x p =1.87μm ?? =--=-n p x x bi V dx x E dx x E V 0 516.0)()( m V x qa E p S /1082.4)(25 2max ?-=-= ε,负号表示方向为n 型一侧指向p 型一侧。 2 一个理想的p-n 结,N D =1018cm -3,N A =1016cm -3,τp=τn=10-6s ,器件的面积为1.2×10-5cm -2,计算300K 下饱和电流的理论值,±0.7V 时的正向和反向电流。 解:D p =9cm 2/s ,D n =6cm 2/s cm D L p p p 3103-?==τ,cm D L n n n 31045.2-?==τ n p n p n p S L n qD L p qD J 0 + =

I S =A*J S =1.0*10-16A 。 +0.7V 时,I =49.3μA , -0.7V 时,I =1.0*10-16A 3 对于理想的硅p +-n 突变结,N D =1016cm -3,在1V 正向偏压下,求n 型中性区内存贮的少数载流子总量。设n 型中性区的长度为1μm,空穴扩散长度为5μm。 解:P + >>n ,正向注入:0)(2 202=---p n n n n L p p dx p p d ,得: ) sinh() sinh() 1(/00p n n p n kT qV n n n L x W L x W e p p p ---=- ??=-=n n W x n n A dx p p qA Q 20010289.5)( 4一个硅p +-n 单边突变结,N D =1015cm -3,求击穿时的耗尽层宽度,若n 区减小到5μm,计算此时击穿电压。 解:m V N E B g c /1025.3)1 .1E )q ( 101.148 14 32 1S 7 ?=?=( ε V qN E V B C S B 35022 == ε m qN V x B B S mB με5.212== n 区减少到5μm 时,V V x W x V B mB mB B 9.143])(1[2 2 /=--= 第三章 1 一个p +-n-p 晶体管,其发射区、基区、集电区的杂质浓度分别是5×1018,1016,1015cm -3,基区宽度W B 为1.0μm,器件截面积为3mm 2。当发射区-基区结上的正向偏压为0.5V ,集电区-基区结上反向偏压为5V 时,计算

半导体器件(附答案)

第一章、半导体器件(附答案) 一、选择题 1.PN 结加正向电压时,空间电荷区将 ________ A. 变窄 B. 基本不变 C. 变宽 2.设二极管的端电压为 u ,则二极管的电流方程是 ________ A. B. C. 3.稳压管的稳压是其工作在 ________ A. 正向导通 B. 反向截止 C. 反向击穿区 4.V U GS 0=时,能够工作在恒流区的场效应管有 ________ A. 结型场效应管 B. 增强型 MOS 管 C. 耗尽型 MOS 管 5.对PN 结增加反向电压时,参与导电的是 ________ A. 多数载流子 B. 少数载流子 C. 既有多数载流子又有少数载流子 6.当温度增加时,本征半导体中的自由电子和空穴的数量 _____ A. 增加 B. 减少 C. 不变 7.用万用表的 R × 100 Ω档和 R × 1K Ω档分别测量一个正常二极管的正向电阻,两次测 量结果 ______ A. 相同 B. 第一次测量植比第二次大 C. 第一次测量植比第二次小 8.面接触型二极管适用于 ____ A. 高频检波电路 B. 工频整流电路 9.下列型号的二极管中可用于检波电路的锗二极管是: ____ A. 2CZ11 B. 2CP10 C. 2CW11 D.2AP6 10.当温度为20℃时测得某二极管的在路电压为V U D 7.0=。若其他参数不变,当温度上 升到40℃,则D U 的大小将 ____ A. 等于 0.7V B. 大于 0.7V C. 小于 0.7V 11.当两个稳压值不同的稳压二极管用不同的方式串联起来,可组成的稳压值有 _____ A. 两种 B. 三种 C. 四种 12.在图中,稳压管1W V 和2W V 的稳压值分别为6V 和7V ,且工作在稳压状态,由此可知输 出电压O U 为 _____ A. 6V B. 7V C. 0V D. 1V

施敏 半导体器件物理英文版 第一章习题

施敏 半导体器件物理英文版 第一章习题 1. (a )求用完全相同的硬球填满金刚石晶格常规单位元胞的最大体积分数。 (b )求硅中(111)平面内在300K 温度下的每平方厘米的原子数。 2. 计算四面体的键角,即,四个键的任意一对键对之间的夹角。(提示:绘出四 个等长度的向量作为键。四个向量和必须等于多少?沿这些向量之一的方向 取这些向量的合成。) 3. 对于面心立方,常规的晶胞体积是a 3,求具有三个基矢:(0,0,0→a/2,0,a/2), (0,0,0→a/2,a/2,0),和(0,0,0→0,a/2,a/2)的fcc 元胞的体积。 4. (a )推导金刚石晶格的键长d 以晶格常数a 的表达式。 (b )在硅晶体中,如果与某平面沿三个笛卡尔坐标的截距是10.86A ,16.29A , 和21.72A ,求该平面的密勒指数。 5. 指出(a )倒晶格的每一个矢量与正晶格的一组平面正交,以及 (b )倒晶格的单位晶胞的体积反比于正晶格单位晶胞的体积。 6. 指出具有晶格常数a 的体心立方(bcc )的倒晶格是具有立方晶格边为4π/a 的面心立方(fcc )晶格。[提示:用bcc 矢量组的对称性: )(2x z y a a -+=,)(2y x z a b -+=,)(2 z y x a c -+= 这里a 是常规元胞的晶格常数,而x ,y ,z 是fcc 笛卡尔坐标的单位矢量: )(2z y a a +=,)(2x z a b +=,)(2 y x a c +=。] 7. 靠近导带最小值处的能量可表达为 .2*2*2*22 ???? ??++=z z y y x x m k m k m k E 在Si 中沿[100]有6个雪茄形状的极小值。如果能量椭球轴的比例为5:1是常数,求纵向有效质量m*l 与横向有效质量m*t 的比值。 8. 在半导体的导带中,有一个较低的能谷在布里渊区的中心,和6个较高的能 谷在沿[100] 布里渊区的边界,如果对于较低能谷的有效质量是0.1m0而对 于较高能谷的有效质量是1.0m0,求较高能谷对较低能谷态密度的比值。 9. 推导由式(14)给出的导带中的态密度表达式。(提示:驻波波长λ与半导体

半导体物理与器件第四版课后习题答案(供参考)

Chapter 4 4.1 ??? ? ? ?-=kT E N N n g c i exp 2υ ??? ? ??-??? ??=kT E T N N g O cO exp 3003 υ where cO N and O N υ are the values at 300 K. (b) Germanium _______________________________________ 4.2 Plot _______________________________________ 4.3 (a) ??? ? ??-=kT E N N n g c i exp 2υ ( )( )( ) 3 19 19 2 113001004.1108.2105?? ? ????=?T ()()?? ????-?3000259.012.1exp T () 3 382330010912.2105.2?? ? ???=?T ()()()()?? ????-?T 0259.030012.1exp By trial and error, 5.367?T K (b) () 252 12 2105.2105?=?=i n ( ) ()()()()?? ????-??? ???=T T 0259.030012.1exp 30010912.23 38 By trial and error, 5.417?T K _______________________________________ 4.4 At 200=T K, ()?? ? ??=3002000259.0kT 017267.0=eV At 400=T K, ()?? ? ??=3004000259.0kT 034533.0=eV ()()()() 172 22102 210025.31040.11070.7200400?=??= i i n n ? ? ????-??????-???? ??? ?? ??=017267.0exp 034533.0exp 3002003004003 3 g g E E ?? ? ???-=034533.0017267.0exp 8g g E E ()[] 9578.289139.57exp 810025.317-=?g E or ()1714.38810025.3ln 9561.2817=??? ? ???=g E or 318.1=g E eV Now ( ) 3 2 1030040010 70.7?? ? ??=?o co N N υ

半导体器件物理(第二版)第二章答案

2-1.P N + 结空间电荷区边界分别为p x -和n x ,利用2T V V i np n e =导出)(n n x p 表达式。给 出N 区空穴为小注入和大注入两种情况下的)(n n x p 表达式。 解:在n x x =处 ()()??? ??????? ??-=?? ? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp ()()VT V i Fp Fn i n n n n e n KT E E n x n x p 22exp =??? ? ??-= 而 ()()() 000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) ()()T T V V i n n n V V i n n n e n p n p e n n n p 2020=?+?=?+ 2001T V V n i n n n p n p e n n ???+= ?? ? T V V 2 2n n0n i p +n p -n e =0 n p = (此为一般结果) 小注入:(0n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22=或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零,用此方法推导方程 2 0ln i a d T p n n N N V =-=ψψψ。 解:净电子电流为 ()n n n n I qA D n x με?=+? 处于热平衡时,I n =0 ,又因为 d dx ψ ε=-

半导体器件物理复习题

半导体器件物理复习题 一. 平衡半导体: 概念题: 1. 平衡半导体的特征(或称谓平衡半导体的定义) 所谓平衡半导体或处于热平衡状态的半导体,是指无外界(如电压、电场、磁场或温度梯度等)作用影响的半导体。在这种情况下,材料的所有特性均与时间和温度无关。 2. 本征半导体: 本征半导体是不含杂质和无晶格缺陷的纯净半导体。 3. 受主(杂质)原子: 形成P 型半导体材料而掺入本征半导体中的杂质原子(一般为元素周期表中的Ⅲ族元素)。 4. 施主(杂质)原子: 形成N 型半导体材料而掺入本征半导体中的杂质原子(一般为元素周期表中的Ⅴ族元素)。 5. 杂质补偿半导体: 半导体中同一区域既含受主杂质又含施主杂质的半导体。 6. 兼并半导体: 对N 型掺杂的半导体而言,电子浓度大于导带的有效状态密度, 费米能级高于导带底(0F c E E ->);对P 型掺杂的半导体而言,空穴浓度大于价带的有效状态密度。费米能级低于价带顶(0F v E E -<)。

7. 有效状态密度: 在导带能量范围( ~c E ∞ )内,对导带量子态密度函数 导带中电子的有效状态密度。 在价带能量范围( ~v E -∞) 内,对价带量子态密度函数 8. 以导带底能量c E 为参考,导带中的平衡电子浓度: 其含义是:导带中的平衡电子浓度等于导带中的有效状态密度乘以能量为导带低能量时的玻尔兹曼分布函数。 9. 以价带顶能量v E 为参考,价带中的平衡空穴浓度: 其含义是:价带中的平衡空穴浓度等于价带中的有效状态密度乘以能量为价带顶能量时的玻尔兹曼分布函数。 10.

11. 12. 13. 14. 本征费米能级Fi E : 是本征半导体的费米能级;本征半导体费米能级的位置位于禁带 带宽度g c v E E E =-。? 15. 本征载流子浓度i n : 本征半导体内导带中电子浓度等于价带中空穴浓度的浓度 00i n p n ==。硅半导体,在300T K =时,1031.510i n cm -=?。 16. 杂质完全电离状态: 当温度高于某个温度时,掺杂的所有施主杂质失去一个电子成为带正电的电离施主杂质;掺杂的所有受主杂质获得一个电子成为带负电的电离受主杂质,称谓杂质完全电离状态。 17. 束缚态: 在绝对零度时,半导体内的施主杂质与受主杂质成电中性状态称谓束缚态。束缚态时,半导体内的电子、空穴浓度非常小。 18. 本征半导体的能带特征: 本征半导体费米能级的位置位于禁带中央附近,且跟温度有关。如果电子和空穴的有效质量严格相等,那么本征半导体费米能级

第1章 半导体器件习题及答案

第1章半导体器件 一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) 1、P型半导体可通过在本半导体中掺入五价磷元素而获得。() 2、N型半导体可以通过在本征半导体中掺入三价元素而得到。() 3、在N型半导体中,掺入高浓度的三价杂质可以发型为P型半导体。() 4、P型半导体带正电,N型半导体带负电。() 5、N型半导体的多数载流子是电子,所以它带负电。() 6、半导体中的价电子易于脱离原子核的束缚而在晶格中运动。() 7、半导体中的空穴的移动是借助于邻近价电子与空穴复合而移动的。() 8、施主杂质成为离子后是正离子。() 9、受主杂质成为离子后是负离子。() 10、PN结中的扩散电流是载流子在电场作用下形成的。() 11、漂移电流是少数载流子在内电场作用下形成的。() 12、由于PN结交界面两边存在电位差,所以,当把PN结两端短路时就有电流流过。() 13、PN结在无光照、无外加电压时,结电流为零。() 14、二极管的伏安特性方程式除了可以描述正向特性和反向特性外,还可以描述二极管的反向击穿特性。() 15、通常的BJT管在集电极和发射极互换使用时,仍有较大的电流放大作用。() 16、有人测得某晶体管的U BE=,I B=20μA,因此推算出r be=U BE/I B=20μA=35kΩ。() 17、有人测得晶体管在U BE=,I B=5μA,因此认为在此工作点上的r be大约为26mV/I B=Ω。() 18、有人测得当U BE=,I B=10μA。考虑到当U BE=0V时I B=0因此推算得到

0.60 60()100 BE be B U r k I ?-= ==Ω?- ( ) 二、选择题 (注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) . 1、在绝对零度(0K )时,本征半导体中_________ 载流子。 A. 有 B. 没有 C. 少数 D. 多数 2、在热激发条件下,少数价电子获得足够激发能,进入导带,产生_________。 A. 负离子 B. 空穴 C. 正离子 D. 电子-空穴对 3、半导体中的载流子为_________。 A.电子 B.空穴 C.正离子 D.电子和空穴 4、N 型半导体中的多子是_________。A.电子 B.空穴 C.正离子 D.负离子 5、P 型半导体中的多子是_________。A.电子 B.空穴 C.正离子 D.负离子 6、在杂质半导体中,多数载流子的浓度主要取决于 ,而少数载流子的浓度则与 有 很大关系。 A. 温度 B. 掺杂工艺 C. 杂质浓度 C. 晶体缺陷 7、当PN 结外加正向电压时,扩散电流 漂移电流,耗尽层 。当PN 结外加反向电压 时,扩散电流 漂移电流,耗尽层 。 A.大于 B.小于 C.等于 D.变宽 E.变窄 F.不变 8、二极管正向电压从增大15%时,流过的电流增大_______。(A 1.15% B 1.大于 15% C 1.小于15%)当流过二极管的电流一定,而温度升高时,二极管的正向电压______。(A 2.增大B 2.减小;C 2.基本不变) 9、温度升高时,二极管的反向伏安特性曲线________。(A 1.上移 B 1.下移 C 1.不变)说 明此时反向电流________。(A 2.减小 B 2.增大 C 2.不变). 10、在下图所示电路中,当电源V=5V 时,测得I=1mA 。若把电源电压调整到V=10V ,则电流的

半导体器件习题及答案

第1章 半导体器件 一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) 1、P 型半导体可通过在本半导体中掺入五价磷元素而获得。( ) 2、N 型半导体可以通过在本征半导体中掺入三价元素而得到。( ) 3、在N 型半导体中,掺入高浓度的三价杂质可以发型为P 型半导体。( ) 4、P 型半导体带正电,N 型半导体带负电。( ) 5、N 型半导体的多数载流子是电子,所以它带负电。( ) 6、半导体中的价电子易于脱离原子核的束缚而在晶格中运动。( ) 7、半导体中的空穴的移动是借助于邻近价电子与空穴复合而移动的。( ) 8、施主杂质成为离子后是正离子。( ) 9、受主杂质成为离子后是负离子。( ) 10、PN 结中的扩散电流是载流子在电场作用下形成的。( ) 11、漂移电流是少数载流子在内电场作用下形成的。( ) 12、由于PN 结交界面两边存在电位差,所以,当把PN 结两端短路时就有电流流过。( ) 13、PN 结在无光照、无外加电压时,结电流为零。( ) 14、二极管的伏安特性方程式除了可以描述正向特性和反向特性外,还可以描述二极管的反向击穿特性。( ) 15、通常的BJT 管在集电极和发射极互换使用时,仍有较大的电流放大作用。( ) 16、有人测得某晶体管的U BE =,I B =20μA ,因此推算出r be =U BE /I B =20μA=35kΩ。( ) 17、有人测得晶体管在U BE =,I B =5μA ,因此认为在此工作点上的r be 大约为26mV/I B =Ω。( ) 18、有人测得当U BE =,I B =10μA 。考虑到当U BE =0V 时I B =0因此推算得到 0.60 60()100 BE be B U r k I ?-= ==Ω?- ( ) 二、选择题 (注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) . 1、在绝对零度(0K )时,本征半导体中_________ 载流子。 A. 有 B. 没有 C. 少数 D. 多数 2、在热激发条件下,少数价电子获得足够激发能,进入导带,产生_________。 A. 负离子 B. 空穴 C. 正离子 D. 电子-空穴对 3、半导体中的载流子为_________。 A.电子 B.空穴 C.正离子 D.电子和空穴 4、N 型半导体中的多子是_________。A.电子 B.空穴 C.正离子 D.负离子 5、P 型半导体中的多子是_________。A.电子 B.空穴 C.正离子 D.负离子

《半导体器件物理》试卷(一)答案[1](可编辑修改word版)

《半导体器件物理》试卷(一)标准答案及评分细则 一、填空(共32 分,每空 2 分) 1、PN 结电容可分为扩散电容和过渡区电容两种,它们之间的主要区别在于扩 散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。 2、当MOSFET 器件尺寸缩小时会对其阈值电压V T产生影响,具体地,对 于短沟道器件对V T的影响为下降,对于窄沟道器件对V T的影响为上升。 3、在NPN 型BJT 中其集电极电流I C受V BE电压控制,其基极电流I B受V BE 电压控制。 4、硅-绝缘体SOI 器件可用标准的MOS 工艺制备,该类器件显著的优点是 寄生参数小,响应速度快等。 5、PN 结击穿的机制主要有雪崩击穿、齐纳击穿、热击穿等等几种,其中发 生雪崩击穿的条件为V B>6E g/q。 6、当MOSFET 进入饱和区之后,漏电流发生不饱和现象,其中主要的原因 有沟道长度调制效应,漏沟静电反馈效应和空间电荷限制效应。 二、简述(共18 分,每小题6 分) 1、Early 电压V A; 答案: 2、截止频率f T; 答案:截止频率即电流增益下降到 1 时所对应的频率值。

3、耗尽层宽度W。 答案:P 型材料和N 型材料接触后形成PN 结,由于存在浓度差,就会产生空间电荷区,而空间电荷区的宽度就称为耗尽层宽度W。 三、分析(共20 分,每小题10 分) 1、对于PNP 型BJT 工作在正向有源区时载流子的输运情况; 答案:对于PNP 型晶体管,其发射区多数载流子空穴向集电区扩散,形成电流 I EP,其中一部分空穴与基区的电子复合,形成基极电流的I B的主要部分,集 电极接收大部分空穴形成电流I CP,它是I C的主要部分。 2、热平衡时突变PN 结的能带图、电场分布,以及反向偏置后的能带图和相 应的I-V 特性曲线。(每个图2 分) 答案:热平衡时突变PN 结的能带图、电场分布如下所示, 反向偏置后的能带图和相应的I-V 特性曲线如下所示。

半导体器件物理习题

●在300K 下,Si 在价带中的有效态密度为2,66X 19 103 cm -,而GaAs 为7X 18 10 3 cm -,求 出空穴的有效质量,并与自由电子质量比较。 ●画出在77K ,300K,及600K 时掺杂 1610个/3cm 的As 原子的Si 简化能带图,标示出费米能 级且使用本征F E 作参考量。 ●求出i S 在300K 时掺入下列掺杂情形下电子空穴浓度及费米能级。 ●对一半导体而言,其具有一固定的迁移率比 b=n u /p u >1,且与杂质浓度无关,求其最大的电 阻率m ρ并以本征电阻率i ρ及迁移率比表示。 ●给定一个未知掺杂的i S 晶样品,霍耳测量提供了以下信息: ω=0.05cm,A=1.6x 3-103cm -,I=2.5mA,磁场为30nT(1T=4-10wb/2 cm ),若测出的霍耳电压为 10mV ,求半导体样品的霍耳系数,导体型态,多子浓度,电阻率及迁移率。 ●线性缓变Si 结,其掺杂梯度为420 cm 10 -,计算内建电势及4V 反向偏压的结电容(T=300K )。 对一理想突变p-n 结,其 D N =316cm 10-,当外加正偏压1V 时,求出中性区(n 区)没单位 面积储存的少子、中性区的长度为1μm,p L 5μm. ●对一理想突变p-n 结,其 D N =316cm 10-,当外加正偏压1V 时,求出中性区(n 区)没单 位面积储存的少子、中性区的长度为1μm, p L =5μm. ●设计一+ p -n Si 突变结二极管,其反向击穿电压为130V ,正偏电流在V V 7.0h =时为2.2mA,设. 1070p s -=τ

半导体器件物理 试题库

题库(一) 半导体物理基础部分 1、计算分析题 已知:在室温(T = 300K )时,硅本征载流子的浓度为 n i = 1.5×1010/cm 3 电荷的电量q= 1.6×10-19C μn =1350 2cm /V s ? μp =500 2 cm /V s ? 半导体硅材料在室温的条件下,测得 n 0 = 4.5×104/cm 3, N D =5×1015/cm 3 问:⑴ 该半导体是n 型还是p 型? ⑵ 分别求出多子和少子的浓度 ⑶ 样品的电导率是多少? ⑷ 分析该半导体的是否在强电离区,为什么0D n N ≠? 2、说明元素半导体Si 、Ge 中的主要掺杂杂质及其作用? 3、什么叫金属-半导体的整流接触和欧姆接触,形成欧姆接触的主要方法有那些? 4、为什么金属与重掺杂半导体接触可以形成欧姆接触? P-N 部分 5、什么叫pn 结的势垒电容?分析势垒电容的主要的影响因素及各因素导致垒电容大小变化的趋势。 6、什么是pn 结的正向注入和反向抽取? 7、pn 结在正向和反向偏置的情况下,势垒区和载流子运动是如何变化的? 8、简述pn 结雪崩击穿、隧道击穿和热击穿的机理. 9、什么叫二极管的反向恢复时间,提高二极管开关速度的主要途径有那些? 10、如图1所示,请问本PN 结的偏压为正向,还是反向?准费米能级形成的主要原因? PN 结空间电荷区宽度取决的什么因素,对本PN 结那边空间电荷区更宽?

图1 pn结的少子分布和准费米能级 三极管部分 11、何谓基区宽变效应? 12、晶体管具有放大能力需具备哪些条件? 13、怎样提高双极型晶体管的开关速度? 14、双极型晶体管的二次击穿机理是什么? 15、如何扩大晶体管的安全工作区范围? 16、详细分析PN结的自建电场、缓变基区自建电场和大注入自建电场的异同点。 17、晶体管的方向电流I CBO、I CEO是如何定义的?二者之间有什么关系? 18、高频时,晶体管电流放大系数下降的原因是什么? 19、如图2所示,请问双极型晶体管的直流特性曲线可分为哪些区域,对应图中的什么位置? 各自的特点是什么?从图中特性曲线的疏密程度,总结电流放大系数的变化趋势,为什么?

半导体器件工艺与物理期末必考题材料汇总综述

半导体期末复习补充材料 一、名词解释 1、准费米能级 费米能级和统计分布函数都是指的热平衡状态,而当半导体的平衡态遭到破坏而存在非平衡载流子时,可以认为分就导带和价带中的电子来讲,它们各自处于平衡态,而导带和价带之间处于不平衡态,因而费米能级和统计分布函数对导带和价带各自仍然是适用的,可以分别引入导带费米能级和价带费米能级,它们都是局部的能级,称为“准费米能级”,分别用E F n、E F p表示。 2、直接复合、间接复合 直接复合—电子在导带和价带之间直接跃迁而引起电子和空穴的直接复合。 间接复合—电子和空穴通过禁带中的能级(复合中心)进行复合。 3、扩散电容 PN结正向偏压时,有空穴从P区注入N区。当正向偏压增加时,由P区注入到N区的空穴增加,注入的空穴一部分扩散走了,一部分则增加了N区的空穴积累,增加了载流子的浓度梯度。在外加电压变化时,N扩散区内积累的非平衡空穴也增加,与它保持电中性的电子也相应增加。这种由于扩散区积累的电荷数量随外加电压的变化所产生的电容效应,称为P-N结的扩散电容。用CD表示。 4、雪崩击穿 随着PN外加反向电压不断增大,空间电荷区的电场不断增强,当超过某临界值时,载流子受电场加速获得很高的动能,与晶格点阵原子发生碰撞使之电离,产生新的电子—空穴对,再被电场加速,再产生更多的电子—空穴对,载流子数目在空间电荷区发生倍增,犹如雪崩一般,反向电流迅速增大,这种现象称之为雪崩击穿。 1、PN结电容可分为扩散电容和过渡区电容两种,它们之间的主要区别在于 扩散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放 电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。 2、当MOSFET器件尺寸缩小时会对其阈值电压V T产生影响,具体地,对 于短沟道器件对V T的影响为下降,对于窄沟道器件对V T的影响为上升。 3、在NPN型BJT中其集电极电流I C受V BE电压控制,其基极电流I B受V BE 电压控制。 4、硅-绝缘体SOI器件可用标准的MOS工艺制备,该类器件显著的优点是 寄生参数小,响应速度快等。 5、PN结击穿的机制主要有雪崩击穿、齐纳击穿、热击穿等等几种,其中发

(完整版)常用半导体元件习题及答案

第5章常用半导体元件习题 5.1晶体二极管 一、填空题: 1.半导体材料的导电能力介于和之间,二极管是将 封装起来,并分别引出和两个极。 2.二极管按半导体材料可分为和,按内部结构可分为_和,按用途分类有、、四种。3.二极管有、、、四种状态,PN 结具有性,即。4.用万用表(R×1K档)测量二极管正向电阻时,指针偏转角度,测量反向电阻时,指针偏转角度。 5.使用二极管时,主要考虑的参数为和二极管的反向击穿是指。 6.二极管按PN结的结构特点可分为是型和型。 7.硅二极管的正向压降约为 V,锗二极管的正向压降约为 V;硅二极管的死区电压约为 V,锗二极管的死区电压约为 V。 8.当加到二极管上反向电压增大到一定数值时,反向电流会突然增大,此现象称为现象。 9.利用万用表测量二极管PN结的电阻值,可以大致判别二极管的、和PN结的材料。 二、选择题: 1. 硅管和锗管正常工作时,两端的电压几乎恒定,分别分为( )。 A.0.2-0.3V 0.6-0.7V B. 0.2-0.7V 0.3-0.6V C.0.6-0.7V 0.2-0.3V D. 0.1-0.2V 0.6-0.7V 的大小为( )。 2.判断右面两图中,U AB A. 0.6V 0.3V B. 0.3V 0.6V C. 0.3V 0.3V D. 0.6V 0.6V 3.用万用表检测小功率二极管的好坏时,应将万用表欧姆档拨到() Ω档。 A.1×10 B. 1×1000 C. 1×102或1×103 D. 1×105 4. 如果二极管的正反向电阻都很大,说明 ( ) 。 A. 内部短路 B. 内部断路 C. 正常 D. 无法确定 5. 当硅二极管加0.3V正向电压时,该二极管相当于( ) 。 A. 很小电阻 B. 很大电阻 C.短路 D. 开路 6.二极管的正极电位是-20V,负极电位是-10V,则该二极管处于()。 A.反偏 B.正偏 C.不变D. 断路 7.当环境温度升高时,二极管的反向电流将() A.增大 B.减小 C.不变D. 不确定 8.PN结的P区接电源负极,N区接电源正极,称为()偏置接法。

半导体基本器件

半导体基本器件 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第二章半导体基本器件 内容提要 【了解】半导体的相关知识 【熟悉】二极管(即PN结)的单向导电性及主要参数 【了解】三极管的电流放大原理 【熟悉】三极管输出特性曲线的三个工作区及条件和特点、主要参数 【了解】MOS管的工作原理、相应的三个工作区以及与三极管的性能区别 ? 一.一.网上导学 二.二.典型例题 三.三.本章小结 四.四.习题答案 ? 网上导学: *了解半导体基础相关知识:1.半导体(导电性能介于┉) ;2.本征半导体(纯净,晶体)、共价键(共用电子对);热激发:自由电子-空穴对、载流子、复合、浓度(微量,温度影响) 与掺杂半导体:N 型(五价磷)、P型半导体(三价硼)、多子、少子;结:扩散、不能移动的离子、空间电荷区、内电场EIN、阻挡层、漂移、动态平衡。(p38~p41)

本征半导体 掺杂半导体 (a) 多子扩散 (b)空间电荷区 PN结 PN结形成和单向导电性 一. 一.PN结(二极管)的单向导电性:p41 (a) 正向偏置 (b) 反向偏置 单向导电性 结内部扩散和漂移的动态平衡(空间电荷区的调节作用); 2.外加电压(外电场)打破原有的平衡(加正向偏压,削弱了内电场的作用,有利于扩散,形成较大的正向电流,导通;加反向偏压,增强了内电场的作用,有利于漂移,形成微弱的反向电流,截止);

3.熟悉PN结(即二极管)的伏安特性(i~u):硅和锗的导通电压UON分别为和、正向电压降UD分别为~和~,击穿电压U(RB)、二极管符号、主要参数(p43,最大正向电流IF、反向击穿电压U(RB)、反向电流IR等)及应用(数字:开关;模拟:整流、限幅);稳压管:正常工作在反向击穿状态,为了使稳压管不会因过流而损坏,应当在电路中加限流电阻(见图),主要参数UZ、IZ、IZM。二极管、三极管和MOS管 伏安特性稳压管电路 *了解三极管电流放大原理:(1)发射结正偏,其正向电流主要是由发射区的多子向基区扩散所形成的电流IE(因为发射区重掺杂而基区掺杂浓度很低 ,故基区的多子向发射区扩散可以忽略);(2) 注入到基区的多子在基区的复合和继续扩散;(3) 复合所形成基极复合电流IBN(≈IB)很小,大部分扩散被集电结反向偏置电场吸引到集电区,形成较大的集电极收集电流ICN(≈IC)(因为基区薄、掺杂浓度低,集电结反偏)。从而实现了三极管电流放大作用即β =IC/IB》1。三极管的电流放大作用就是利用发射区注入的多子在基区的扩散电流(IC)大大超过复合电流(IB)而实现的;了解三极管的两种类型(NPN,PNP)。 两种类型 二.三极管三个工作区(截止、放大、饱和)条件和特点、输出特性曲线:p48 1.截止区:当ui<UON,截止区,iB≈0,iC≈0; 2.放大区:当ui≥UON,且UB<UC,或 iB<IBS,放大区, iC=βiB;

相关主题
文本预览
相关文档 最新文档