当前位置:文档之家› 倒立摆实验报告

倒立摆实验报告

倒立摆实验报告
倒立摆实验报告

目录

一、倒立摆系统介绍 (2)

1.1倒立摆系统简介 (2)

1.2 倒立摆组成及其原理 (2)

1.3 倒立摆特性 (3)

二、一级倒立摆 (3)

2.1一级倒立摆建模 (3)

2.2 一级倒立摆控制方法 (11)

2.2.1 单输入—单输出控制方法 (11)

超前滞后控制方法

2.2.2 单输入—多输出控制方法 (22)

双PID控制方法

2.2.3 多输入—多输出控制方法 (30)

极点配置法

二次线性最优控制法

三、二级倒立摆 (36)

3.1二级倒立摆建模 (36)

3.2 二级倒立摆控制方法 (46)

3.2.1 二次线性最优控制法 (46)

3.2.2 基于融合技术的模糊控制法 (48)

四、总结 (60)

五、参考文献 (63)

一、倒立摆系统介绍

1.1倒立摆系统简介

倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。

1.2倒立摆组成及其原理

倒立摆的组成包括计算机、运动控制卡、伺服系统、倒立摆本体和光电码盘、反馈测量元件等几大部分,组成一个闭环系统。对于直线型倒立摆,可以根据伺服电机自带的码盘反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到;各个摆杆的角度由光电码盘测得并直接反馈到控制卡,速度信号可以通过差分方法得到。计算机从运动控制卡中实时读取数据,确定控制策略(电机的输出力矩),并发送给运动控制卡。运动控制卡经过DSP 内部的控制算法实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。

倒立摆控制原理的结构图如下:

1.3倒立摆的特性

倒立摆都具有以下的特性:

1)非线性

倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。也可以利用非线性控制理论对其进行控制。倒立摆的非线性控制正成为一个研究的热点。

2) 不确定性

主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

3) 耦合性

倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

4) 开环不稳定性

倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

5) 约束限制

由于机构的限制,如运动模块行程限制,电机力矩限制等。为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。

二、一级倒立摆

2.1一级倒立摆建模

对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。下面我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。

2.1.1牛顿力学方法建立模型

在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和

匀质杆组成的系统,如图所示。

力的水平和垂直方向的分量。

注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。

分析小车水平方向所受的合力,可以得到以下方程:

N x b F x

M --= (2-1)

由摆杆水平方向的受力进行分析可以得到下面等式:

)sin (2

2θl x dt

d m

N += (2-2)

即: θθθθsin cos 2 ml ml x m N -+= (2-3)

把这个代入上式中,就得到了第一个运动方程:

F ml ml x b x m M =-+++θθθθsin cos )(2 (2-4)

为了推出系统的第二个运动方程,我们对摆杆竖直方向上的合力进行分析,得到

下面的方程

)cos (2

2θl dt

d m

mg P =- (2-5)

θθθθcos sin 2 ml ml mg P --=- (2-6)

力矩平衡方程如下:

θθθ I Nl Pl =--cos sin (2-7)

注意:此方程中力矩的方向,由于φπθ+=, θφc o s c o s -= ,

θφsin sin -= ,故等式前面有负号。

合并两个方程,约去P 和N ,得到第二个运动方程:

θθθcos sin )(2

x

ml mgl ml I -=++ (2-8)

设φπθ+=(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即1<<φ,则可以进行近似处理:1cos -=θ,φθ-=sin ,

0)(2

=dt

d θ。用u 来代表被控对象的输入力F ,线性化后得到两个运动方程如

下:

对上式进行拉普拉斯变换,得到:

注意:推导传递函数时假设初始条件为0。

由于输入为角度φ,求解方程组的第一个方程,可以得到:

)(][

)(2

2

s s

g ml

ml I s X φ-

+=

如果令x v

=,则有: mgl

s ml I ml

s V s -+=

2

2)()

()

把上式代入方程组的第二个方程,得到:

)()()()()(2

2

2

2s U s s ml s s s g ml

ml I b s s s g ml ml I m M =-??

??

??+

++??????-++φφφ 整理后得到传递函数:

s

q

bmgl s q

mgl

m M s q

ml I b s s

q

ml

s U s -

+-

++

=2

3

2

4

2

)()

()

()

其中[]2

2

)())((ml ml I M m q -++=

设系统状态空间方程为:

方程组对x

,φ 解代数方程,整理后得到状态空间方程为: u Mml

m M I ml Mml m M I ml I x x Mml

m M I m M mgl Mml

m M I mlb Mml

m M I gl

m Mml

m M I b ml I x

x ????????

???????

???++++++??

?

??

????????????????

??

??????

?++++-+++++-=??????????????2

2

2

2

22

2

22

2

)(0)(0

0)()()(010

000)()()(0001

φφφφ

u x x x y ??????+??????

????????????

??=??????=0001

0001φφφ 由方程组的第一个方程为:

x

ml mgl ml I =-+φφ)(2

对于质量均匀分布的摆杆有:

2

31ml I =

于是可以得到:

x

ml mgl ml ml =-+φφ)31

(2

2

化简得到:

x

l

l

g 4343+

=φφ

设},,,{φφ x

x X =,x u ='则有: u

l x

x l

g x

x

?????

??

?????????+???????????????????????????

?=??????????????430100430

010

0000000010φφφφ u x x x y ??????+??????

????????????

??=??????=0001

0001

φφφ

2.1.2系统物理参数

2.1.3实际系统模型

把上述参数带入,可以得到系统的实际模型。 摆杆角度和小车位移传递函数:

26705

.00102125.002725.0)

()

(2

2

-=

s s

s X s φ

摆杆角度和小车加速度之间的传递函数为;

26705

.00102125.002725

.0)

()

(2

-=

s s V s φ

摆杆角度和小车所受外界作用力的传递函数:

s

s s s

s U s 30942.20883167.035655.2)

()

(2

3

2

-+=

φ

以小车加速度作为输入的系统状态方程:

u x x x

x

?????

?

??????+??????????????????????????=??????????????301004

.290

100000000010φφφφ u x x x y ??????+??????

????????????

??=??????=0001

0001

φφφ

2.1.4系统可控性分析

对于连续时间系统:

Bu AX X

+= Du

CX y +=

系统状态完全可控的条件为:当且仅当向量组B , AB ,..., A n ?1B 是线性无关的,或

n n ?维矩阵[

]B

A

AB B n 1

- 的秩为n 。

系统的输出可控性的条件为:当且仅当矩阵[]D B CA B CA CAB CB n 12-的秩等于输出向量y 的维数

应用以上原理对系统可控性分析,

?????

????

???=04

.290

100000000010

A ?????

???????=3010B

??

??

??=01

0001C ?

?

?

???=00D

代入上式,并在MATLAB 中计算: clear;

A=[ 0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0]; B=[ 0 1 0 3]';

C=[ 1 0 0 0;0 1 0 0]; D=[ 0 0 ]';

cona=[B A*B A^2*B A^3*B];

cona2=[C*B C*A*B C*A^2*B C*A^3*B D]; rank(cona) rank(cona2)

可以得到:

ans =

4

ans =

2

可以看出,系统的状态完全可控性矩阵的秩等于系统的状态变量维数,系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数,所以系统可控,因此可以对系统进行控制器的设计,使系统稳定。

2.1.5系统阶跃响应分析

上面已经得到系统的状态方程,先对其进行阶跃响应分析,在MATLAB 中键入以下命令:

clear;

A=[ 0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0];

B=[ 0 1 0 3]';

C=[ 1 0 0 0;0 1 0 0];

D=[ 0 0 ]';

step(A, B ,C ,D)

得到如下计算结果:

可以看出,在单位阶跃响应作用下,小车位置和摆杆角度都是发散的。

2.2一级倒立摆控制方法

2.2.1单输入—单输出控制方法

频率响应超前-滞后控制方法

系统对正弦输入信号的响应,称为频率响应。在频率响应方法中,我们在一 定范围内改变输入信号的频率,研究其产生的响应。

频率响应可以采用以下三种比较方便的方法进行分析,一种为伯德图或对数 坐标图,伯德图采用两幅分离的图来表示,一幅表示幅值和频率的关系,一幅表 示相角和频率的关系;一种是极坐标图,极坐标图表示的是当ω从0 变化到无穷大时,向量)(/)(ωωj G j G 的轨迹,极坐标图也常称为奈奎斯特图,奈奎斯特稳定判据使我们有可能根据系统的开环频率响应特性信息,研究线性闭环系统的稳定性和相对稳定性。

2.2.1.1频率响应分析

前面我们已经得到了直线一级倒立摆的物理模型,实际系统的开环传递函数 为:

26705

.00102125.002725

.0)

()

(2

-=

s s V s φ

其中输入为小车的加速度)(s V ,输出为摆杆的角度)(s φ。 在MATLAB 下绘制系统的Bode 图和奈奎斯特图。 绘制Bode 图的命令为: Bode(sys)

绘制奈魁斯特图的命令为: Nyquist(sys)

在MATLAB 中键入以下命令: clear;

num=[0.02725];

den=[0.0102125 0 -0.26705]; z=roots(num); p=roots(den); subplot(2,1,1) bode(num,den) subplot(2,1,2) nyquist(num,den)

得到如下图所示的结果: z =

Empty matrix: 0-by-1 p = 5.1136 -5.1136

可以得到,系统没有零点,但存在两个极点,其中一个极点位于右半s 平面, 根据奈奎斯特稳定判据,闭环系统稳定的充分必要条件是:当ω从? ∞到+ ∞变化时,开环传递函数)(ωj G 沿逆时针方向包围-1点p 圈,其中p 为开环传递函数在右半S 平面内的极点数。对于直线一级倒立摆,由图 3-21 我们可以看出,开环传递函数在S 右半平面有一个极点,因此)(ωj G 需要沿逆时针方向包围-1 点一圈。可以看出,系统的奈奎斯特图并没有逆时针绕-1 点一圈,因此系统不稳定,需要设计控制器来镇定系统。

2.2.1.2频率响应设计

直线一级倒立摆的频率响应设计可以表示为如下问题: 考虑一个单位负反馈系统,其开环传递函数为:

26705

.00102125.002725

.0)

()

(2

-=

s s V s φ

设计控制器)(s G c ,使得系统的静态位置误差常数为20,相位裕量为50o , 增益裕量等于或大于10 分贝。 根据要求,控制器设计如下:

1) 选择控制器,上面我们已经得到了系统的Bode 图,可以看出,给系统 增加一个超前校正就可以满足设计要求,设超前校正装置为:

T

s T s K Ts Ts K s G c

c c ααα

111

1

)(+

+=++=

已校正系统具有开环传递函数)()(s G s G c 设

26705

.00102125.002725.0)()(2

1-?=

=s K s KG s G

式中αc K K =

2) 根据稳态误差要求计算增益K ,

2026705

.00102125.002725.011

lim )()(lim 2

=-?+

+

==→→s T

s T s K s G s G K

c

s c s p

α

可以得到:

K K c ==196α

于是有:

26705.00102125.019602725.0)()(2

1-?=

=s s KG s G

3) 在MATLAB 中画出)(1s G 的Bode 图:

4) 可以看出,系统的相位裕量为?

0,根据设计要求,系统的相位裕量为

?

50,因此需要增加的相位裕量为?

50,增加超前校正装置会改变Bode 图的

幅值曲线,这时增益交界频率会向右移动,必须对增益交界频率增加所造成 的)(1ωj G 的相位滞后增量进行补偿,因此,假设需要的最大相位超前量m φ 近 似等于?

55 因为

α

αφ+-=

11sin m

计算可以得到:0994.0=α

5)确定了衰减系统,就可以确定超前校正装置的转角频率T

1=

ω和T

αω1

=

可以看出,最大相位超前角m φ发生在两个转角频率的几何中心上,即

)

(1T αω=

,在)

(1T αω=

点上,由于包含)1/()1(++Ts Ts α项,

所以幅值的变化为:

α

α

α

ωαωαω1

11

111)

/(1=

++=

++=j j T

j T j T

0255.100994

.011

==

α

其中02555.10)(1=ωj G 分贝对应于s rad /405.40=ω,我们选择此频率作为新的增益交界频率c ω这一频率相应于T

αω1

=

,即T

c αω1

=

,于是

73879.121==

c T

ωα

15688.1281

==

α

ωαc T

6) 于是校正装置确定为:

15688

.12873879.121

1

)(++=++=s s K Ts Ts K s G c

c c αα

8310.1971==

α

K

K c

7) 增加校正后系统的bode图和奈魁斯特图如下:

从Bode 图中可以看出,系统具有要求的相角裕度和幅值裕度,从奈魁斯特图中可以看出,曲线绕-1 点逆时针一圈,因此校正后的系统稳定。

得到系统的单位阶跃响应如下:

可以看出,系统在遇到干扰后,在1 秒内可以达到新的平衡,但是超调量比较大。

8)为使系统获得快速响应特性,又可以得到良好的静态精度,我们采用滞后-超前校正(通过应用滞后-超前校正,低频增益增大,稳态精度提高,又可以增加系统的带宽和稳定性裕量), 设滞后-超前控制器为:

)

1

)(()

1)(1()(222

1T s T s T s T s K s G c

c ββ++++= 9)根据《机械控制理论基础》教材设计滞后-超前控制器。设控制器为:

1988

.02

15688.12873879.121138.1451)

1)(()

1)(1()(2221++?++?=++++=s s s s T s T s T s T s K s G c c ββ 可以得到静态误差系数:

1

.14826705

.00102125.002725

.01988

.0215688

.12873879.121138.1451lim )

()(lim 2

=-?

++?

++?

==→→s s s s s s G s G K

s c s p

比超前校正提高了很多,因为-2 零点和-0.1988 极点比较接近,所以对相

角裕度影响等不是很大,滞后-超前校正后的系统Bode 图和奈魁斯特图如下 所示:

2.2.1.3超前—滞后方法的实验仿真

打开“L1dofFreq.mdl”,在MATLAB Simulink 下对系统进行仿真(本

例和以下的例子都不再仔细说明每步的操作方法,详细的步骤请参见前一章内容).

(进入MATLAB Simulink 实时控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ Frequency Response Experiments ”中的“Frequency Response Control Simulink”)

双击“Controller2”设置校正器参数:

点击“”得到以下仿真结果:

从仿真结果,可以很明显的看出,系统稳态误差很小,响应速度很快。

2.2.1.4超前—滞后方法的实验

1) 进入MATLAB Simulink 实时控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ Frequency Response Experiments”中的“Frequency Response Control Demo”(详细的超作步骤请参考前一张根轨迹校正控制实验):

2)双击Controller2,设置上面计算和仿真得到的参数。

3)双击“Scope”观察运行结果

最优化方法课程设计实验报告_倒立摆

倒立摆控制系统控制器设计实验报告

成员:陈乾睿 2220150423 郑文 2220150493 学院:自动化 倒立摆控制系统控制器设计实验 一、实验目的和要求 1、目的 (1)通过本设计实验,加强对经典控制方法(LQR控制器、PID控制器)和智能控制方法(神经网络、模糊控制、遗传算法等)在实际控制系统中的应用研究。(2)提高学生有关控制系统控制器的程序设计、仿真和实际运行能力. (3)熟悉MATLAB语言以及在控制系统设计中的应用。 2、要求 (1)完成倒立摆控制系统的开环系统仿真、控制器的设计与仿真以及实际运行结果 (2)认真理解设计内容,独立完成实验报告,实验报告要求:设计题目,设计的具体内容及实验运行结果,实验结果分析、个人收获和不足,参考资料。程序

清单文件。 二、实验内容 倒立摆控制系统是一个典型的非线性系统,其执行机构具有很多非线性,包括:死区、电机和带轮的传动非线性等。 本设计实验的主要内容是设计一个稳定的控制系统,其核心是设计控制器,并在MATLAB/SIMULINK环境下进行仿真实验,并在倒立摆控制实验平台上实际验证。 算法要求:使用LQR以外的其它控制算法。 三、倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的应用开发前景。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:非线性,不确定性,耦合性,开环不稳定性,约束限制。 经过相关论文和文献的查询,我们决定采用模糊控制的方法进行倒立摆的控制。

北航电子电路设计数字部分实验报告

电子电路设计数字部分实验报告 学院: 姓名:

实验一简单组合逻辑设计 实验内容 描述一个可综合的数据比较器,比较数据a 、b的大小,若相同,则给出结果1,否则给出结果0。 实验仿真结果 实验代码 主程序 module compare(equal,a,b); input[7:0] a,b; output equal; assign equal=(a>b)1:0; endmodule 测试程序

module t; reg[7:0] a,b; reg clock,k; wire equal; initial begin a=0; b=0; clock=0; k=0; end always #50 clock = ~clock; always @ (posedge clock) begin a[0]={$random}%2; a[1]={$random}%2; a[2]={$random}%2; a[3]={$random}%2; a[4]={$random}%2; a[5]={$random}%2; a[6]={$random}%2; a[7]={$random}%2; b[0]={$random}%2; b[1]={$random}%2; b[2]={$random}%2; b[3]={$random}%2; b[4]={$random}%2;

b[5]={$random}%2; b[6]={$random}%2; b[7]={$random}%2; end initial begin #100000 $stop;end compare m(.equal(equal),.a(a),.b(b)); endmodule 实验二简单分频时序逻辑电路的设计 实验内容 用always块和@(posedge clk)或@(negedge clk)的结构表述一个1/2分频器的可综合模型,观察时序仿真结果。 实验仿真结果

电力电子电路分析与仿真实验报告模板剖析

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号: 年月日

实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

倒立摆实验报告

倒立摆实验报告 机自82 组员:李宗泽 李航 刘凯 付荣

倒立摆与自动控制原理实验 一.实验目的: 1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、频率响应分析、PID 控制分析等内容. 2.运用现代控制理论中的线性最优控制LQR 方法实验控制倒立摆 3.学习运用模糊控制理论控制倒立摆系统 4.学习MATLAB工具软件在控制工程中的应用 5.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。 二. 实验设备 计算机及等相关软件 固高倒立摆系统的软件 固高一级直线倒立摆系统,包括运动卡和倒立摆实物 倒立摆相关安装工具 三.倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种

技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。 倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆环形倒立摆,平面倒立摆和复合倒立摆等,本次实验采用的是直线一级倒立摆。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性: 1) 非线性2) 不确定性3) 耦合性4) 开环不稳定性5) 约束限制 倒立摆控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,本小组采用的控制方法有:PID 控制、双PID 控制、LQR控制、模糊PID控制、纯模糊控制 四.直线一级倒立摆的物理模型: 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励

北航电子电路设计训练模拟分实验报告

北航电子电路设计训练模拟部分实验报告

————————————————————————————————作者:————————————————————————————————日期:

电子电路设计训练模拟部分实验 实验报告

实验一:共射放大器分析与设计 1.目的: (1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。 (2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察 静态工作点的变化对输出波形的影响。 (3)加深对放大电路工作原理的理解和参数变化对输出波形的影响。 (4)观察失真现象,了解其产生的原因。 图 1 实验一电路图 2.步骤: (1)请对该电路进行直流工作点分析,进而判断管子的工作状态。 (2)请利用软件提供的各种测量仪表测出该电路的输入电阻。 (3)请利用软件提供的各种测量仪表测出该电路的输出电阻。 (4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。 (5)请利用交流分析功能给出该电路的幅频、相频特性曲线。 (6)请分别在30Hz、1KHz、100KHz、4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。 (提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注 意信号源幅度和频率的选取,否则将得不到正确的结果。) 3.实验结果及分析: (1)根据直流工作点分析的结果,说明该电路的工作状态。 由simulate->analyses->DC operating point,可测得该电路的静态工作点为:

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

倒立摆实验报告

目录 一、倒立摆系统介绍 (2) 1.1倒立摆系统简介 (2) 1.2 倒立摆组成及其原理 (2) 1.3 倒立摆特性 (3) 二、一级倒立摆 (3) 2.1一级倒立摆建模 (3) 2.2 一级倒立摆控制方法 (11) 2.2.1 单输入—单输出控制方法 (11) 超前滞后控制方法 2.2.2 单输入—多输出控制方法 (22) 双PID控制方法 2.2.3 多输入—多输出控制方法 (30) 极点配置法 二次线性最优控制法 三、二级倒立摆 (36) 3.1二级倒立摆建模 (36) 3.2 二级倒立摆控制方法 (46) 3.2.1 二次线性最优控制法 (46) 3.2.2 基于融合技术的模糊控制法 (48) 四、总结 (60) 五、参考文献 (63)

一、倒立摆系统介绍 1.1倒立摆系统简介 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 1.2倒立摆组成及其原理 倒立摆的组成包括计算机、运动控制卡、伺服系统、倒立摆本体和光电码盘、反馈测量元件等几大部分,组成一个闭环系统。对于直线型倒立摆,可以根据伺服电机自带的码盘反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到;各个摆杆的角度由光电码盘测得并直接反馈到控制卡,速度信号可以通过差分方法得到。计算机从运动控制卡中实时读取数据,确定控制策略(电机的输出力矩),并发送给运动控制卡。运动控制卡经过DSP 内部的控制算法实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。

倒立摆的设计报告

摘要:倒立摆是进行控制理论研究的典型实验平台。由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来,因此在欧美发达国家的高等院校,它已成为必备的控制理论教学实验设备。学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。 本论文在自动控制原理校正的基本思想上,通过采用根轨迹校正法,频域法,分别对倒立摆系统进行校正,使之满足性能要求。 关键词:倒立摆,自动控制,根轨迹,频域法 1、引言 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 法控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

电路仿真实验报告

本科实验报告实验名称:电路仿真

实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,

将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描

倒立摆控制系统设计报告.doc

控制系统综合设计 倒立摆控制系统 院(系、部): 组长: 组员 班级: 指导教师: 2014年1月2日星期四

目录 摘要----------------------------------------------------------------------------------3 引言----------------------------------------------------------------------------------3 一、整体方案设计--------------------------------------------------------------3 1、需求-----------------------------------------------------------------------------3 2、目标-----------------------------------------------------------------------------3 3、概念设计----------------------------------------------------------------------3 4、整体开发方案设计---------------------------------------------------------3 5、评估----------------------------------------------------------------------------4 二、系统设计--------------------------------------------------------------------4 (一)系统设计-----------------------------------------------------------------4 1、功能分析----------------------------------------------------------------------4 2、设计规范和约束------------------------------------------------------------6 3、详细设计----------------------------------------------------------------------7 (二)机械系统设计-----------------------------------------------------------8 三、理论分析---------------------------------------------------------------------9 1、控制系统建模----------------------------------------------------------------9 2、时域和频域分析------------------------------------------------------------13 3、设计PID或其他控制器---------------------------------------------------21 四、元器件、设备选型--------------------------------------------------------30

FPGA实验报告北航电气技术实验

FPGA电气技术实践 实验报告 院(系)名称宇航学院 专业名称飞行器设计与工程(航天)学生学号XXXXXXXX 学生姓名XXXXXX 指导教师XXXX 2017年11月XX日

实验一四位二进制加法计数器与一位半加器的设计实验时间:2017.11.08(周三)晚实验编号20 一、实验目的 1、熟悉QuartusII的VHDL的文本编程及图形编程流程全过程。 2、掌握简单逻辑电路的设计方法与功能仿真技巧。 3、学习并掌握VHDL语言、语法规则。 4、参照指导书实例实现四位二进制加法计数器及一位半加器的设计。 二、实验原理 .略 三、实验设备 1可编程逻辑实验箱EP3C55F484C8 一台(包含若干LED指示灯,拨码开关等)2计算机及开发软件QuartusII 一台套 四、调试步骤 1四位二进制加法计数器 (1)参照指导书实例1进行工程建立与命名。 (2)VHDL源文件编辑 由于实验箱上LED指示灯的显示性质为“高电平灭,低电平亮”,为实现预期显示效果应将原参考程序改写为减法器,且”q1<= q1+1”对应改为”q1<= q1-1”,以实现每输入一个脉冲“亮为1,灭为0”。 由于参考程序中的rst清零输入作用并未实现,所以应将程序主体部分的最外部嵌套关于rst输入是否为1的判断,且当rst为1时,给四位指示灯置数”1111”实现全灭,当rst为0时,运行原计数部分。 (3)参照指导书进行波形仿真与管脚绑定等操作,链接实验箱并生成下载文件 (4)将文件下载至实验箱运行,观察计数器工作现象,调试拨动开关查看是否清零。 可以通过改变与PIN_P20(工程中绑定为clk输入的I/O接口)相连导线的另一端所选择的实验箱频率时钟的输出口位置,改变LED灯显示变化频率。 并且对照指导书上对实验箱自带时钟频率的介绍,可以通过改变导线接口转换输入快慢,排查由于clk输入管脚损坏而可能引起的故障。

电路仿真实验报告

大连理工大学实验报告 学院(系):材料科学与工程学院专业:材料类班级:材料1105 姓名:谢夏芬学号:201165021 实验时间:第7周星期二第5/6节实验室:综合楼116 实验台:008 指导教师签字:成绩: 实验名称: PSpice电路仿真实验报告 一、实验目的和要求 1.通过实验了解并掌握PSpice软件的运用方法,以及电路仿真的基本方法。 2.学会用电路仿真的方法分析各种电路。 3.通过电路仿真的方法验证所学的各种电路基础定律,并了解各种电路的特性。 二、实验原理和内容 PSpice是主要用于集成电路的分析程序,PSpice起初用在大规模电子计算机上进行仿真分析,后来推出了能在PC上运行的PSpice软件。PSpice5.0以上版本是基于windows操作环境。PSpice软件的主要用途是用于仿真设计:在实际制作电路之前,先进行计算机模拟,可根据模拟运行结果修改和优化电路设计,测试各种性能,不必涉及实际元器件及测试设备。 三、预习要求及思考题 对于简单的电阻电路,用PSpice软件进行电路的仿真分析时,先要在capture环境(即Schematics 程序)下画出电路图,然后调用分析模块、选择分析模型,就可以“自动“进行电路分析了。PSpice 软件是采用节点电压法求电压的,因此,在绘制电路图时,一定要有零点(即接地点)。同时,要用电路基础理论中的方法列电路方程,求解电路中各个电压和电流。与仿真结果进行对比分析。 四、主要仪器设备 五、实验步骤与操作方法: 题1:试分析下图电路中电阻中的电流和电压。

1、建立电路:启Capture CIS Lite Edition,点击Create document(将Browse设定为F盘,并新建文 件夹dianxueshiyan)新建工程xiexiafen,点击OK,选择Create a blank pro。由于已添加元件 常用库,就不再说明添加过程。在相应的库中分别选取电压源VDC,电阻R以及IDC,添 加元器件。点击Place ground选取GND/CAPSYM以放置节点(每个电路必须有一个零节 点)。移动元器件到适当位置,点击Place/Wire将电路连接起来;双击元器件或相应参数 修改名称和值; 2、仿真:点击PSpice/New Simulation Profile,输入名称:在弹出的窗口中选中Bias Point,确定。 点击运行程序。 3、实验得分析:IR=2A, UR=1V 题 2:用叠加定理求图中的电流I1和I2.

2021年倒立摆实验报告(根轨迹)

*欧阳光明*创编 2021.03.07

I 摆杆惯量0.0034 kg*m*m g 重力加速度9.8 kg.m/s (2)直线一级倒立摆根轨迹校正控制原理 基于根轨迹法校正的基本思想是:假设系统的动态性能指标可由靠近虚轴的一对共轭闭环主导极点来表征,因此,可把对系统提出的时域性能指标的要求转化为一对期望闭环主导极点。确定这对闭环主导极点的位置后,首先根据绘制根轨迹的相角条件判断一下它们是否位于校正前系统的根轨迹上。如果这对闭环主导极点正好落在校正前系统的根轨迹上,则无需校正,只需调整系统的根轨迹增益即可;否则,可在系统中串联一个超前校正装置。 常见的校正器有超前校正、滞后校正以及超前滞后校正等。 2. 实验方法 (1)直线倒立摆建模、仿真与分析 利用牛顿-欧拉方法建立直线一级倒立摆系统的数学模型;依照根轨迹设计的步骤得到系统的控制器,利用MA TLAB Simulink中的工具进行仿真分析。 (3)直线一级倒立摆根轨迹校正控制 利用MATLAB Simulink来实现根轨迹校正控制参数设定和仿真,并利用该参数来设定只限一级倒立摆的根轨迹校正控制器值,分析和仿真倒立摆的运行情况。 3. 实验装置 直线单级倒立摆控制系统硬件结构框图如图1所示,包括计算机、I/O设备、伺服系统、倒立摆本体和光电码盘反馈测量元件等几大部分,组成了一个闭环系统。 图1 一级倒立摆实验硬件结构图 对于倒立摆本体而言,可以根据光电码盘的反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到。摆杆的角度由光电码盘检测并直接反馈到I/O设备,速度信号可以通过差分法得到。计算机从I/O设备中实时读取数据,确定控制策略(实际上是电

一级倒立摆的课程设计

第 1 页 目录 摘要............................................................................................... 3 1.一阶倒立摆的概述.. (4) 1.1倒立摆的起源与国内外发展现状................................. 4 1.2倒立摆系统的组成......................................................... 5 1.3倒立摆的分类:............................................................. 5 1.4倒立摆的控制方法:..................................................... 5 1.5本文研究内容及安排..................................................... 6 1.6系统内部各相关参数为:............................................. 6 2.一阶倒立摆数学模型的建立. (7) 2.1概述................................................................................. 7 2.2数学模型的建立............................................................. 8 2.3一阶倒立摆的状态空间模型:....................................11 2.4实际参数代入:........................................................... 12 3.定量、定性分析系统的性能.. (13) 3.1,对系统的稳定性进行分析........................................ 13 3.2 对系统的稳定性进行分析:...................................... 15 4.状态反馈控制器的设计. (16) 4.1反馈控制结构............................................................... 16 4.2单输入极点配置........................................................... 17 4.3利用MATLAB 编写程序 ............................................ 20 5.系统的仿真研究,校验与分析. (22) 5.1使用Matlab 中的SIMULINK 仿真............................ 22 6.设计状态观测器,讨论带有状态观测器的状态反馈系统的

北航17系光电子实验报告实验5讲解

光电子技术实验报告

实验五光电池特性实验 一.实验目的: 1.学习掌握硅光电池的工作原理。 2.学习掌握硅光电池的基本特性。 3.掌握硅光电池基本特性测试方法。 二.实验原理: 光电池是一种不需要加偏置电压就能把光能直接转换成电能的PN结光电器件,按光电池的功用可将其分为两大类:即太阳能光电池和测量光电池,本仪器用的是测量用的硅光电池,其主要功能是作为光电探测,即在不加偏置的情况下将光信号转换成电信号。 图(20)图(21)如图(20)所示为2DR型硅光电池的结构,它是以P型硅为衬底(即在本征型硅材料中掺入三价元素硼或镓等),然后在衬底上扩散磷而形成N型层并将其作为受光面。如图(21)所示当光作用于PN结时,耗尽区内的光生电子与空穴在内建电场力的作用下分别向N区和P区运动,在闭合电路中将产生输出电流IL,且负载电阻RL上产生电压降为U。显然,PN结获得的偏置电压U与光电池输出电流IL与负载电阻RL有关,即U=IL?RL,当以输出电流的IL为电流和电压的正方向时,可以得到如图(22)所示的伏安特性曲线。

图(22)图(23)光电池在不同的光强照射下可以产生不同的光电流和光生电动势,硅光电池的光照特性曲线如图(23)所示,短路电流在很大范围内与光强成线性关系,开路电压随光强变化是非线性的,并且当照度在2000lx时就趋于饱和,因此,把光电池作为测量元件时,应把它当作电流源来使用,不宜用作电压源。 硒光电池和硅光电池的光谱特性曲线如图(25)所示,不同的光电池其光谱峰值的位置不同,硅光电池的在800nm附近,硒光电池的在540nm附近,硅光电池的光谱范围很广,在450~1100nm之间,硒光电池的光谱范围为340~750nm。 图(24)图(25)光电池的温度特性主要描述光电池的开路电压和短路电流随温度变化的情况,由于它关系到应用光电池设备的温度漂移,影响到测量精度或控制精度等主要指标,光电池的温度特性如图(24)所示。开路电压随温度升高而下降的速度较快,而短路电流随温度升高而缓慢增加,因此,当使用光电池作为测量元件时,在系统设计中应考虑到温度的漂移,并采取相应的措施进行补偿。 三.实验所需部件: 两种光电池、各类光源、实验选配单元、数字电压表(4 1/2位)自备、微安表(毫安表)、激光器、照度计(用户选配)。

数字电路仿真实验报告

数字逻辑与CPU 仿真实验报告 姓名: 班级: 学号:

仿真实验 摘要:Multisim是Interactive Image Technologies公司推出的以Windows为基础的仿真工具,具有丰富的仿真分析能力。本次仿真实验便是基于Multisim软件平台对数字逻辑电路的深入研究,包括了对组合逻辑电路、时序逻辑电路中各集成元件的功能仿真与验证、对各电路的功能分析以及自行设计等等。 一、组合逻辑电路的分析与设计 1、实验目的 (1)掌握用逻辑转换器进行逻辑电路分析与设计的方法。 (2)熟悉数字逻辑功能的显示方法以及单刀双掷开关的应用。 (3)熟悉字信号发生器、逻辑分析仪的使用方法。 2、实验内容和步骤 (1)采用逻辑分析仪进行四舍五入电路的设计 ①运行Multisim,新建一个电路文件,保存为四舍五入电路设计。 ②在仪表工具栏中跳出逻辑变换器XLC1。 图1-1 逻辑变换器以及其面板 ③双击图标XLC1,其出现面板如图1-1所示 ④依次点击输入变量,并分别列出实现四舍五入功能所对应的输出状态(点击输出依 次得到0、1、x状态)。 ⑤点击右侧不同的按钮,得到输出变量与输入变量之间的函数关系式、简化的表达式、 电路图及非门实现的逻辑电路。 ⑥记录不同的转换结果。

(2)分析图1-2所示代码转换电路的逻辑功能 ①运行Multisim,新建一个电路文件,保存为代码转换电路。 ②从元器件库中选取所需元器件,放置在电路工作区。 ?从TTL工具栏选取74LS83D放置在电路图编辑窗口中。 ?从Source库取电源Vcc和数字地。 ?从Indictors库选取字符显示器。 ?从Basic库Switch按钮选取单刀双掷开关SPD1,双击开关,开关的键盘控制设 置改为A。后面同理,分别改为B、C、D。 图1-2 代码转换电路 ③将元件连接成图1-2所示的电路。 ④闭合仿真开关,分别按键盘A、B、C、D改变输入变量状态,将显示器件的结果填 入表1-1中。 ⑤说明该电路的逻辑功能。 表1-1 代码转换电路输入输出对应表

控制系统课程设计---直线一级倒立摆控制器设计

控制系统课程设计---直线一级倒立摆控制器设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:控制系统设计课程设计 设计题目:直线一级倒立摆控制器设计 院系: 班级: 设计者: 学号: 指导教师:罗晶周乃馨 设计时间:2013.9.2——2013.9.13

哈尔滨工业大学课程设计任务书 姓名:院(系):英才学院 专业:班号: 任务起至日期:2013 年9 月 2 日至2013 年9 月13 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005 秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab 进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度θ和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)θ的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1. 建立直线一级倒立摆的线性化数学模型; 2. 倒立摆系统的PID控制器设计、MATLAB仿真及 实物调试; 3. 倒立摆系统的极点配置控制器设计、MATLAB仿 真及实物调试。

北航eda实验报告

2014-2015-2-G02A3050-1 电子电路设计训练(数字EDA部分) 实验报告 (2015年5月19日) 教学班学号姓名组长签名成绩120311王天然* 120311马璇 120312唐玥 自动化科学与电气工程学院

目录 ( 2015年5月19日).........................................错误!未定义书签。目录 .........................................................错误!未定义书签。实验一、简单组合逻辑和简单时序逻辑............................错误!未定义书签。 简单的组合逻辑设计..................................错误!未定义书签。 实验目的和内容:..................................错误!未定义书签。 实验源代码:......................................错误!未定义书签。 测试模块源代码:..................................错误!未定义书签。 简单分频时序逻辑电路的设计...........................错误!未定义书签。 实验目的和内容:..................................错误!未定义书签。 实验源代码:......................................错误!未定义书签。 实验测试源代码:..................................错误!未定义书签。 (选作)设计一个字节(8位)比较器....................错误!未定义书签。 实验内容:........................................错误!未定义书签。 实验代码:........................................错误!未定义书签。 实验测试源代码:..................................错误!未定义书签。 实验小结.............................................错误!未定义书签。实验二、条件语句和always过程块...............................错误!未定义书签。 实验任务1——利用条件语句实现计数分频时序电路.......错误!未定义书签。 实验要求.........................................错误!未定义书签。 模块的核心逻辑设计...............................错误!未定义书签。 测试程序的核心逻辑设计...........................错误!未定义书签。 仿真实验关键结果及其解释.........................错误!未定义书签。 实验任务2——用always块实现较复杂的组合逻辑电路....错误!未定义书签。

相关主题
相关文档 最新文档