当前位置:文档之家› 线性方程组解的判定与解的结构

线性方程组解的判定与解的结构

线性方程组解的判定与解的结构
线性方程组解的判定与解的结构

重庆三峡学院数学分析课程论文

线性方程组解的判定与解的结构

院系数学与统计学院

专业数学与应用数学(师范)

姓名*******

年级 2009级

学号200906034***

指导教师刘学飞

2011年6月

线性方程组解的判定与解的结构

姓名******

(重庆三峡学院数学与计算机科学学院09级数本?班)

摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解

引言

通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式.

1 基本性质

下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组

1111221121122222

1122n n n n s s sn n s

a x a x a x

b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (1)

引入向量

112111s αααα??????=?????????,122222s αααα??????=?????????,…12n n n

sn αααα??????=?????????

,12s b b b β??

??

??=???????

?? 方程(1)可以表示为

1122n n x x x αααβ++???+=

性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合.

定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵

1112121

2221

2

n n s s sn a a a a a a A a a a ?????

?

???

?

= ???? ?

?????

与增广矩阵

A =?

?111212122212n n

s s sn

a a a a a a a a a ?????????

??? 12s b b b ?

?????

有相同的秩.

证明 先证必要性,设线性方程组(1)有解,就说说,β可以经过向量组1α,2α,???n

α线性表出.由此立即推出,向量组1α,2α,???n α与向量组1α,2α,???n α,β等价,因而有相同的秩,这两个向量组分别是矩阵A 与A 的列向量组.因此矩阵A 与A 有相同的秩. 再证充分性,设矩阵A 与A 有相同的秩,就是说,它们的列向量1α,2α,???n α与1α,

2α,???n α,β有相同的秩,令它们的秩为r. 1α,2α,???n α中的极大线性无关组是由r

个向量组成,无妨设1α,2α,???r α是它的一个极大线性无关组.显然1α,2α,???r α也是向量组1α,2α,???n α,β的一个极大线性无关组,因此向量β可以经1α,2α,???r α线性表出,既然β可以经1α,2α,???r α线性表出,当然它可以经1α,2α,???n α线性表出.因此,方程组(1)有解.

证毕

定理2 对于线性方程组⑴,若()()R A R A r ==,则当r= n 时,有唯一解;当r< n 时,有无穷多解.

证明 设D 是矩阵A 的一个不为零的r 级子式(当然它也是A 的一个不为零的子式),为了方便起见,不妨设D 位于A 的左上角.显然, A 的前r 行就是一个极大线性无关组,第

r +1,…,s 行都可以经它们线性表出.因此,方程组⑴与

11112211

21122222

1122n n n n r r rn n r

a x a x a x

b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (2)

同解.

当r =n 时,由克兰姆法则,方程组(2)有唯一解,即方程组⑴有唯一解.

当r ﹤n 时,将方程组(2)改写为

111122111,111211222222,1121122,11r r r r n n r r r r n n

r r rr r r r r r rn n a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a x a x ++++++++???+=--???-??

++???+=--???-?????

??++???+=--???-?

(3)

(3)作为12,r x x x ???的一个方程组,它的系数行列式D≠0.由克兰姆法则,对于12,r x x x ???的任意一组值,方程组(3),也就是方程组⑴,都有唯一的解.由于自由未知量12,r x x x ???可任意取值,所以方程组(1)有无穷多个解. 证毕

在解决了线性方程组有解的判别条件之后,我们进一步探讨线性方程组解的结构.所谓解的结构问题就是解与解之间的关系问题.

上面我们提到,n 元线性方程组的解是n 维向量,在解不是唯一的情况下,作为方程组的解的这些问题之间有什么关系呢?我们先看齐次方程组的情形.设

111122121122221122000

n n n n

s s sn n a x a x a x a x a x a x a x a x a x ++???+=??++???+=???????++???+=? (4)

是一齐次线性方程组,它的解所成的集合具有下面两个重要性质:

性质1 两个解的和还是方程组的解.

设()12,,,n k k k ???与()12,,,n l l l ???是方程组(4)的两个解.这就是说,把它们代入方程组,每个方程成恒等式,即

10n

ij j

j a k

==∑ (i=1,2,...,s )

, 1

0n

ij j

j a l

==∑ (i=1,2,...,s )

, 把两个就解的和

()1122,,,n n k l k l k l ++???+

(5)

代入方程组,得

1

1

()00n n

ij

j

ij

j

j j a ck c a k

c ====?=∑∑ (i=1,2,...,s )

这说明(5)也是方程组的解. 证毕

性质2 一个解的倍数还是方程组的解.

设()12,,,n k k k ???是(4)的一个解,不难看出()12,,,n ck ck ck ???还是方程组的解,因为

1

1

()00n n

ij

j

ij

j

j j a ck c a k

c ====?=∑∑ (i=1,2,...,s )

由性质1和性质2得:

性质3 方程组(4)的解的任一线性组合还是(4)的解.

2 基础解系

定义 齐次线性方程组(4)的一组解,若满足 1) 12,,,r ηηη???线性无关;

2)(4)的任一解可由12,,,r ηηη???线性表出. 则称12,,,r ηηη???为(4)的一个基础解系.

3 基础解系的存在性

定理1 在齐次线性方程组有非零解的情况下,它有基础解系,并且基础解系所含解向量的个数等于n r -,其中)(A R r =()r R A =.

证:若()R A r n =<,不防设

11

121212221

2

0r r r r rr

a a a a a a a a a ??????≠??????2,则方程组(4)与方程组

11112211,11121122222,1121122,11r r r r n n r r r r n n

r r rr r r r r rn n a x a x a x a x a x a x a x a x a x a x a x a x a x a x a x ++++++++???+=--???-??

++???+=--???-??

???

??++???+=--???-?

(6) 同解,用

n r -组数 (1,0,…,0), (0,1,…,0), …, (0,0,…,1)代入自由未知量

11(,,,)r r n x x x ++??,就得到(6)的解,也就是(4)的n r -个解

()()()111121221222,1,2,,,,,1,0,,0,,,,0,1,,0,,,,0,0,,1r r n r

n r n r n r r c c c c c c c c

c ηηη----=????????

=???????????

??=???????

则12,,,n r ηηη-???为方程组(4)的一个基础解系. ⅰ) 12,,,n r ηηη-???线性无关

事实上,若11220n r n r k k k ηηη--+???+=,即

1122n r n r k k k ηηη--+???+=()()12*,,*,,,,0,,0,0,0,,0n r k k k -??????=??????

比较最后n r -个分量,得 120n r k k k -==???==. 因此, 12,,,n r ηηη-???线性无关.

ⅱ) 任取方程组(4)的一个解()12,,,n c c c η=???,η可由12,,,n r ηηη-???线性表出. 事实上,由12,,,n r ηηη-???是方程组(4)的解知:

1122r r n n r c c c ηηη++-+???+

也为(4)的解,又1122r r n n r c c c ηηη++-+???+=(

n r c c ,,,*,*,1 +)

它与η的最后n r -个分量相同,即自由未知量的值相同,所以它们为 同一个解,即

11r n n r c c ηηη+-=++…….

由ⅰ) ⅱ)知,12,,,n r ηηη-???为(4)的一个基础解系. 证毕

推论 任一与方程组(4)的某一基础解系等价的线性无关的向量组都是方程组(4)的基础解系.

证明:12,,,t ηηη???为(4)的一个基础解系,

12,,,s ααα???线性无关,且与12,,,t ηηη???等价,

则s t =,且i α可由12,,,t ηηη???线性表出,即i α也为(4)的解向量.

任取方程组(4)的一个解向量η,则η可由12,,,t ηηη???线性表出,从而η可由

12,,,t ααα???线性表出.

又12,,,t ααα???线性无关,所以12,,,t ααα???也是基础解系. 证毕

4 基础解系的求法

我们只要找到齐次线性方程组的n r -个自由未知量,就可以获得它的基础解系.具体地说,我们先通过初等行变换把系数矩阵化为阶梯形,那么阶梯形的非零行数就是系数矩阵的秩.把每一个非零行最左端的未知量保留在方程组的左端,其余n r -个未知量移到等式右端,再令右端n r -个未知量其中的一个为1,其余为零,这样可以得到n r -个解向量

12,,,n r ηηη-???,这n r -个解向量12,,,n r ηηη-???构成了方程组的基础解系. 方程组(4)的任

一解即通解可表为 1112,

,,,t k k k k k P ηηη=+???+???∈

例1 求齐次线性方程组

12451234

12345123453020426340242470

x x x x x x x x x x x x x x x x x x +--=??-+-=??

-++-=??+-+-=? 的一个基础解系.

解 用初等行变换把系数矩阵化为阶梯形:

110311

1031112100222142634000312424700000----????????-----????→????

---????

--????

, 于是r 3)(=A ,基础解系中有-n r=5-3=2个向量. "于是()3r A =,基础解系中有532n r -=-=个向量." 阶梯形矩阵所对应的方程组为

1245234545

30222030x x x x x x x x x x +--=??

---=??-=? 移项,得

1245245534

532223x x x x x x x x x x x

+-=??

-=

+??=? 取

351,0x x ==,得一个解向量 1(1,1,1,0,0)η=-; 取

350,1x x ==,得另一解向量

2751(,,0,,1)

663

η=.

取351,0x x ==得一个解向量1(1,1,1,0,0)η=-; 取350,1x x ==得一个解向量1751(,,0,,1)66

3

η=.

12,ηη即为方程组的一个基础解系,方程组的全部解可表示为

)(212221P k k k k ∈+ηη

对于非齐次线性方程组解

11112211211222221122n n n n r r rn n r

a x a x a x

b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (7)

令0,1,,i i s ==???,得

111122121122221122000

n n n n

s s sn n a x a x a x a x a x a x a x a x a x ++???+=??++???+=??

?????++???+=? (8) 称(8)为(7)的导出组.

5 解的性质

性质1 设12,ξξ为方程组(7)的两个解,则12ξξ-为其导出组(8) 的解.

证明 ()112,,,n k k k ξ=???,()212,,,n l l l ξ=???是方程组(7)的两个 解,即

1

1

,, 1,2,...,n

n

ij j

i ij j i j j a k

b a l b i s =====∑∑

它们的差是

12ξξ- =()1122,,,n n k l k l k l --???-, 显然有

1

1

1

()0, 1,2,...,n

n n

ij j

j ij j ij j i i j j j a k

l a k a l b b i s ===-=-=-==∑∑∑

即12ξξ-=()1122,,,n n k l k l k l --???-是导出组(8)的一个解. 证毕

性质2 设ξ为方程组(7)的一个解,η为其导出组(8)的解,则ξη+仍为方程组(7)的解.

证明 设ξ=()12,,,n k k k ???是方程组(7)的一个解,即

1

(1,2,)n

ij j

i j a k

b i s ===???∑

又设η=()12,,,n l l l ???是导出组(8)的一个解, 即

1

0(1,2,)n

ij j

j a l

i s ===???∑

显然

1

1

1

()0(1,2,)n

n

n

ij j

j ij j ij j i i j j j a k

l a k a l b b i s ===+=+=+==???∑∑∑.

证毕

6 解的结构

定理 若0γ为(7)的一个特解,则方程组(7)的任一解γ皆可表成0γγη=+,其中η为其导出组(8)的一个解.从而有:方程组(7)的一般解为

011n r n r k k γγηη--=++???+

其中0γ为(7)的一个特解,12,,,n r ηηη-???为导出组(8)的一个基础解系.

证明 显然

00()γγγγ=+-,

有性质1知,0γγ-是导出组(4)的一个解,令

0γγη-=,

则 0γγη=+.

证毕

推论 方程组(7)在有解的条件下,有唯一解?(7)的导出组(8)只有零解.

7 求非齐次线性方程组(7)的一般解的步骤

1)求出其导出组的基础解系12,,,t ηηη??? 2)求出其一个特解0γ

3)方程组(7)的一般解为011t t k k γγηη=++???+. 例2 求解方程组

123412341234031

1232

x x x x x x x x x x x x ?

?--+=?

-+-=???--+=-? 解:

221

323112.0.5111101111011011/2111310024100021/211231/200121/200000r r r r r r r r r A -+-+------?????? ? ? ?=--???→-???→- ? ? ? ? ? ?-----??????

可见()()R A R A =,方程组有解,并有

1243412

212x x x x x =++??

=+?

取240x x ==,则131/2x x == ,即得原方程组的一个特解0(1/2,0,1/2,0)γ=

0(12,0,12,0)γ=.

下面求导出组的基础解系: 导出组与 124

34

2x x x x x =+??

=?同解.

取241,0x x ==,得1(1,1,0,0)η=; 取240,1x x ==,得2(1,0,2,1)η=. 于是原方程组的通解为

0112212,(,)k k k k R γγηη=++∈.

参考文献

1 北京大学数学系几何与代数小组教研室.高等代数(第三版)[M]. 北京:高等教育出版社,1964

2 同济大学数学教研室编.线性代数[M].第三版,北京:高等教育出版社,1999

3 谢帮杰.线性代数[M].北京:人民教育出版社,1978.

4 北京大学力学系.高等代数[M].北京:人民教育出版社,1979

5 邓建中,刘之行.计算方法[M].西安:西安交通大学出版社,2001

6 赵德修, 孙清华.线性代数题解精选[M].武汉:华中科技大学出版社,2001

The Determinant and Structure of Solution of

Linear equations

Xingming ****

(Class one of Grand 2009, Mathematics and Application Mathematics, College of Maths and Computering Science, Chongqing Three Goreges University )

Abstract:Making use of the rank of coefficient matrix and augmented matrix to judge the solution of linear equations. The equations have to solve and a number of cases, the solution of the structure is to understand the relationship between work and solutions.

Keywords:matrix; rank ; linear equations; solvement

线性方程组有解的判别定理

非齐次线性方程组同解的讨论 摘要 本文主要讨论两个非齐次线性方程组有相同解的条件,即如何判定这两个非齐次线性方程组有相同的解. 关键词 非齐次线性方程组 同解 陪集 零空间 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题。 下面是一个非齐次线性方程组,我们用矩阵的形式写出 11121121222212n n m m mn m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 令 A= 111212122212n n m m mn a a a a a a a a a ???????????? ,b= 12m b b b ???????????? 。 即非齐次线性方程组可写成Ax b =。 一 、线性方程组同解的性质 引理 1 如果非齐次线性方程组Ax b =与Bx d =同解,则矩阵[]A b 与[]B d 的秩相等. 证明 设非齐次线性方程组Ax b =的导出组的基础解系为111,,,r ξξξ ,其中1 r 为矩阵[]A b 的秩,再设非齐次线性方程组Bx=d 的导出组的基础解系为 2 12,,,r ηηη ,其中2r 为矩阵[]B d 的秩,如果*η是非齐次线性方程组Ax=b 与Bx=d 特解,由于这两个方程组同解,所以向量组1*11,,,,r ξξξη 与向量组2*12,,,,r ηηηη 等价。从而这两个线性无关的向量组所含的向量个数相等,于是有12,r r =则矩阵[]A b 与[]B d 的秩相等. 引理[1]2 设A 、B 为m n ?矩阵,则齐次线性方程组0Ax =与0Bx =同解的充

【免费下载】线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。三、教学过程 1、矩阵的秩的几何意义几个术语:设)(F M A n m ?∈,????? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

解线性方程组的基本思想

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

直接法解线性方程组

直接法解线性方程组 实习题目: 仿照三对角方程组的追赶法解五对角方程组,其中系数矩阵为A,右端向量为:r。将A分解为LU。其中L为下三角,U为单位上三角。A为7*7阶的矩阵,其中对角元为4 5 6 7 8 9 10。上下次三角对角线元素为1 2 3 4 5 6 ;上下第二条对角线元素为1 2 3 4 5;右端项为:1 2 3 4 5 6 7. 要求:输出系数矩阵A,右端向量r,下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y,单位上三角方程组Ux=y的解(即最终的解向量。保留七位小数。 实现方法:通过MATLAB编程实现。建立MATLAB脚本文件。 首先通仿照三对角方程组的追赶法得到五对角矩阵的实现算法。 然后又MATLAB编程实现。 实验结果(MATLAB截图):

结果分析: 通过提供的计算数据得到最终的解向量x及中间过程产生的下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y。 同时为了确保算法的正确性,我还通过MATLAB的左除运算检验得使用此算法的计算结果正确。 这里由于是用MATLAB,最终结果为分数形式,考虑到精确解一般比近似解更好,因此未化成七位小数形式。 算法实现分析: 首先计算L和U的元素。由于已知L和U的特定形式(及除了对角线和上下次对角线和上下第二条对角线外,其余为0。故通过矩阵的乘法即可得到LU中元素的计算公式。(具体算法见MATLAB程序) 算法优劣点:

1.解此题时看上去要用较多的存储单元,但实际上只需存储系数矩阵A的不为0的元素。 2.A分解为LU计算完成后,后续计算x和y的“追赶过程”运算量一般来说计算量比较小。 3.此题也可用之前的LU算法求解。但此处算法与一般的LU分解的解线性方程组的算法,相比计算量小了不少。 4.对于此处特定的对称的系数矩阵A,算法还可以进一步优化。 5.由于我在此算法中A.L U的各对角值均用一个列向量表示,一个缺点在于输出A,L,U时要重新组成矩阵形式。不过优点在于减少了存储单元。 6.另一缺点是,未能将结果封装成一个文件。 后附MATLAB代码: c=[4,5,6,7,8,9,10];d=[1,2,3,4,5,6,0];b=[0,1,2,3,4,5,6];e=[1,2,3,4,5,0,0];a=[0,0,1,2,3,4,5]; r=[1 2 3 4 5 6 7]; w=zeros(7,1);x=zeros(7,1);y=zeros(7,1);m=zeros(7,1);n=zeros(7,1);h=zeros(7,1); w(1)=c(1);m(1)=d(1)/c(1);n(1)=e(1)/c(1); h(2)=b(2);w(2)=c(2)-h(2)*m(1);m(2)=(d(2)-b(2)*n(1))/w(2);n(2)=e(2)/w(2); for k=3:5 h(k)=b(k)-a(k)*m(k-2); w(k)=c(k)-a(k)*n(k-2)-h(k)*m(k-1); m(k)=(d(k)-h(k)*n(k-1))/w(k); n(k)=e(k)/w(k); end h(6)=b(6)-a(6)*m(4); w(6)=c(6)-a(6)*n(4)-h(6)*m(5); m(6)=(d(6)-h(6)*n(5))/w(6); h(7)=b(7)-a(7)*m(5); w(7)=c(7)-a(7)*n(5)-h(7)*m(6); y(1)=r(1)/w(1);y(2)=(r(2)-h(2)*y(1))/w(2); for k=3:7 y(k)=(r(k)-a(k)*y(k-2)-h(k)*y(k-1))/w(k); end x(7)=y(7); x(6)=y(6)-x(7)*m(6);

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

线性方程组的解空间

第六章 向量空间 6、1 定义与例子 6、2 子空间 6、3 向量的线性相关性 6、4 基与维数 6、5 坐标 6、6 向量空间的同构 6、7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6、7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,??? ? ? ??=mn m n a a a a A ΛΛΛ ΛΛ 1111,A 的每一行瞧作n F 的一个元素,叫做A 的行向量,用),2,1(m i i Λ=α表示;由),2,1(m i i Λ=α生成的n F 的子空间 ),,(1m L ααΛ叫做矩阵A 的行空间。 类似地,A 的每一列瞧作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别就是n F 与m F 的子空间;下证其维数相同。 引理6、7、1设)(F M A n m ?∈, 1)若PA B =,P 就是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 就是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设() ()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i Λ=α就是A 的行向

第三章 解线性方程组的直接方法

习题 3.1 1. 求下列方阵的秩: (1)??? ?? ??--340313021201;(2)????? ??----174034301320;(3)??????? ? ?---------12433023221453334 311 ;(4)??????? ??------34732038234202173132. 2. 求下列方阵的逆矩阵: (1) ?? ? ?? ? ?323513123; (2) ????? ?? ??-----1210232112201023. 3. 解下列矩阵方程 (1) 设 ???? ? ??--=????? ??--=1322 31,113122214B A ,求X 使B AX =; (2) 设 ??? ? ??-=? ???? ??---=132 321,433312120B A ,求X 使B XA =; (3) ?? ??? ??-=????? ??-=????? ??-=112510324, 123011113,1120111111C B A ,求X 使C AXB =. 4. 求下列行列式 (1)? ? ? ??? ??????71 1 0251020214214 ;(2)????????????-260523211213 141 2;(3)?? ? ???????---ef cf bf de cd bd ae ac ab ; (4) ????????????---d c b a 100110011001. 5. 判断下列线性方程组解的情况,如果有唯一解,则求出解. ???????=+++-=----=+-+=+++;01123,2532,242,5)1(432143214 3214321x x x x x x x x x x x x x x x x ? ? ???????=+=++=++=++=+;15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x (3) ? ?? ??=-++=-+-=-+-;3222, 2353, 132432143214321x x x x x x x x x x x x (4) ?????=---=--+=+++.034,0222,022432143214321x x x x x x x x x x x x 习题 3.2 1. 用回代法解上三角形线性方程组 (1)??? ????==+-=-+=++;63,3,6333,8484443432321x x x x x x x x x (2)?? ???? ?-=-=+--=+--=-+.63,1032,92,9244343242 1x x x x x x x x x 2. 用回代法解下三角形线性方程组

线性方程组解的情况及其判别准则

摘要:近年来,线性代数在自然科学和工程技术中的应用日益广泛,而线性方程组求解问题是线性代数的基本研究内容之一,同时它也是贯穿线性代数知识的主线。本文探究了线性方程组一般理论的发展,用向量空间和矩阵原理分析了线性方程组解的情况及其判别准则。介绍了线性方程组理论在解决解析几何问题中的作用,举例说明了线性方程组解的结构理论在判断空间几何图形间位置关系时的便利之处。 关键字:线性方程组;解空间;基础解系;矩阵的秩 Abstract:In recent years, linear algebra in science and engineering application, and wide linear equations solving problems is the basic content of linear algebra, at the same time, it is one of the main knowledge of linear algebra.This article has researched the development of system of linear equations theory,discussed the general theory of linear equations, vector space with the development and matrix theory to analyze the linear equations and the criterion of the situation. Introduces the theory of linear equations in solving the problem of analytic geometry, illustrates the role of linear equations of structure theory in judgment space relation between the geometry of the convenience of position. space geometric figure between time the position relations with theory of the system of linear equation with examples. Key words: linear equations, The solution space, Basic solution, Matrix rank

线性方程组解的判定与解的结构

***学院数学分析课程论文 线性方程组解的判定与解的结构 院系数学与统计学院 专业数学与应用数学(师范) 姓名******* 年级 2009级 学号200906034*** 指导教师 ** 2011年6月

线性方程组解的判定与解的结构 姓名****** (重庆三峡学院数学与计算机科学学院09级数本?班) 摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解 引言 通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式. 1 基本性质 下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组 1111221121122222 1122n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (1) 引入向量 112111s αααα??????=?????????,122222s αααα??????=?????????,…12n n n sn αααα??????=????????? ,12s b b b β?? ?? ??=??????? ?? 方程(1)可以表示为 1122n n x x x αααβ++???+= 性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合. 定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6.7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,???? ? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一 个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈, 1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

线性方程组的公共解

线性方程组的公共解 问题:如何求解线性方程组的公共解? 线性方程组是高代学习的一个重点内容,它的一般形式为 ???????=+++=+++=+++bs asnxn x as x as b nxn a x a x a b nxn a x a x a ...2211... ,22...222121,11...212111 而线性方程组的求解也是这部分学习的重点和难点。其中求解线性方程组的公共解也是高等代数学习所必须掌握的一个知识点。 例1、证明:对于n 元齐次线性方程组(Ⅰ)AX=0与(Ⅱ)BX=0,有非零公共解的充要条件是r(B A )

???=-=+0 42031x x x x 又已知某齐次线性方程组(Ⅱ)的通解为 k1(0,1,1,0)’+k2(-1,2,2,1)’ 问(Ⅰ)与(Ⅱ)是否有非零公共解?若有,则求出所有公共解,若没有,则说明理由。(出自2005年中科院) 解:方法一:将(Ⅱ)的通解代入方程组(Ⅰ)得 ???=+=+0 21021k k k k 解得k1=-k2,故方程组(Ⅰ)与(Ⅱ)有非零公共解,所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 方法二:令方程组(Ⅰ)与(Ⅱ)的通解相同,即 k1(0,1,1,0)’+k2(-1,2,2,1)’=k3(-1,0,1,0)’+k4(0,1,0,1)’ 得到关于k1,k2,k3,k4的一个方程组 ???????=-=-+=-+=-0 420 422103221032k k k k k k k k k k 可求其通解为(k1,k2,k3,k4)’=k(-1,1,1,1)’ 将k1=-1,k2=k 代入(Ⅰ)的通解可得所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 方法三:方程组(Ⅱ)可以是 ? ??=+=+-041032x x x x 解(Ⅰ)与(Ⅱ)的联立方程组可得所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 韩梦雪 20132113429

本章介绍了线性方程组有解的充要条件和求解的方法

本章介绍了线性方程组有解的充要条件和求解的方法;为了在理论上深入的研究与此有关的问题,本章还引入了向量和向量空间的基本概念,介绍了向量的线性运算,讨论向量间的线性关系,向量的内积等有关概念和性质,并在此基础上,研究线性方程组解的性质和解的结构等问题。 一、一、线性方程组 1、Cramer法则 教材p64,定理2.1 2、线性方程组有解的判别定理 教材p72,定理2.3 3、线性方程组的消元解法 步骤:(1)对线性方程组的增广矩阵施以初等行变换,将其化为阶梯型矩阵 (2)如果系数矩阵的秩与增广矩阵的秩不相等,表明方程组无解; 如果相等,则表明有解,继续对阶梯型矩阵进行初等行变换,求出 方程的解。【详见p68】 初等行变换: (1)(1)交换两方程的位置; (2)(2)用一个非零数乘某一方程; (3)(3)把一方程的若干倍加到另一方程去 4、消元法与Cramer法则的异同:在条件的限制上,Cramer法则仅适用于 方程数与未知数相等并且系数行列式不为零的情况,而消元法对此没有限制。即便是满足Cramer法则的要求,用消元法可以区分方程组无解还是有无穷多解,而Cremer法则却不能区分 二、二、向量及向量间的线性关系 (一)向量的定义 1、向量、行向量、列向量【教材p77,定义2.1】 2、零向量【教材p78,定义2.2】 3、向量的相等【教材p78,定义2.3】 4、向量的加法、减法【教材p78,定义2.3】 5、数乘向量【教材p78,定义2.5】

6、n维向量空间【教材p78,定义2.6】 7、n维向量空间的子空间【教材p78,定义2.7】 (二)向量间的线性关系 1、线性组合 (1)一个向量可表为一个向量组的线性组合,或称此向量可由此向量组线性表出【教材p80,定义2.8 (2)一个向量可表为一向量组的线性组合的充要条件:由它们做系数及常数项组成的线性方程组有解【教材p81】 (3)几个结论 a、n维零向量是任一n维向量组的线性组合 b、任一n维向量可由n 维基本单位向量组线性表示 c、向量组中的任一向量可由此向量组线性表示 2、向量组的线性相关与线性无关 (1)向量组的线性相关与线性无关的定义【教材p82:定义2.9,2.10】 (2)几个充要条件 Ⅰ向量组线性相关的充要条件由它们做系数组成的齐次线性方程组有非零解【教材p83】 Ⅱ向量组线性无关的充要条件由它们做系数组成的齐次线性方程组仅有零解【教材p83】 Ⅲ一个向量组线性相关的充要条件是由它们做系数组成的齐次线性方程组的系数行列式等于零【教材p83】 Ⅳ一个向量组线性无关的充要条件是由它们做系数组成的齐次线性方程组的系数行列式不等于零【教材p83】: Ⅴ一个向量组线性相关的充要条件是此向量组中至少有一个向量可以表为其余向量的线性组合【教材p85:定理2.6】 Ⅵ一个向量组线性无关的充要条件是此向量组中每一个向量都不能表为其余向量的线性组合【教材p86:定理2.6 的推论】 Ⅶ若一向量可由一向量组线性表出,则表示法唯一的充要条件是此向量组线性无关 三、向量组

线性方程组解的结构

线性方程组解的结构 11111221n n b a x a x a x =++???+ 22112222n n b a x a x a x =++???+ 33113223n n b a x a x a x =++???+ ………………………………… 1122n n n nn n b a x a x a x =++???+ 表示从变量12 ,n x x x ???到变量12,n b b b ???的线性变换,其中ij a 是常数。确 定了线性变换,它的系数所构成的矩阵(系数矩阵)也就确定,线性变换根矩阵是一一对应的关系。 上式可以表示为以向量x 为未知元的向量方程: Ax=b 线性方程组如果是有解的,称它是相容的,否则称为不相容。 一、 定理4:N 元线性方程组Ax=b (1) 无解的充要条件是R(A)

(2) 若R(A)=R(B),则进一步把B 化成最简型,而对于齐次线性 方程组,则把系数矩阵A 化成最简型。 (3) 设R(A)=R(B)=r ,把行最简型中r 个非0行的非0首个元素所对应的未知数取做非自由未知数,其他的元素取做自由未知数。带入原方程,就可以得到一个关于自由为未知量的表达式。 三、 齐次线性方程组求解步骤:Ax=0 (1) 根据R(A)与n (变量个数)来判断解的结构: A. R(A)

线性方程组求解

第三章 线性方程组 §1 消元法 一、线性方程组的初等变换 现在讨论一般线性方程组.所谓一般线性方程组是指形式为 ?? ? ?? ? ?=+++=+++=+++s n sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111, , (1) 的方程组,其中n x x x ,,,21 代表n 个未知量,s 是方程的个数, ),,2,1;,,2,1(n j s i a ij ==称为线性方程组的系数,) ,,2,1(s j b j =称为常数项. 方程组中未知量的个数n 与方程的个数s 不一定相等.系数ij a 的第一个指标i 表示它在第i 个方程,第二个指标j 表示它是j x 的系数. 所谓方程组(1)的一个解就是指由n 个数n k k k ,,,21 组成的有序数组 ),,,(21n k k k ,当n x x x ,,,21 分别用n k k k ,,,21 代入后,(1)中每个等式都变成恒 等式. 方程组(1)的解的全体称为它的解集合.解方程组实际上就是找出它全部的解,或者说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个线性方程组就基本上确定了.确切地说,线性方程组(1)可以用下面的矩阵 ???? ?? ? ??s sn s s n n b a a a b a a a b a a a 21 222221111211 (2) 来表示.实际上,有了(2)之后,除去代表未知量的文字外线性方程组(1)就确定了,而采用什么文字来代表未知量当然不是实质性的.在中学所学代数里学过用加减消元法和代入消元法解二元、三元线性方程组.实际上,这个方法比用行列式解线性方程组更有普遍性.下面就来介绍如何用一般消元法解一般线性方程组. 例如,解方程组

浅析线性方程组的解法

目录 摘要................................................................................... I Abstract. ............................................................................. II 第一章绪论............................................................................ I 1.1引言 (1) 1.2线性方程组解的求解方法的研究现状 (1) 1.3本文对线性方程组解法的研究结构 (1) 第二章线性方程组理论基础 (2) 2.1 线性方程组概念 (2) 2.2 线性方程组的解的情况分析 (2) 2.3 齐次线性方程组解的结构 (4) 2.4非齐次线性方程组解的结构 (4) 第三章线性方程组的数值解 (5) 3.1 迭代法 (5) 3.1.1 Jacobi方法 (6) 3.2.2 高斯-赛德尔方法 (8) 第四章全文总结和展望 (10) 4.1 全文总结 (10) 4.2 未来展望 (10) 参考文献 (11) 致谢................................................................. 错误!未定义书签。

线性方程组的求解方法 学生:指导教师: 摘要:本文在对线性方程组解的结构的研究背景与意义分析的基础上,对线性方程组的求解方法的研究现状进行了介绍,之后针对线性方程组展开了研究,包括线性方程组的概念、线性方程组的求解方法以及线性方程组的作用等,在对线性方程组有了全面的认识后,基于线性方程组解的结构展开了研究,包括线性方程组解的基本定理,齐次和非齐次线性方程组解的结构形式,以及齐次和非齐次线性方程组解的结构,我们用迭代法中最常用的Jacobi方法中的相似上三角矩阵定理和迭代法中的收敛性讨论线性方程组的数值解法,并用高斯-赛德尔方法进行验证。得到线性方程组的数值解的一般方法。最后,对全文进行了总结和展望。 关键词:线性方程组;数值解;迭代法;Jacobi方法;高斯-赛德尔方法

齐次和非齐次线性方程组的解法整理

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形);写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

相关主题
文本预览
相关文档 最新文档