当前位置:文档之家› 深入理解函数和二维数组

深入理解函数和二维数组

深入理解函数和二维数组
深入理解函数和二维数组

传递函数矩阵的状态空间最小实现

传递函数矩阵最小实现方法 降阶法人们在设计复杂系统时,总是希望在构造系统之前用模拟计算机或数字计算机对所设计的系统进行仿真,以检查系统性能是否达到指标要求。给定严格真传递函数矩阵G(s),为寻找一个维数最小的(A,B,C),使C(sl - A)」B二G(s),则称该(A,B,C )是G(s)的最小实现,也称为不可约实现。最小实现是系统实现的一种非常重要的实现方式,关于最小实现的特性,有下列几个重要结论: (1)( A,B,C )为严格真传递函数矩阵G(s)的最小实现的充要条件是(A,B) 能控且(A,C)能观测。 (2)严格真传递函数矩阵G(s)的任意两个最小实现(A,B,C)与(A,B,C5之 间必代数等价,即两个最小实现之间由非奇异线性变换阵T使得式子 A =T」AT, B =T J B, C =CT 成立。 (3)传递函数矩阵G(s)的最小实现的维数为G(s)的次数n.,或G(s)的极点多项式的最高次数。 为了寻求传递函数矩阵的最小实现,就意味着要把系统中不能控和不能观测的状态变量消去而不至于影响系统的传递函数。求最小实现的方法有三种: 1、降阶法。根据给定的传递函数矩阵G(s),第一步先写出满足G(s)的能控型实现,第二步从中找出能观测子系统;或者第一步先写出满足G(s)的能观测型实现,第二步从中找出能控子系统,均可求得最小实现。 2、直接求取约当型最小实现的方法。若G(s)诸元容易分解为部分分式形式,运用直接求取约当型最小实现的方法是较为方便的。 3用汉克尔矩阵法求取最小实现的方法。 下面主要研究降阶法(先求能控型再求能观测子系统的方法)并举例说明。 先求能控型再求能观测子系统的方法设(px q)传递函数矩阵G(s),且p v q时,

常微分方程与动力系统第二章课后题参考答案

常微分方程与动力系统第二章习题参考答案 1.证明:因为()t Φ是线性齐次系统(LH )的一个基本解矩阵,由定理2.5知()t Φ在区间J 上满足矩阵微分系统()M LH ,即. ()()()t A t t Φ=Φ, . 1 ()()() A t t t -=ΦΦ所以由()A t 确定的线性齐次系统(LH )必唯一。 2.证明:因为()t ?,()t ψ分别是. ()x A t x = 和. ()T x A t x =-的解,所以 11 1 () ()()n k k k n nk k k a d t A t t dt a ????==?? ? ?== ? ? ? ??? ∑∑ , 11211111122222* 121 ()()()n n k k k n n kn k n n n nn k a a a a a a a d t A t t dt a a a a ψψψψψψ==?????? ? ? ? ? ? ?=-ψ=-=- ? ? ? ? ? ? ????? ??? ∑∑ 因而 1111 112 2 1 1 (,)(,)(,),,n n k k k k k k n n kn k k nk k n n k a a d d d dt dt dt a a ψ??ψψ ??ψ?ψ ψ?ψ?ψ?====?? ?? ?????????? ?-?? ? ? ??? ??? ? ? ???=+= ?+?? ? ? ??? ?-?? ? ? ??? ????? ???? ??????? ?? ∑∑∑∑ 11 111 1 1 1()0 n n n n n n n n n n n n m m m m i ij j i ij j i mk k km k mk k km m m m m i j i j k k k k a a a a a a ?ψψ??ψ?ψ?ψ?ψ== === = == == = = -= += -=-=∑∑∑∑∑∑∑ ∑∑∑∑∑所以 (),() ()()1 n t t t t k k k ?ψ?ψ≡≡ ∑=常数。 3.证明:设)t Φ(为系统. ()x A t x = 的一个基本解矩阵,则由定理2.11知 [ ]1 () T t -Φ是系统. ()T x A t x =-的基本解矩阵,由定理 2.4知系统. ()x A t x = 满足初始条件00()x t x =的特解为1 00()))t t t x ?-=Φ(Φ(,[) 0,0,t t ∈+∞由题可 知)t Φ(与[ ]1 () T t -Φ在[)0,+∞上有界,从而由定理2.24知110()0 k k t ?=>

实验5 常微分方程初值问题和矩阵特征值的计算

实验5 常微分方程初值问题和矩阵特征值的计算 思考问题:欧拉折线法与泰勒级数法的关系是什么?如何把乘幂法变为反幂法来求解按模最小特征值? 答:欧拉折线法就是用一系列折线近似的代替曲线,欧拉折线法思想就是泰勒级数展开,其解得精度是差分步长的一阶精度。泰勒公式展开是一种高阶显式一步法,理论上它具有任意阶精度; 把乘幂法变为反幂法来求解按模最小特征值的方法为该求方阵A 的逆矩阵 1-A ,乘幂法对应的模最大特征值λ取倒数为λ 1,变为模最小特征值,由此得到反幂法,可反复迭代:)1()(-=k k Ay y ,)1()(/-k k y y 收敛于A 的主特征值,)(k y 为对应的特征向量。 5.1 取步长2.0=h ,用显示欧拉法求???=--='1 )0(2 y xy y y 在6.0=x 处y 的近似值。 提示:循环3次,用3段折线来逼近函数y 。 运行结果为: 5.2 已知矩阵???? ??????=361641593642A ,用改进后的幂乘法求A 得主特征值及其对应的特征向量。

运行结果为: 程序代码 5.1 #include #include #define MAXSIZE 50 double f(double x,double y); void main(void) { double a,b,h,x[MAXSIZE],y[MAXSIZE]; long i,n; printf("\nPlease input interval a,b:"); scanf("%lf,%lf",&a,&b); printf("\nPlease input step length h:"); scanf("%lf",&h); n=(long)((b-a)/h); x[0]=a; printf("\nPlease input the start point of x[0]=%lf ordinate y[0]:",x[0]); scanf("%lf",&y[0]);

矩阵与常微分方程

一:利用分块矩阵求矩阵(三个公式) 公式1: ??? ????? ?=???? ? ???? ?---1 1 11 1s s A A A A 公式 2:?? ??? ?-=?? ????-----1221 11211221 111 2221 11 00A A A A A A A A 或?? ? ???-=?? ? ?? ?-----1 22 1 22121111111 221211 0A A A A A A A A 2 ,1=i n A i ii 阶可逆矩阵, 为 公式 3:?? ????=??????---00001 1 1 A B B A (为可逆矩阵 B A ,) 下面给出公式2的推导过程:设??? ???=?? ????-22211211 1 2221 11 0X X X X A A A 由?? ????=?????????????E E X X X X A A A 0 002221 1211 2221 11 得?? ??? ??=+=+==E X A X A X A X A X A E X A 22 2212 21212211 211211111100 解之得???????=-===----122 22 1 11211 222112 1 11110 A X X A A X X A X

^-^ 习题 1:1 ,11 21000 0520021-?? ??? ???????---=A A 求 习题 2:1 ,20 1200 3 1204312-?? ??? ???? ???=A A 求 答案:习题1: ??????? ?????????-=-313 100323100001200251 A 习题2: ????????? ?????????? ?--- - -- =-210 0412******* 210165854121 1 A 二:利用定义求矩阵 例1:设n 阶方阵A 满足022 =--E A A ,求证A 可逆并求1 -A 证明:由022 =--E A A ,得:E E A A 2)(=- 即E E A A =-?2 ,从而A 可逆且2 1 E A A -= - 例2:设B A ,为同阵且满足AB B A = +,证明E A -可逆并求其逆,

传递函数矩阵的状态空间小实现

传递函数矩阵的状态空间最小实现

————————————————————————————————作者:————————————————————————————————日期:

传递函数矩阵最小实现方法 ——降阶法 人们在设计复杂系统时,总是希望在构造系统之前用模拟计算机或数字计算机对所设计的系统进行仿真,以检查系统性能是否达到指标要求。给定严格真传递函数矩阵()G s ,为寻找一个维数最小的(A,B,C ),使1()()C sI A B G s --=,则称该(A,B,C )是()G s 的最小实现,也称为不可约实现。最小实现是系统实现的一种非常重要的实现方式,关于最小实现的特性,有下列几个重要结论: (1)(A,B,C )为严格真传递函数矩阵()G s 的最小实现的充要条件是(A,B )能控且(A,C )能观测。 (2)严格真传递函数矩阵()G s 的任意两个最小实现(A,B,C )与(,,)A B C 之间必代数等价,即两个最小实现之间由非奇异线性变换阵T 使得式子 11,,A T AT B T B C CT --===成立。 (3)传递函数矩阵()G s 的最小实现的维数为()G s 的次数n δ,或()G s 的极点多项式的最高次数。 为了寻求传递函数矩阵的最小实现,就意味着要把系统中不能控和不能观测的状态变量消去而不至于影响系统的传递函数。求最小实现的方法有三种: 1、降阶法。根据给定的传递函数矩阵()G s ,第一步先写出满足()G s 的能控型实现,第二步从中找出能观测子系统;或者第一步先写出满足()G s 的能观测型实现,第二步从中找出能控子系统,均可求得最小实现。 2、直接求取约当型最小实现的方法。若()G s 诸元容易分解为部分分式形式,运用直接求取约当型最小实现的方法是较为方便的。 3用汉克尔矩阵法求取最小实现的方法。 下面主要研究降阶法(先求能控型再求能观测子系统的方法)并举例说明。 先求能控型再求能观测子系统的方法设(p ×q )传递函数矩阵()G s ,且p <q 时,优先采用本法。取出()G s 的第j 列,记为j ()G s ,是j u 至()y s 的传递函

矩阵函数的性质及其在微分方程组中的应用

§7矩阵函数的性质及其在微分方程组中的应用 1.矩阵函数的性质: 设n n C B A ?∈. 1. A e Ae e dt d At At At ?== proof : 由 ()∑∑ ?==∞ =m m m m At A t m At m e !1! 1 对任何t 收敛。因而可以逐项求导。 ()∑∞=--=∴01!11m m m At A t m e dt d ()()???? ??-?=∑∞=-11!11m m At m A ()??? ? ???=∑k At k A !1At e A ?= ()()()A e A At m A A t m At m m m m m ?=???? ? ??-=?-=∑∑∞ =∞=---0111 1!11!11 可见,A 与At e 使可以交换的,由此可得到如下n 个性质 2.设BA AB =,则 ①.At At Be B e =? ②.B A A B B A e e e e e +=?=? ③.()()A A A A A A B A B A B A B A B A B A B A cos sin 22sin sin cos 2cos sin cos cos sin sin sin sin cos cos cos 22=-=?+=+-=+= proof :①,由m m BA B A BA AB =?= 而∑∑∞ =∞==?? ? ??=00!1!1m m m m m m At B A t m B t A m B e ()∑∑∞ =∞ =?==00!1!1m m m m m At m B BA t m At e B ?= ②令()Bt At B A e e e t C --+??=)( 由于 ()0=t C dt d )(t C ∴为常数矩阵 因而E e e e C C t C =-?===000)0()1()( 当1=t 时,E e e e B A B A =??--+ …………………. (@)

逆矩阵的解法和常微分方程

逆矩阵的解法和常微分方程

凯程教育: 凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观口号:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。 对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。 建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。 有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。此外,最好还要看一下他们的营业执照。

8 传递函数矩阵的零极点

第七章:矩阵分式描述 传递函数矩阵的矩阵分式描述是复出频域理论中表征线性时不变系统输入输出关系的一种基本模型。 采用矩阵分式描述(MFD )和多项式矩阵理论可使线性时不变系统的频域分析和综合的理论和方法简便和实用。 主要介绍:1、矩阵分式描述的形式和构成 2、矩阵分式描述的真性和严真性 3、矩阵分式描述的不可简约性 7-1 矩阵分式描述的基本概念 矩阵分式描述(MFD )的实质:就是把有理分式矩阵形式的传递函数矩阵G(s)表示为两个多项式矩阵之比。 MFD 形式上是对标量有理分式形式传递函数g(s)相应表示的一种推广 右MFD : 对p 输入,q 输出线性时不变系统。有理分式矩阵G(s),存在多项式矩阵p q s N ?)(和多项式矩阵p p s D ?)(使下式成立: 称p p p q s D s N ?-?)()(1为G(s)的一个右MFD 。 左MFD :p q L q q L p q s N s D s G ??-?=)()()(1 称p q L q q L s N s D ??-)()(1 为G(s)的一个左MFD 。 例:8.1 构造G(s)的一个右MFD ,=)(s G ?? ???++++?????210 210 1 1 2s s s s s s 方法:先确定各列的最小公分母,)2(1+=s s d c 22s d c = )2(3+=s d c 1 2 22)2(10)1(012210 ) 2() 1(01 ) 2(2)(-???? ? ?????++?? ???+++???? ? =?????++++++????? =s s s s s s s s s s s s s s s s s s s G p p p q p q s D s N s G ?-??=)()()(1

常微分方程与动力学系统

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。

第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程) 5.应用举例 第三章常微分方程基本定理(10, 2) (一)本章教学目的与要求: 要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。 本章教学重点是介绍常微分方程基本定理,给出几何含意,不追求定理条件的减弱,所涉及的方程至少是连续,使条件、结论及证明简洁,学生易于掌握,也为本学科的后续课程奠定基础。在习题课中,可介绍这些基本定理的应用,如证明初等函数恒等式,及推导欧拉公式。 (二)教学内容: 1. 皮卡存在和唯一性定理,用构造毕卡序列,并有它的一致收敛性来证明此定理; 2. 佩亚若存在定理; 3.解的延拓(几何含意);用两个例子说明延拓到边界的含义:时间的边界或状态空间的边界。 4. 解的全局存在唯一性定理,为动力系统理论奠定基础。 5. 比较定理(几何含意); 6.解对初值和参数的连续依赖性(几何含意); 7.解对初值和参数的连续可微性(几何含意)。 第四章奇解(2,1) (一)本章教学目的与要求: 要求学生正确掌握微分方程奇解的定义,并对几类一阶隐式方程会求奇

中科院矩阵分析_第二章

第 2 章范数理论及其应用 2.1向量范数及I p范数 定义:如果V 是数域K 上的线性空间,且对于 V的任一向量x,对应一个实数值ixil,它满足以下三个条件: 1)非负性:||x|| 0,且||x||=0 x=0; 2)齐次性:iikxii=iki iixii,k K; 3)三角不等式:||x+y|| ||x||+||y||. 则称||x|为V上向量x的范数,简称为向量范数。 可以看出范数||||为将V映射为非负数的函数。注意:2)中|k|当K为实数时为绝对值, 当K 为复数域时为复数的模。 虽然向量范数是定义在一般的线性空间上的,但是由于前面的讨论,我们知道任何n 维线性空间在一个基下都代数同构于常用的n维复(或实)列向量空间, 因此下面我们仅仅讨论n 维复(或实)列向量空间就足够了下面讨论如下:1?设||||为线性空间V n的范数,任取它的一个 基X i,X2,…,X n,则对于任意向量X,它可以表示为 x= 1X1+ 2X2+ …+ n X n 其中,(1, 2,…,n)T为X的坐标。 由此定义C n(或R n)中的范数如下: || ||C = () = || 1X1+ 2X2+ …+ n X n|| 则容易验证|| ||C确实为C n中的范数. 2?反之,若|| |C为C n中的范数,定义V n的范数如下:||X||= (X)=|| ||c 其中X= 1X1+ 2X2+ …+ n X n。 则容易验证(X)确实为V n的范数。 这个例子充分说明了一般线性空间的范数和n维 复(或实)列向量空间的范数之间的关系。这也是为我们只讨论n 维复(或实)列向量空间的范数的理由. 范数首先是一个函数,它将线性空间的任意向量映射为非负实数。 范数与函数 性质 1. 范数是凸函数, 即|| (1 )X+ y|| (1 )||X||+ ||y|| 其中0

矩阵微分方程

第九讲 矩阵微分方程 一、矩阵的微分和积分 1. 矩阵导数定义:若矩阵ij m n A(t)(a (t))?=的每一个元素a (t)ij 是变量t 的可 微函数,则称A(t)可微,其导数定义为 ij m n da dA A (t)()dt dt ?'== 由此出发,函数可以定义高阶导数,类似地,又可以定义偏导数。 2. 矩阵导数性质:若A(t),B(t)是两个可进行相应运算的可微矩阵,则 (1)d dA dB [A(t)B(t)]dt dt dt ±=± (2) d dA dB [A(t)B(t)]B A dt dt dt =+ (3)d da dA [a(t)A(t)]A a dt dt dt =+ (4) () ()()()tA tA tA d d e Ae e A cos tA A sin tA dt dt ===- ()()()d sin tA A cos tA dt = (A 与t 无关) 此处仅对tA tA tA d (e )Ae e A dt ==加以证明 证明: tA 2233223d d 111 (e )(1tA t A t A )A tA t A dt dt 2!3!2! =++++=+++ 22 tA 1A(1tA t A )Ae 2! =++ +=

又22 tA 1(1tA t A )A e A 2! =++ += 3. 矩阵积分定义:若矩阵A(t)(a (t))m n ij =?的每个元素ij a (t)都是区间 01[t ,t ]上的可积函数,则称A(t)在区间01[t ,t ]上可积,并定义A(t)在01[t ,t ] 上的积分为 1 100ij t t A(t)dt a (t)dt t t m n ?? =?? ???? 4. 矩阵积分性质 (1)1 1 1 000 t t t t t t [A(t)B(t)]dt A(t)dt B(t)dt ±=±??? (2)1 1110000t t t t t t t t [A(t)B]dt A(t)dt B,[AB(t)]dt A B(t)dt ???? == ? ? ? ????? ???? (3)t b a a d A(t )dt A(t),A (t)dt A(b)A(a)dt '''==-?? 二、 一阶线性齐次常系数常微分方程组 设有一阶线性齐次常系数常微分方程组 1 1111221n n 22112222n n n n11n22nn n dx a x (t)a x (t)a x (t)dt dx a x (t)a x (t)a x (t)dt dx a x (t)a x (t)a x (t) dt ?=+++???=+++? ??? ?=+++?? 式中t 是自变量,i i x x (t)=是t 的一元函数(i 1,2,,n),= ij a (i,j 1,2,,n)= 是常系数。 令

传递函数矩阵的状态空间最小实现

传递函数矩阵最小实现方法 ——降阶法 人们在设计复杂系统时,总是希望在构造系统之前用模拟计算机或数字计算机对所设计的系统进行仿真,以检查系统性能是否达到指标要求。给定严格真传递函数矩阵()G s ,为寻找一个维数最小的(A,B,C ),使1()()C sI A B G s --=,则称该(A,B,C )是()G s 的最小实现,也称为不可约实现。最小实现是系统实现的一种非常重要的实现方式,关于最小实现的特性,有下列几个重要结论: (1)(A,B,C )为严格真传递函数矩阵()G s 的最小实现的充要条件是(A,B )能控且(A,C )能观测。 (2)严格真传递函数矩阵()G s 的任意两个最小实现(A,B,C )与(,,)A B C 之间必代数等价,即两个最小实现之间由非奇异线性变换阵T 使得式子 11,,A T AT B T B C CT --===成立。 (3)传递函数矩阵()G s 的最小实现的维数为()G s 的次数n δ,或()G s 的极点多项式的最高次数。 为了寻求传递函数矩阵的最小实现,就意味着要把系统中不能控和不能观测的状态变量消去而不至于影响系统的传递函数。求最小实现的方法有三种: 1、降阶法。根据给定的传递函数矩阵()G s ,第一步先写出满足()G s 的能控型实现,第二步从中找出能观测子系统;或者第一步先写出满足()G s 的能观测型实现,第二步从中找出能控子系统,均可求得最小实现。 2、直接求取约当型最小实现的方法。若()G s 诸元容易分解为部分分式形式,运用直接求取约当型最小实现的方法是较为方便的。 3用汉克尔矩阵法求取最小实现的方法。 下面主要研究降阶法(先求能控型再求能观测子系统的方法)并举例说明。 先求能控型再求能观测子系统的方法设(p ×q )传递函数矩阵()G s ,且p <q 时,优先采用本法。取出()G s 的第j 列,记为j ()G s ,是j u 至()y s 的传递函

线性代数与常微分方程

825-线性代数与常微分方程 一、考查目标 线性代数与常微分方程是为招收理学数学学院各专业硕士研究生而设置的具有选拔功能的考试科目。其目的是科学、公平、有效地测试考生是否具备攻读数学专业硕士所必须的基本素质、一般能力和培养潜能,以利用选拔具有发展潜力的优秀人才入学,它的主要目的是测试考生对线性代数及常微分方程内容的掌握程度和应用相关知识解决问题的能力。要求考生比较系统地理解线性代数及常微分方程的基本概念和基本理论,掌握线性代数及常微分方程理论的基本方法。要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。 二、考试形式和试卷结构 1. 试卷满分及考试时间 试卷满分为150分,考试时间180分钟。 2. 答题方式 答题方式为闭卷、笔试。 3. 题型结构 题型为计算题及证明题。 三、考查内容及要求 Ⅰ.常微分方程 1.微分方程的一些基本概念 (1)考试内容 1)常微分方程 2)阶数 3)线性与非线性 4)解、隐式解、通解、特解 (2)考试要求 1)了解微分方程与客观世界中某些实际问题的关系 2)掌握微分方程中线性与非线性、通解与特解等基本概念 3)了解一阶方程及其解的几何意义 2.一阶微分方程的初等解法 (1)考试内容 1)变量分离方程,齐次方程及可化为变量分离的方程

2)线性方程,贝努利方程 3)恰当方程的概念,充要条件,恰当方程的通解。积分因子的概念及其求法4)一阶隐式方程(四种类型方程)的解法 (2)考试要求 1)能正确的识别一阶方程的类型 2)掌握变量分离方程、齐次方程及可化为变量分离方程的解法。 3)掌握一阶线性方程、贝努利方程的解法 4)掌握恰当方程的解法及求积分因子的基本方法 5)掌握一阶隐式方程的解法 3.一阶微分方程的存在定理 (1)考试内容 1)一阶微分方程解的存在唯一性定理求近似解及误差估计 2)有界及无界区域中解的延拓定理 3)解对初值的连续依赖和可微性定理 4)奇解概念、求法及克莱罗方程 (2)考试要求 1)理解和掌握存在唯一性定理及其证明 2)会求方程的近似解并估计其误差 3)了解解的延拓定理 4)了解解对初值的连续依赖定理和解对初值可微性定理 5)理解奇解的概念并会求方程的奇解 6)掌握克莱罗方程的解法 4.高阶微分方程 (1)考试内容 1)齐线性方程解的性质和结构 2)非齐线性方程通解的结构和常数变易法 3)常系数齐次线性方程通解的求法, 4)常系数非齐次方程特解的求法 5)高阶方程的降阶 (2)考试要求 1)掌握齐次线性方程解的性质和通解的结构 2)熟练地求解常系数齐次及非齐次线性方程 3)会用降价法求高阶方程的解 5.线性微分方程组

李金城 25 数学08-1 常系数线性微分方程组的矩阵解法

摘要 在常微分方程中,介绍了解常系数线性微分方程组的消元法,它是解常系数线性微分方程组的最初等的方法,适用于知函数较少的小型微分方程组。对于未知函数较多时,用消元法则会非常不便,为此应寻求更为有效的方法。在掌握线性代数的知识后,用矩阵法解常系数线性齐次微分方程组较为方便。 关键词:基解矩阵特征方程特征值特征向量

Abstract In the ordinary differential equation, introduced that understood often the coefficient linear simultaneous differential equation's elimination, it is the solution often the coefficient linear simultaneous differential equation's most primary method, is suitable in knows the function few small simultaneous differential equation. Are many when regarding the unknown function, will be inconvenient with the elimination, for this reason should seek a more effective method. After grasping the linear algebra the knowledge, the coefficient linearity homogeneous simultaneous differential equation is often more convenient with the matrix technique solution. Keywords: basic solution of matrix characteristic equation eigenvalue Characteristic vector

相关主题
文本预览
相关文档 最新文档