当前位置:文档之家› 高考物理压轴题常用解题方法例析09-12

高考物理压轴题常用解题方法例析09-12

高考物理压轴题常用解题方法例析09-12
高考物理压轴题常用解题方法例析09-12

高考物理压轴题常用解题方法例析

江苏省新沂市第一中学(221400) 张统勋

高考压轴题每年题目翻新,亮点较多,是参加高考的学子们感到较棘手的题目。但通过对近几年江苏高考物理试卷习题的总结、分析,我们可明显看出,压轴题较多使用的解题方法是以下两种:微元法和数列递推求和的方法;且试题难度较大的一问均与这两种方法的一种有所涉及。因而值得对涉及这两种方法的相关考题进行考前回顾,并对相关题目加强训练。

(2007年的第18题也是应用微元法的习题)。

一、微元法在物理考题中的应用

微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。高中物理教材中从高一就开始有所渗透这方面的内容,如人教版物理必修一课本“匀变速直线运动的位移与时间的关系”一节,其中位移公式的推导就是利用了微元的思想。

用微元法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。因而近年高考物理试题特别青睐于对这方面方法的应用与考查,江苏高考近年连续在高考的压轴题或倒数第二题中涉及到微元法的应用解题,如2008年的最后一道压轴题、2007年高考的倒数第2题、2006年的最后一道压轴题。

对于微元法,我们在使用处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。

高考题回顾:

1.(2008·江苏高考15题)如图所示,间距为L 的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.场强为B 的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d 1,间距为d 2.两根质量均为m 、有效电阻均为R 的导体棒a 和b 放在导轨上,并与导轨垂直. (设重力加速度为g ) (1)若a 进入第2个磁场区域时,b 以与a 同样的速度进入第1个磁场区域,求b 穿过第1个磁

场区域过程中增加的动能△E k . (2)若a 进入第2个磁场区域时,b 恰好离开第1个磁场区域;此后a 离开第2个磁场区域时,b 又恰好进入第2个磁场区域.且a 、b 在任意一个磁场区域或无磁场区域的运动时间均相同.求b 穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q .

(3)对于第(2)问所述的运动情况,求a 穿出第k 个磁场区域时的速率v

解析:⑴a 和b 不受安培力作用,由机械能守恒知 k 1sin E =mgd θ? ①

⑵设导体棒刚进入无磁场区域时的速度为1v ,刚离开无磁场区域时的速度为2v ,由能量守恒知

在磁场区域中,

2212111sin 22

m +Q=m +mgd θv v ② 在无磁场区域中 22

21211sin 22

m =m +mgd θv v ③

解得 ()12sin Q=mg d +d θ ④

⑶在无磁场区域,根据匀变速直线运动规律有 21sin -=gt θv v ⑤

且平均速度

122

2+d =t

v v ⑥ 有磁场区域,棒a 受到合力 sin F=mg -BIl θ ⑦ 感应电动势 =Bl εv ⑧ 感应电流 2I=

R

ε

解得 22

sin 2B l F=mg -R

θv ⑩ 根据牛顿第二定律,在t 到t+t ?时间内 F

=t m

∑?∑

?v ○11 则有 22sin 2B l =g -t mR θ??

∑?∑?????

v v ○12 解得 22

121sin 2B l -=g -d mR

θv v ○13 联立⑤⑥○13解得 2221

12214sin 8mgRd B l d =-B l d mR

θv 由题意知2221

12214sin 8mgRd B l d ==-B l d mR

θv v 点评:在中学物理中,往往会遇到一些用常规方法难以解决的问题,如问题中所涉及到的物理量是非线性变化量,无法用初等数学进行计算的情况,这些问题对于中学生来讲,成为一

大难题。但是如果应用积分的思想,化整为零,化曲为直,采用“微元法”,可以很好的解决这类问题。“微元法”虽然是在物理竞赛中使用比较多,但在我们平常的训练中也不失为一种好方法。“微元法”丰富了我们处理问题的手段,拓展了我们的思维,这也许是高考题青睐的一个原因吧。对于高中特别是高三的学生,有必要熟练掌握。

2.(2006·江苏高考卷19题)顶角o

45=θ的导轨MON 固定在水平面内。导轨处在方向竖直的磁感应强度为B 的匀强磁场中,一根与ON 垂直的导体棒在水平外力作用下以恒定速

度0v 延导轨MON 向右滑动。导体棒的质量为M ,导轨与导体棒单位长度的电阻均为r 。导体棒与导轨接触点为a 和b 。导体棒在滑动过程中始终保持与导轨良好接触。和t=0时,导体棒位于顶角O 处,求:

(1)t 时刻流过导体棒的电流强度I 和电流方向 (2)导体棒作匀速直线运动时水平外力F 的表达式 (3)导休棒在0-t 时间内产生的焦耳热Q

(4)若在t 0时刻将外力F 撤去,导体最终在导轨上静止时的坐标x 。

解:(1)O 到t 时间内,导体棒的位移t v x 0=, t 时刻,导体棒的有效长度x x l ==0

45tan , 导体棒的感应电动势0Blv E =, 回路总电阻xr R )22(+=, 电流强度为r

Bv R E

I )22(0+=

=

, 电流方向a b → (2)r

t

v B BIl F )22(202+==

(3)解法一:

t 时刻导体棒的电功率r

t

v B R I P )22('3

022

+=

=

∴t P ∝ ∴r

t v B t P

t P Q 2

2302)22(22+===。

解法二:

t 时刻导体棒的电功率 '2

R I P = 由于I 恒定,t rt v R ∝=0'

因此2

'2

2R I

R I P == ∴r

t v B t P

t P Q 2

2302)22(22+===。

(4)撤去外力后,设任意时刻t 导体棒的坐标为x ,速度为v ,取很短时间△t 或很短距离

△x

解法一:

在在t ~t +△t 时间内,由动量定理得 v m t BIl ?=?

02

)22(mv S r

B =?+

扫过面积2

2))((2

200x x x x x x S -=-+=?()000t v x =

得: 得2

002

0)()22(2t v B

r mv x ++=

⑥ 设滑行距离为d 则 S ?=

d d t v t v 2

)

(0000++

即d 2

+2v 0t 0d -2S ?=0

解之d =-v 0t 0+2

00)(2t v S +? 得x=v 0t 0+d=200)(2t v S +?

解法二

在x ~x +△x ,由动能定理得 F △x=

v mv v v m mv ?=?--22)(2

1

21(忽略高阶小量) ① 得2

s m v =∑? ②

=?+s )

22(B 2

mv 0 ③

以下解法同解法一

以下解法同解法一 解法三(1)

由牛顿第二定律得 F=ma=m t

v ?? 得 F △t=m △v 以下解法同解法二 解法三(2)

由牛顿第二定律得 F=ma=m t v ??=m x

v v ?? 得F △x=mv △v

以下解法同解法二

模拟题练习:

1.从地面上以初速度v 0竖直向上抛出一质量为m 的球,若运动过程中受到的空气阻力与其速率成正比关系,球运动的速率随时间变化规律如图所示,t 1时刻到达最高点,再落回地面,落地时速率为v 1,且落地前球已经做匀速运动.求: (1)球从抛出到落地过程中克服空气阻力所做的功; (2)球抛出瞬间的加速度大小; (3)球上升的最大高度H .

解析:(1)由动能定理得

2

0212

121mv mv W f -=

克服空气阻力做功

21202

121mv mv W W f -=

-= (2)空气阻力kv f =

落地前匀速运动,则01=-kv mg 刚抛出时加速度大小为0a ,则

00ma kv mg =+

解得g v v a )1(1

0+

= (3)上升时加速度为a ,ma kv mg =+-)(

v m

k g a -

-= 取极短t ?时间,速度变化v ?,有:

t v m

k

t g t a v ?-

?-=?=? 又h t v ?=? 上升全程

∑∑∑?-

?-=-=?h m

k

t g v

v 0

0 则H m

k

gt v +

=10 g

v gt v H 1

10)(-=

二、数列在物理考题中的应用

递推法是解决物体与物体发生多次作用后的情况。 即当问题中涉及相互联系的物体较多并且有规律时,应根据题目特点应用数学思想将所研究的问题归类,然后求出通式。 具体方法是先分析某一次作用的情况,得出结论。 再根据多次作用的重复性和它们的共同点,把结论推广,然后结合数学知识求解。用递推法解题的关键是导出联系相邻两次作用的递推关系式。江苏2007年高考物理卷的最后一题的第3问的解法一就是利用了递推的解题思想来解题的。 高考题回顾:

1.(2007·江苏高考19题)如图所示,一轻绳吊着粗细均匀的棒,棒下端离地面高H ,上端套着一个细环。棒和环的质量均为m ,相互间最大静摩擦力等于滑动摩擦力kmg (k >1)。断开轻绳,棒和环自由下落。假设棒足够长,与地面发生碰撞时,触地时间极短,无动能损失。棒在整个运动过程中始终保持竖直,空气阻力不计。求:

⑴棒第一次与地面碰撞弹起上升过程中,环的加速度;

⑵从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程S ; ⑶从断开轻绳到棒和环都静止,摩擦力对环及棒做的总功W 。

解析:⑴设棒第一次上升过程中,环的加速度为a 环,由牛顿第二定律得: kmg -mg =ma 环

解得:a 环=(k -1)g ,方向竖直向上 ⑵设棒第一次落地的速度大小为v 1

由机械能守恒得:

211

222

mv mgH = 解得:1v = 设棒弹起后的加速度为a 棒,由牛顿第二定律得: A 棒=-(k +1)g

棒第一次弹起的最大高度为:2

112v H a =棒

解得:11H H k =+

棒运动的路程为:13

21

k S H H H k +=+=

+ ⑶解法一:

棒第一次弹起经过t 1时间,与环达到相同速度v /1 环的速度:v /1=-v 1+a 环t 1 棒的速度:v /1=v 1+a 棒t 1 环的位移:211111

2

h v t a t =-+环环 棒的位移:211111

2

h v t a t =+

棒棒 环第一次相对棒的位移为:1112H

x h h k

=-=-

环棒

棒环一起下落至地:2

2/

2112v v gh -=棒 解得:2v =

同理,环第二次相对棒的位移为 222H

x h h k

=-=-环2棒2 …… 2n n

H

x k =-

环相对棒的总位移为:x =x 1+x 2+……+x n 摩擦力对棒及环做的总功为: 21

kmgH

W kmgx k ==-

- 解法二:

设环相对棒滑动距离为l

根据能量守恒 ()mgH mg H l kmgl ++= 摩擦力对棒及环做的总功为:W kmgl =-

解得:21

kmgH

W k =-

- 点评:题中求环相对棒的总位移时应用了等比数列的求和公式。等差数列求和及等比数列求和,往往是一些复杂的物理问题常用的知识内容,这类题一般情景复杂,易使学生产生畏惧的心理,但通过分析能够找到一定的规律,从而利用数列的知识来加以解决,复习时应加以重视。

模拟题练习:

1.如图所示,在倾角30θ=?、足够长的斜面上分别固定着两个物体A .B ,相距L =0.2m ,它们的质量m A =m B =1kg

,与斜面间的动摩擦因数分别为A μ=

和B μ=.在t =0时刻同时撤去固定两物体的外力后,A 物体将沿斜面向下运动,并与B 物体发生连续碰撞(碰撞时

间极短,忽略不计),每次碰后两物体交换速度.g 取10m/s 2.求:

(1)A 与B 第一次碰后瞬时B 的速率?

(2)从A 开始运动到两物体第二次相碰经历多长时间? (3)至第n 次碰撞时A 、B 两物体通过的路程分别是多少?

17.(1) A 物体沿斜面下滑时有 A A A A A a m g m g m =-θμθcos sin ∴θμθcos sin g m g a A A A -=

5.230cos 6

3

30sin 00=-

=g g a A m/s 2 B 物体沿斜面下滑时有

B B B B B a m g m g m =-θμθcos sin ∴θμθcos sin g m g a B B B -=

030cos 3

3

30sin 00=-

=g g a B 综上分析可知,撤去固定A 、B 的外力后,物体B 恰好静止于斜面上,物体A 将沿斜面向下做匀加速直线运动. (1分)

由运动学公式得A 与B

第一次碰撞前的速度11m/s A v ==

由于AB 碰撞后交换速度,故AB 第一次碰后瞬时,B 的速率111m/s B

A v v '== (2)从AB

开始运动到第一次碰撞用时10.4s t = 两物体相碰后,A 物体的速度变为零,以后再做匀加速运动,而B 物体将以211m/s B B

v v '==的速度沿斜面向下做匀速直线运动. 设再经t 2时间相碰,则有2

12212

B v t at '=

解之可得t 2=0.8s

故从A 开始运动到两物体第二次相碰,共经历时间t =t 1+t 2=0.4+0.8=1.2s

(3)从第2次碰撞开始,每次A 物体运动到与B 物体碰撞时,速度增加量均为Δv=at 2=2.5×0.8m/s=2m/s ,由于碰后速度交换,因而碰后B 物体的速度为: 第一次碰后: v B1=1m/s 第二次碰后: v B2=2m/s 第三次碰后: v B3=3m/s ……

第n 次碰后: v Bn =n m/s

每段时间内,B 物体都做匀速直线运动,则第n 次碰前所运动的距离为 s B =[1+2+3+……+(n -1)]×t 2=

5

)

1(2-n n m (n =1,2,3,…,n -1) A 物体比B 物体多运动L 长度,则 s A = L +s B =[0.2+

5

)

1(2-n n ]m 总结:

1.所谓压轴大题,一般指高考的最后一题,都是综合性较高的题目,他们的选材,多是力学综合题或电磁学综合题,电磁学综合题又多是带电粒子在电磁场中的运动或电磁感应。 2.从平时的教学看,微元法,虽然老师讲了方法,讲了例题,也做了练习,但考试还要靠考生独立思考、独立解题,否则很难得到好分。从高考的命题和解题的角度看,命题在考查考生对基本物理过程和规律掌握情况的基础上,突出了对考生能力的考查,因而也为复习指明了方向。加强对物理思想、物理方法的研究与训练,是考前有效的复习途径。祝愿每位考生都能在考前复习到位,在高考中取得优异的成绩。

附: 1.(2004·江苏高考18题)一个质量为M 的雪橇静止在水平雪地上,一条质量为m 的爱斯基摩狗站在该雪橇上.狗向雪橇的正后方跳下,随后又追赶并向前跳上雪橇;其后狗又反复地跳下、追赶并跳上雪橇,狗与雪橇始终沿一条直线运动.若狗跳离雪橇时雪橇的速度为V ,则此时狗相对于地面的速度为V +u (其中u 为狗相对于雪橇的速度,V +u 为代数和.若以雪橇运动的方向为正方向,则V 为正值,u 为负值).设狗总以速度v 追赶和跳上雪橇,雪橇与雪地间的摩擦忽略不计.已知v 的大小为5m /s ,u 的大小为4m /s ,M =30kg ,m =10kg . (1)求狗第一次跳上雪橇后两者的共同速度的大小. (2)求雪橇最终速度的大小和狗最多能跳上雪橇的次数. (供使用但不一定用到的对数值:lg 2=O .301,lg 3=0.477)

(1)设雪橇运动的方向为正方向,狗第1次跳下雪橇后雪橇的速度为V 1,根据动量守恒定

律,有 0)(11=++u V m MV

狗第1次跳上雪橇时,雪橇与狗的共同速度1V '满足 11)(V m M mv MV '+=+ 可解得 2

1)

()(m M mv

m M Mmu V +++-=

' 将kg m kg M s m v s m u 10,30,/5,/4===-=代入,得 s m V /21='

(2)解法(一)

设雪橇运动的方向为正方向,狗第(n -1)次跳下雪橇后雪橇的速度为V n -1,则狗第

(n -1)次跳上雪橇后的速度1-'n V 满足 11)(--'+=+n n V m M mv MV

这样,狗n 次跳下雪橇后,雪橇的速度为V n 满足 1)()(-'+=++n n n V m M u V m MV 解得 11)(])(

1)[(--++-+--=n n n m

M M

m M mu m M M u v V

狗追不上雪橇的条件是 V n ≥v 可化为 v

m M Mu u

m M m M M n )()()(

1+-+≤

+- 最后可求得 )

l g ()

)()(l g (1M

m M u

m M v

m M Mu n +++-+≥

代入数据,得 41.3≥n 狗最多能跳上雪橇3次

雪橇最终的速度大小为 V 4=5.625m/s 解法(二):

设雪橇运动的方向为正方向。狗第i 次跳下雪橇后,雪橇的速度为V i ,狗的速度为V i +u ;

狗第i 次跳上雪橇后,雪橇和狗的共同速度为1V ',由动量守恒定律可得 第一次跳下雪橇:MV 1+m (V 1+u )=0 V 1=-

s m m

M mu

/1=+

第一次跳上雪橇:MV 1+m v =(M+m )1V ' 第二次跳下雪橇:(M+m )1V '=MV 2+m (V 2+u ) V 2=

m

M m u

V m M +-'+1)(

第三次跳下雪橇:(M+m )V 3+M+m (+u ) 3V '=

m

M m u

V m M +-+3)(

第四次跳下雪橇: (M+m )3V '=MV 4+m (V 4+u )

s m m

M mu

V m M V /625.5)(34=+-'+=

此时雪橇的速度已大于狗追赶的速度,狗将不可能追上雪橇。因此,狗最多能跳上雪橇3

次。雪橇最终的速度大小为5.625m/s. 2.(2007·江苏高考18题)如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B =1 T ,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d =0.5 m ,现有一边长l =0.2 m 、质量m =0.1 kg 、电阻R =0.1 Ω的正方形线框MNOP 以v 0=7 m/s 的初速从左侧磁场边缘水平进入磁场,求:

⑴线框MN 边刚进入磁场时受到安培力的大小F ;

⑵线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q ; ⑶线框能穿过的完整条形磁场区域的个数n 。 解析:⑴线框MN 边刚进入磁场时有: 0 2.8 N B l v F B l I B l R

==

= ⑵设线框竖直下落H 时,速度为v H 由能量守恒得:220H 1122

mgH mv Q mv +

=+ 自由落体规律:2

H 2v gH =

解得:2

01 2.45 J 2

Q mv =

= ⑶解法一:

只有在线框进入和穿出条形磁场区域时,才产生感应电动势,线框部分进入

磁场区域x 时有:22

Blv B l F BlI Bl v R R

=== 在t →Δt 时间内,由动量定理:-F Δt =m Δv

求和:2222

0B l B l v t x mv R R

?=?=∑∑ 解得:22

0B l x mv R

= 穿过条形磁场区域的个数为: 4.42x

n l

=

≈ 可穿过4个完整条形磁场区域 解法二:

线框穿过第1个条形磁场左边界过程中:

2/Bl t

F BlI Bl R

?==

根据动量定理:10F t mv mv -?=- 解得:23

10B l mv mv R -=- 同理线框穿过第1个条形磁场右边界过程中有:123

/1B l mv mv R -=- 所以线框穿过第1个条形磁场过程中有:123

/02B l mv mv R

-=- 设线框能穿过n 个条形磁场,则有: 23

020B l n mv R

-=- 解得:023

4.42mv R

n B l

=

≈ 可穿过4个完整条形磁场区域

2018高三期中物理压轴题答案

2016-2018北京海淀区高三期中物理易错题汇编 1.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连 接着质量M=6.0kg的物块A.装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接.传送带的皮带轮逆时针匀速转动,使传送带上表面以u=2.0m/s匀速运动.传送带的右边是一半径R=1.25m位于竖直平面内的光滑1/4圆弧轨道.质量m=2.0kg的物块B从1/4圆弧的最高处由静止释放.已知物块B与传送带之间的动摩擦因数μ=0.1,传送带两轴之间的距离l=4.5m.设物块A、B之间发生的是正对弹性碰撞,第一次碰撞前,物块A静止.取g=10m/s2.求: (1)物块B滑到1/4圆弧的最低点C时对轨道的压力. (2)物块B与物块A第一次碰撞后弹簧的最大弹性势能. (3)如果物块A、B每次碰撞后,物块A再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B经第一次与物块A后在传送带碰撞上运动的总时间. 2.我国高速铁路使用的和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.某列动车组 由8节车厢组成,其中车头第1节、车中第5节为动车,其余为拖车,假设每节动车和拖车的质量均为m=2×104kg,每节动车提供的最大功率P=600kW. (1)假设行驶过程中每节车厢所受阻力f大小均为车厢重力的0.01倍,若该动车组从静止以加速度a=0.5m/s2加速行驶. 1求此过程中,第5节和第6节车厢间作用力大小. 2以此加速度行驶时所能持续的时间. (2)若行驶过程中动车组所受阻力与速度成正比,两节动车带6节拖车的动车组所能达到的最大速度为v1.为提高动车组速度,现将动车组改为4节动车带4节拖车,则动车组所能达到的最大速度为v2,求v1与v2的比值. 3.暑假里,小明去游乐场游玩,坐了一次名叫“摇头飞椅”的游艺机,如图所示,该游艺机顶上有一个半径为 4.5m的“伞盖”,“伞盖”在转动过程中带动下面的悬绳转动,其示意图如图所示.“摇头飞椅”高O1O2= 5.8m,绳长5m.小明挑 选了一个悬挂在“伞盖”边缘的最外侧的椅子坐下,他与座椅的总质量为40kg.小明和椅子的转动可简化为如图所示的圆周

高考物理63个经典压轴题

2020高考物理压轴题 63道题经典题例(答案在文末) 1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求: (1)判断物体带电性质,正 电荷还是负电荷? (2)物体与挡板碰撞前后的 速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向图12

2(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A 以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰 撞后,C的速度是多大? (2)到A、B都与挡板碰撞为止, C的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上, 用手固定木板时,弹簧示数为F1,放 手后,木板沿斜面下滑,稳定后弹簧示 数为F2,测得斜面斜角为θ,则木板与斜面间动摩擦

历年高考物理压轴题精选(一)详细解答

历年高考物理压轴题精选 (一) 一、力学 2001年全国理综(江苏、安徽、福建卷) 31.(28分)太阳现正处于主序星演化阶段。它主要是由电子和H 11、He 4 2等原子核组成。 维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 4 2+释放的核能,这些核能最后转化为辐射能。根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 11核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。为了简化,假定目前太阳全部由电子和H 11核组成。 (1)为了研究太阳演化进程,需知道目前太阳的质量M 。已知地球半径R =6.4×106 m ,地球质量m =6.0×1024 kg ,日地中心的距离r =1.5×1011 m ,地球表面处的重力加速度g =10 m/s 2,1年约为3.2×107秒。试估算目前太阳的质量M 。 (2)已知质子质量m p =1.6726×10 -27 kg ,He 42质量m α=6.6458×10 -27 kg ,电子质量m e =0.9 ×10- 30 kg ,光速c =3×108 m/s 。求每发生一次题中所述的核聚变反应所释放的核能。 (3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。试估算太阳继续保持在主序星阶段还有多少年的寿命。 (估算结果只要求一位有效数字。) 参考解答: (1)估算太阳的质量M 设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知 ① 地球表面处的重力加速度 2 R m G g ② 由①、②式联立解得 ③ 以题给数值代入,得M =2×1030 kg ④

高三物理电磁场测试题

高三物理电磁场测试题 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分. 1.如图1所示,两根相互平行放置的长直导线a 和b 通有大小相等、方向相反的电流,a 受到磁场力的大小为F 1,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为F 2.则此时b 受到的磁场力大小为( ) A .F 2 B .F 1-F 2 C .F 1+F 2 D .2F 1-F 2 2.如图2所示,某空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知一离子在电场力和磁场力作用下, 从静止开始沿曲线acb 运动,到达b 点时速度为 零,c 为运动的最低点.则 ( ) A .离子必带负电 B .a 、b 两点位于同一高度 C .离子在c 点速度最大 D .离子到达b 点后将沿原曲线返回 3.如图3所示,带负电的橡胶环绕轴OO ′以角速 a I I 图 图3 图2

度ω匀速旋转,在环左侧轴线上的小磁针最后平衡的位置是() A.N极竖直向下 B.N极竖直向上 C.N极沿轴线向左 D.N极沿轴线向右 4.每时每刻都有大量带电的宇宙射线向地球 射来,幸好地球磁场可以有效地改变这些 宇宙射线中大多数射线粒子的运动方向, 使它们不能到达地面,这对地球上的生命 有十分重要的意义。假设有一个带正电的 宇宙射线粒子垂直于地面向赤道射来(如图4,地球由西向东转,虚线表示地球自转轴,上方为地理北极),在地球磁场的作用下,它将向什么方向偏转?()A.向东B.向南C.向西D.向北 5.如图5所示,甲是一个带正电的小物块,乙是一个不带电的绝缘物块,甲、乙叠放在一起静置于粗糙的水平 地板上,地板上方空间有水平方向的匀强磁 场。现用水平恒力拉乙物块,使甲、乙无相 对滑动地一起水平向左加速运动, 在加速运动阶段()图5 图4

高考物理压轴大题

压轴大题的解题策略与备考策略 2008年高考,江苏省将采用新的高考模式,物理等学科作为学科水平测试科目,不再按百分制记分而代之以等级记成绩,把满分为120分的高考原始成绩转化为A、B、C、D等4个等级,A、B两级分别占考生总人数的前20%和20%~50%。在A、B两级中又细 化为A和B,如A,就是占考生总人数的前5%的考生。没有B级,就不能报本科,没有A级,就很难考上重点大学,而要考上名牌大学,如清华、北大、南大等,可能要A了。所以表面看起来,虽然物理等学科不按百分制记分了,似乎它对高考的作用减弱了,其实那是近视的看法,物理等学科虽然没有决定权但有否决权。 不论百分制记分还是等级记成绩,都要把题目做对才能有好成绩。要把题目做对、做好,就要研究高考命题趋势和解题策略,本文研究的是压轴大题的高考命题的趋势及压轴大题的解题策略与备考策略。因为压轴大题占分多,难度大,对于进入B级以及区分A级B级至关重要,而什么是压轴题?查现代汉语词典,有[压轴戏]词条,解释是:压轴子的戏曲节目,比喻令人注目的、最后出现的事件。有[压轴子]词条,解释是:①把某一出戏排做一次戏曲演出中的倒数第二个节目(最后的一出戏叫大轴子)。②一次演出的戏曲节目中排在倒数第二的一出戏。本文把一套高考试卷的最后一题和倒数第二题作为压轴大题研究。 根据笔者多年对高考的实践与研究认为,因为要在很短的时间内考查考生高中物理所学的很多知识和物理学科能力,压轴大题命题的角度常常从物理学科的综合着手。在知识方面,综合题常常是:或者力学综合题,或者电磁学综合题。 力学综合题的解法常用的有三个,一个是用牛顿运动定律和运动学公式解,另一个是用动能定理和机械能守恒解,第三个是用动量定理和动量守恒解,由于新课程高考把动量的内容作为选修和选考内容,所以用动量定理和动量守恒解的题目今年将会回避而不会出现在压轴大题中。在前两种解法中,前者只适用于匀变速直线运动,后者不仅适用于匀变速直线运动,也适用于非匀变速直线运动。 电磁学综合题高考的热点有两个,一个是带电粒子在电场或磁场或电磁场中的运动,一个是电磁感应。带电粒子在匀强电场中做类平抛运动,在磁

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

全国高中物理磁场大题(超全)

高中物理磁场大题 一.解答题(共30小题) 1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t0时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场.上述m、q、l、t0、B为已知量.(不考虑粒子间相互影响及返回板间的情况) (1)求电压U0的大小. (2)求t0时进入两板间的带电粒子在磁场中做圆周运动的半径. (3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面内,0<x<2L的区域内有一方向竖直向上的匀强电场,2L<x<3L的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L 的区域内有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x轴正方向的初速度v0进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求: (1)正、负粒子的质量之比m1:m2; (2)两粒子相遇的位置P点的坐标;

(3)两粒子先后进入电场的时间差. 3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计. (1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ; (2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0; (3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值. 4.如图所示,直角坐标系xoy位于竖直平面内,在?m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10?19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:

高考物理压轴题总汇编

高考物理压轴题汇编 如图所示,在盛水的圆柱型容器竖直地浮着一块圆柱型的木块,木块的体积为V ,高为h ,其密度为水密度ρ的二分之一,横截面积为容器横截面积的二分之一,在水面静止时,水高为2h ,现用力缓慢地将木块压到容器底部,若水不会从容器中溢出,求压力所做的功。 解:由题意知木块的密度为ρ/2,所以木块未加压力时,将有一半浸在水中,即入水深度为h/2, 木块向下压,水面就升高,由于木块横截面积是容器的1/2,所以当木块上底面与水面平齐时,水面上升h/4,木块下降h/4,即:木块下降 h/4,同时把它新占据的下部V/4体积的水重心升高3h/4,由功能关系可得这一阶段压力所做的功vgh h g v h g v w ρρρ16 1 42441=-= 压力继续把木块压到容器底部,在这一阶段,木块重心下降4 5h ,同时底部被木块所占空 间的水重心升高4 5h ,由功能关系可得这一阶段压力所做的功 vgh h g v h vg w ρρρ16 10452452=-= 整个过程压力做的总功为:vgh vgh vgh w w w ρρρ16 11 161016121=+= += (16分)为了证实玻尔关于原子存在分立能态的假设,历史上曾经有过著名的夫兰克—赫兹实验,其实验装置的原理示意图如图所示.由电子枪A 射出的电子,射进一个容器B 中,其中有氦气.电子在O 点与氦原子发生碰撞后,进入速度选择器C ,然后进入检测装置D .速度选择器C 由两个同心的圆弧形电极P 1和P 2组成,当两极间加以电压U 时,只允许具有确定能量的电子通过,并进入检测装置D .由检测装置测出电子产生的电流I ,改变电压U ,同时测出I 的数值,即可确定碰撞后进入速度选择器的电子的能量分布. 我们合理简化问题,设电子与原子碰撞前原子是静止的,原子质 量比电子质量大很多,碰撞后,原子虽然稍微被碰动,但忽略这一能量损失,设原子未动(即忽略电子与原子碰撞过程中,原子得到的机械能).实验表明,在一定条件下,有些电子与原子碰撞后没有动能损失,电子只改变运动方向.有些电子与原子碰撞时要损失动能,所损失的动能被原子吸收,使原子自身体系能量增大,

高考物理电磁综合压轴大题汇编

2016年高考押题 1.(18分)在竖直平面内,以虚线为界分布着如图所示足够大的匀强电场和匀强磁场,其中匀强电场方向竖直向下,大小为E ;匀强磁场垂直纸面向里,磁感应强度大小为B 。虚线与水平线之间的夹角为θ=45°,一带负电粒子从O 点以速度v 0水平射入匀强磁场,已知带负电粒子电荷量为q ,质量为m ,(粒子重力忽略不计)。 (1)带电粒子从O 点开始到第1次通过虚线时所用的时间; (2)带电粒子第3次通过虚线时,粒子距O 点的距离; (3)粒子从O 点开始到第4次通过虚线时,所用的时间。 1.(18分)解:如图所示: (1)根据题意可得粒子运动轨迹如图所示。 2πm T Bq = ……………………………………(2分) 因为θ=45°,根据几何关系,带电粒子从O 运动到A 为3/4圆周……(1分) 则带电粒子在磁场中运动时间为: 3π2m t Bq = ………………………………………………………………………………………(1分) (2)由qvB=m 2 v r ………………………………………………………(2分) 得带电粒子在磁场中运动半径为:0 mv r Bq = ,…………………………(1分) 带电粒子从O 运动到A 为3/4圆周,解得0 22OA mv x r Bq ==…………………(1分) 带电粒子从第2次通过虚线到第3次通过虚线运动轨迹为1 4圆周,OA AC x x =所以粒子距O 点的距离0 2222OC mv x r Bq ==………………………………(1 分) (3)粒子从A 点进入电场,受到电场力F=qE ,则在电场中从A 到B 匀减速,再从B 到A 匀加速进入磁场。在电场中加速度大小为:

高三物理磁场大题

1.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成600 角。现将带电粒子的速度变为v/3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 A . 12 t ? B .2t ? C .13 t ? D .3t ? 2.半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0。圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 。杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示。则 A .θ=0时,杆产生的电动势为2Bav B .3π θ=3Bav C .θ=0时,杆受的安培力大小为20 3(2)R B av π+ D .3π θ=时,杆受的安培力大小为203(53)R B av π+

3.如图,质量分别为m A 和m B 的两小球带有同种电荷,电荷最分别为q A 和q B ,用绝缘细线悬挂在天花板上。平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2)。两小球突然失去各自所带电荷后开始摆动,最大速度分别v A 和v B ,最大动能分别为E kA 和E kB 。则 ( ) (A )m A 一定小于m B (B )q A 一定大于q B (C )v A 一定大于v B (D )E kA 一定大于E kB 4.如图,理想变压器原、副线圈匝数比为20∶1,两个标有“12V ,6W ”的小灯泡并联在副线圈的两端。当两灯泡都正常工作时,原线圈中电压表和电流表(可视为理想的)的示数分别是 A .120V ,0.10A B .240V ,0.025A C .120V ,0.05A D .240V ,0.05A 5.如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率t B ??的大小应为 A.πω0 4B B.πω0 2B C.πω0B D.π ω20B

高考物理压轴题电磁场汇编

Q 1、在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于 φ纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一 定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁 R 场(不计重力影响)。 ⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。A O P D ⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。 设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得: Q 2 v φ 1 mqBv 1 d/2 / R R qBd v 解得:1 2m / AO O ⑵设O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。 P D / 由几何关系得:OQO // OORRd 由余弦定理得: 2 /22// (OO)RR2RRcos 解得: /d(2Rd) 2R(1cos)d R 设入射粒子的速度为v,由 2 v mqvB / R 解出:v qBd(2Rd) 2mR(1cos)d y 2、(17分)如图所示,在xOy平面的第一象限有一匀强电场,电场的方 向平行于y轴向下;在x轴和第四象限的射线OC之间有一匀强磁场, E 磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有 电荷量+q的质点由电场左侧平行于x轴射入电场。质点到达x轴上A 点时,速度方向与x轴的夹角为φ,A点与原点O的距离为d。接着,O φ A φ x

质点进入磁场,并垂直于OC飞离磁场。不计重力影响。若OC与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场 的场强大小。 B C 解:质点在磁场中偏转90o,半径 mv rdsin,得 qB v q Bd sin m ; v

高考物理压轴题解析及题型特点-教育文档

2019年高考物理压轴题解析及题型特点 2019年高考物理压轴题特点与解答思路 一份试卷的压轴题,难度大,分值也大,是用来鉴别考生掌握知识与综合应用能力高下的分档题。所以,拿下压轴题,就能胜券在握。 压轴题显著特点 综合的知识多一般是三个以上知识点融汇于一题。譬如:电磁感应综合的压轴题,可以渗透磁场安培力、闭合电路欧姆定律、电功、电功率、功能原理、能量转化与守恒定律、牛顿定律、运动学公式,力学平衡等多个知识点。 物理技能要求高解题时布列的物理方程多,需要等量代换,有时用到待定系数法;研究的物理量是时间、位移或其他相 关物理量的函数时,则通过解析式进行分析讨论;当研究的 物理量出现极值、临界值,可能涉及三角函数,也有用到判别式、不等式性质等。 难易设计有梯度虽说压轴题有难度,但并不是一竿子难到底,让你望题生畏,而是先易后难。通常情况下的第(1)、(2)问,估计绝大多数考生还是有能力和信心完成的,所以,绝对不能全部放弃。 压轴题解答思路 压轴题综合这么多知识点,又能清晰地呈现物理情境。其中,物理问题的发生、变化、发展的全过程,正是我们研究问题

的思路要沿袭的。 分析物理过程根据题设条件,设问所求,把问题的全过程分解为几个与答题有直接关系的子过程,使复杂问题化为简单。有时压轴题的设问前后呼应,即前问对后问有作用,这样子过程中某个结论成为衔接两个设问的纽带;也有的压轴题设 问彼此独立,即前问不影响后问,那就细致地把该子过程分析解答完整。分析过程,看清设问间关系才能使解答胸有成竹。 分析原因与结果针对每一道压轴题,无论从整体还是局部考虑,物理过程都包含有原因与结果。所以,分析原因与结果成为解压轴题的必经之路。譬如:引起电磁感应现象的原因,是导体棒切割磁感线、还是穿过回路的磁通量发生变化,或者两者同作用。导体棒切割磁感线,是受外作用(恒力、变力),还是具有初速度。正是原因不同、研究问题所选用的 物理规律就不同,进而,我们结合题意分析这些原因导致怎样的结果。针对题目需要我们回答的问题,不外乎从受力情况、运动状态、能量转化等方面着手研究,最终得出题目要求的结果。 确定思路方法解压轴题不必刻意追求方法的创新,因为试题知识容量大,综合性强,很难做到解题方法大包大揽的巧妙与简捷。还是踏踏实实地从读题、审题开始。提取复杂情境中有价值信息,明确已知条件、挖掘隐含条件、预测临界条

高考物理 法拉第电磁感应定律 推断题综合题附详细答案

一、法拉第电磁感应定律 1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别 垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。重力加速度为g 。求: (1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。 【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 7 2L t g = 【解析】 【详解】 (1)线框开始时沿斜面做匀加速运动,根据机械能守恒有 2 1sin 302 mgL mv ?= , 则线框进入磁场时的速度 2sin30v g L gL =?= 线框ab 边进入磁场时产生的电动势E =BLv 线框中电流 E I R = ab 边受到的安培力 22B L v F BIL R == 线框匀速进入磁场,则有 22sin 30B L v mg R ?= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv

线框所受的安培力变为 22422B L v F BI L mg R ==''= 方向沿斜面向上 (2)设线框再次做匀速运动时速度为v ',则 224sin 30B L v mg R ?= ' 解得 4v v = '=根据能量守恒定律有 2211 sin 30222 mg L mv mv Q ?'?+=+ 解得4732 mgL Q = 线框ab 边在上侧磁扬中运动的过程所用的时间1L t v = 设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知: 22sin 302mg t BLIt mv mv ?-='- 其中 ()022BL L x I t R -= 联立以上两式解得 ()02432L x v t v g -= - 线框ab 在下侧磁场匀速运动的过程中,有 00 34x x t v v ='= 所以线框穿过上侧磁场所用的总时间为 123t t t t =++= 2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数 0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整 个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得

高考物理压轴题电磁场汇编

⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O / 是粒子在磁场中圆弧轨道的圆心,连接O / Q ,设O / Q =R /。 由几何关系得: / OQO ?∠= // OO R R d =+- 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] / (2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 2、(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 解:质点在磁场中偏转90o,半径qB mv d r = =φsin ,得m qBd v φsin =; 由平抛规律,质点进入电场时v 0=v cos φ,在电场中经历时间 t=d /v 0,在电场中竖直位移2 21tan 2t m qE d h ??== φ,由以上各式可得 O O

高三物理压轴题及其答案

高三物理压轴题及其答案(10道) 1(20分).如图12所示,PR 是一块长为L =4m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1kg ,带电量为q =0.5C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其 正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某 同学设计如图所示实验,在小木板上固定一个轻弹簧, 弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行, 现将木板连同弹簧、小球放在斜面上,用手固定木板 时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后 弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动 摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,图12

高考物理压轴大题

35.(18分)如图所示,一个质量为=2.0×10-11kg ,电荷量= +1.0×10-5C 的带电微粒 (重力忽略不计),从静止开始经U 1=100V 电压加速后,水平进入两平行金属板间的偏转电场,偏转电场的电压U 2=100V 。金属板长L =20cm ,两板间距d =cm 。 求: (1)微粒进入偏转电场时的速度 的大小 (2)微粒射出偏转电场时的偏转角θ和速度v (3)若带电微粒离开偏转电场后进入磁感应强度 为B = T 的均强磁场,为使微粒不从磁场 右边界射出,该匀强磁场的宽度D 至少为多大 36.(18分)如图所示,质量为m A =2kg 的木板A 静止放在光滑水平面上,一质量为 m B =1kg 的小物块B 从固定在地面上的光滑弧形轨道距木板A 上表面某一高H 处由静止开始滑下,以某一初速度v 0滑上A 的左端,当A 向右运动的位移为L =0.5m 时,B 的速度为v B =4m/s ,此时A 的右端与固定竖直挡板相距x ,已知木板A 足够长(保证B 始终不从A 上滑出),A 与挡板碰撞无机械能损失,A 、B 之间动摩擦因数为μ=0.2,g 取10m/s 2 (1)求B 滑上A 的左端时的初速度值v 0及静止滑下时距木板A 上表面的高度H (2)当x 满足什么条件时,A 与竖直挡板只能发生一次碰撞 35.(18分)如图所示,一质量为m 、电量为+q 、重力不计的带电粒子,从A 板的S 点由 静止开始释放,经A 、B 加速电场加速后,穿过中间偏转电场,再进入右侧匀强磁场区域.已知AB 间的电压为U ,MN 极板间的电压为2U ,MN 两板间的距离和板长均为L ,磁场垂直纸面向里、磁感应强度为B 、有理想边界.求: (1)带电粒子离开B 板时速度v 0的大小; (2)带电粒子离开偏转电场时速度v 的大小与方向; (3)要使带电粒子最终垂直磁场右边界射出磁场,磁场的宽度d 多大? 挡板 v 0 B A (第36题图) x L H (第35题图) U 2 B U 1 v 0 D θ v B B A - - - N + + + M S ●

高三物理磁场大题知识讲解

高三物理磁场大题

1.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成600角。现将带电粒子的速度变为v/3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 A .1 2t ? B .2t ? C .1 3 t ? D .3t ? 2.半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0。圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 。杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示。则 A .θ=0时,杆产生的电动势为2Bav B .3 π θ= 3Bav C .θ=0时,杆受的安培力大小为23(2)R B av π+

D. 3 π θ=时,杆受的安培力大小为 2 3 (53)R B av π+ 3.如图,质量分别为m A 和m B 的两小球带有同种电荷,电荷最分别为q A 和 q B ,用绝缘细线悬挂在天花板上。平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2)。两小球突然失去各自所带电荷后开始摆动,最大速度分别v A和v B ,最大动能分别为E kA 和E kB 。则() (A)m A一定小于m B (B)q A一定大于q B (C)v A一定大于v B (D)E kA一定大于E kB 4.如图,理想变压器原、副线圈匝数比为20∶1,两个标有“12V,6W”的小灯泡并联在副线圈的两端。当两灯泡都正常工作时,原线圈中电压表和电流表(可视为理想的)的示数分别是 A.120V,0.10A B.240V,0.025A C.120V,0.05A D.240V,0.05A 5.如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度

2016年——2020年高考物理压轴题汇编(含解题过程)

2016年——2020年高考物理压轴题汇编 一、力学综合:考察运动规律、牛顿定律、动能定理,功能关系、动量定理、动量守恒 定律、物体受力分析、运动过程分析、数理综合应用能力等 1、【2017·新课标Ⅲ卷】(20分)如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1。某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s 。A 、B 相遇时,A 与木板恰好相对静止。设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2。求 (1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离。 【答案】(1)1 m/s (2)1.9 m 【解析】(1)滑块A 和B 在木板上滑动时,木板也在地面上滑动。设A 、B 和木板所受的摩擦力大小分别为f 1、f 2和f 3,A 和B 相对于地面的加速度大小分别是a A 和a B ,木板相对于地面的加速度大小为a 1。在物块B 与木板达到共同速度前有 ① ② ③ 由牛顿第二定律得④ ⑤ ⑥ 设在t 1时刻,B 与木板达到共同速度,设大小为v 1。由运动学公式有 ⑦ ⑧ 联立①②③④⑤⑥⑦⑧式,代入已知数据得⑨ (2)在t 1时间间隔内,B 相对于地面移动的距离为⑩ 设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2,对于B 与木板组成的体系,由牛顿第二定律有 ? 由①②④⑤式知,a A =a B ;再由⑦⑧可知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反。由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2,设A 的速度大小从v 1变到v 2所用时间为t 2 ,则由运动学公式,对木板有11A f m g μ=21B f m g μ=32()A B f m m m g μ=++1A A f m a =2B B f m a =2131f f f ma --=101B v v a t =-111v a t =1 1 m/s v =2 01112 B B s v t a t =- 132()B f f m m a +=+2122 v v a t =-

高考物理压轴题(整理1学生)

压 轴 题 训 练 1 个人感觉最近几年最后的计算题的特点:1、江苏、北京在力求创新,全国卷稳定,过程复杂,对思维的长度,细心程度要求较高。2、高考最后压轴题的命题来源(1)、旧题翻新(2)、力求建模(3)思维长度上要求高,力求分层次设计问题。 1.【2016·海南卷】水平地面上有质量分别为m 和4m 的物A 和B ,两者与地面的动摩擦因数均为μ。细绳的一端固定,另一端跨过轻质动滑轮与A 相连,动滑轮与B 相连, 如图所示。初始时,绳出于水平拉直状态。若物块A 在水平向右的 恒力F 作用下向右移动了距离s ,重力加速度大小为g 。求: (1)物块B 克服摩擦力所做的功;(2)物块A 、B 的加速度大小。 【答案】(1)2μmgs (2) 32F mg m μ- 34F m g m μ- 2.(15分)【2016·四川卷】中国科学院2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器。加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用。如图所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移 管)组成,相邻漂移管分别接在高频脉冲电源的两极。质子从K 点沿 轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运 动,在漂移管间被电场加速,加速电压视为不变。设质子进入漂移管B 时速度为8×106 m/s ,进入漂移管E 时速度为1×107 m/s ,电源频率为 1×107 Hz ,漂移管间缝隙很小,质子在每个管内运动时间视为电源周 期的1/2。质子的荷质比取1×108 C /kg 。求: (1)漂移管B 的长度;(2)相邻漂移管间的加速电压。 【答案】(1)0.4 m (2)4610V ? 3.【2011·上海卷】如图,质量2m kg =的物体静止于水平地面的A 处,A 、B 间距L =20m 。用大小为30N ,沿水平方向的外力拉此物体,经 02t s =拉至B 处。(已 知cos370.8?=,sin 370.6?=。取210/g m s =)

高考物理压轴题电磁场大全

1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方 向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电 量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点 (AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O / Q ,设O /Q =R /。 由几何关系得: /OQO ?∠= 由余弦定理得:2 /22//()2cos OO R R RR ?=+ - 解得:[] /(2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 2、(17分) 如图所示,在xOy 平面的第一象限有一匀强电场, 电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 解:质点在磁场中偏转 90o ,半径qB mv d r = =φsin ,得m qBd v φsin =; v

相关主题
文本预览
相关文档 最新文档