当前位置:文档之家› 35kV输电线路雷电跳闸率计算及实例分析

35kV输电线路雷电跳闸率计算及实例分析

35kV输电线路雷电跳闸率计算及实例分析
35kV输电线路雷电跳闸率计算及实例分析

万方数据

万方数据

架空输电线路雷击跳闸分析及防雷论文

浅析架空输电线路雷击跳闸分析及防雷摘要:架空输电线路是电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是架空输电线路遭遇雷击,从而影响线路的供电可靠性。文章结合本人从事输电线路工程多年的工作经验介绍了几种架空输电线 路房雷的措施及方法。 关键词:雷击跳闸;防雷;避雷器;接地电阻;保护角 abstract: the overhead transmission lines is an important part of the power system. because it is exposed to the nature, so vulnerable to outside influences and damage, one of the main aspects overhead transmission lines is encountered by lightning, thus influence lines of power supply reliability. based on the transmission line i have engaged in engineering working experience for many years introduces several overhead transmission lines room the measures and methods of thunder. keywords: lightning trip; lightning protection; lightning arrester; grounding resistance; protect horn 中图分类号:tu895 文献标识码:a 文章编号: 1引言 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用;输电线路发生闪络;输电线路从冲击

同力电厂线路雷击跳闸原因分析及防止措施

同力电厂线路雷击跳闸原因分析及防止措施 摘要:针对鹤壁同力发电厂两台机组送出线路连续出现因雷击导致机组跳闸的现象,详细介绍了故障现象,保护动作情况及绝缘损坏情况,以及运行人员处理情况,配合试验院有关专家进行了故障原因的综合分析。得出由于地形特征和线路防雷设计的不完善是导致线路连续雷击跳闸的的根本原因。最后提出加装新型线路防雷措施,改进保护跳闸逻辑,有效地防止了因线路雷击导致的机组跳闸事故。 关键词:线路雷击;原因分析;防止措施 1 前言 2006年6月30日,同力电厂#1、#2机组通过发变线单元接线方式接入系统桃园变的I、II段母线,内桥开关断开,厂用电自带,机组运行正常。19时20分41秒,#1、#2机组运行中突然Ⅰ同桃1、Ⅱ同桃1开关跳闸,机组负荷均为175MW。当时天气为大雨并伴有雷电。当晚两机先后分别启动并网。 2006年9月21日,#2机组通过发变线单元接线方式接入系统桃园变,#2机组带负荷150MW,厂用电本机自带,机组运行正常。0时18分18秒,Ⅱ同桃1开关跳闸。当时为雷雨天气,鹤壁雷电不断。 2 系统概述 同力电厂采用单元制供电方式,#1、2机组分别通过两条供电线路至桃源变电站与220KV系统并列。两条供电线路可以通过短引线采用内桥形接线联络,机组既可以单独通过各自的线路与系统并列运行,也可以通过内桥开关公用一条供电线路与系统并列运行。 系统采用大电流接地系统,#1、#2主变中性点设有接地刀闸,高备变采用中性点固定接地方式。 #02启备变引自一期220kv系统,可根据需要方便的在220KV东(西)母间切换。 3 事件经过 3.1同力6月30日两台机组因线路雷击相继跳闸 2006年6月30日,#1、#2机组通过发变线单元接线方式接入系统桃园变的Ⅱ、Ⅰ段母线,内桥开关断开,厂用电自带,机组运行正常。19时20分41秒,#1、#2机组运行中突然Ⅰ同桃1、Ⅱ同桃1开关跳闸,机组负荷均为175MW。当时天气为大雨并伴有雷电。当晚两机后分别启动并网。 经查:(1)Ⅰ同桃1“光纤差动保护”和“高频距离零序保护”动作,Ⅱ同桃1“高频零序保护”动作;(2)鹤壁电业局检查I同桃线路,发现在52号杆塔处A相绝缘子上下均压环上有雷击痕迹,并分别有被电弧烧成的直径约1公分的两个洞。 3.2同力9月21日#2机组因线路雷击跳闸事件 2006年9月21日,机组通过发变线单元接线方式接入系统桃园变,#2机组带负荷150MW,厂用电由本机带,机组运行正常。0时18分18秒,Ⅱ同桃1开关跳闸。当时为雷雨天气,鹤壁雷电不断。 经查:(1)Ⅱ同桃1“高频距离零序保护”和“光纤差动保护”动作。检查保护录波和线路故障录波器,确认是线路A相接地,故障测距:18.25km,桃园变测距:3.9km。(2)事故后鹤壁电业局检查Ⅱ同桃线路,发现在60号杆塔处与I同桃线路52号杆塔处相同的情形,只是Ⅱ同桃线路A相绝缘子不仅有雷击痕迹而

浅析输配电线路的雷击故障与防雷措施

浅析输配电线路的雷击故障与防雷措施 发表时间:2018-06-25T16:32:48.163Z 来源:《电力设备》2018年第4期作者:郑钊源 [导读] 摘要:输电线路是电网的基本组成部分,常面临各种不同地理环境和气候环境的影响,当不利条件及组合足以导致线路故障时,就会影响线路的安全运行,严重时甚至会形成大面积停电事故。 (广东电网有限责任公司湛江徐闻供电局广东湛江 524000) 摘要:输电线路是电网的基本组成部分,常面临各种不同地理环境和气候环境的影响,当不利条件及组合足以导致线路故障时,就会影响线路的安全运行,严重时甚至会形成大面积停电事故。本文主要对输变电线路雷击故障与防雷措施进行研究分析。 关键词:输配电线路;雷击故障;防雷措施 1.雷电对于输电线路的危害 从输电线路以及电网的安全考虑,雷电的危害主要体现在两个方面:一是雷电放在输电线路上,会引起很高的过电压,导致继电保护动作跳闸,切断运行线路造成巨大损失;考验周围设备的绝缘水平和耐受能力,对人员、设备造成威胁。二是雷电带来巨大电流施加在输电线路上,导致雷电击中点炸毁、燃烧使导线损毁或熔断,巨大电流产生的强大电动力还会造成杆塔等电力设备的机械损伤。 雷电导致的灾害往往不能通过电力系统自身的修复能力自动恢复,造成设备损坏更是需要一定时间和力量进行检修处理。雷电发生集中在春季和夏季,正是生产集中的时期,这一时期的电力中断将会造成极大的经济损失。雷电天气发生在夜晚、环境恶劣地区的可能性较大,更增大了检修的难度。此外,运行中的输电线路比不带电的输电线路遭受雷击的可能性更大。我国每年都有大量因雷电导致停电事故的报道,有效的防雷可以避免这些事故的发生,对于减少经济损失和提高电网安全可靠运行水平具有极其重要的意义。 2.输配电线路遭受雷击的形式 线路遭受雷击的形式主要包括感应雷、直击雷、球形雷。 2.1直击雷 直击雷在发生时候可以让巨大的雷电电流侵入地表,使得被雷击的地方接触的到的各种金属产生很高的对地电压,很容易发生触电事故的发生。同时,由于直接雷击释放出的电流巨大,冲击电压很容易让电力变压器和发电机发生烧毁,也可能造成电线烧毁,或者断裂,因而产生停电,甚至诱发火灾,因此,这种雷电的毁灭性巨大,造成的损失严重。 2.2球形雷 球形雷出现的次数少而不规则,因此取得的资料十分有限,其发生的原理现在还没有形成统一的观点。球形雷能从门、窗、烟囱等通道侵入室内,极其危险。 2.3雷电感应,也称感应雷 雷电感应分为静电感应和电磁感应两种。巨大雷电流在周围空间产生迅速变化的强大磁场;这种磁场能在附近的金属导体上感应出很高的电压,造成对人体或者设备的二次放电,从而损坏电气设备。 3.输配电线路防雷措施分析 3.1建立健全科学合理的整体防雷系统 从整个输配电线路系统而言,要做好防雷措施,首先要从整体上做好防雷规划,从内到外,做到防雷措施的全面覆盖。整体而言,外部可以可以安装避雷针,接闪器等,避免雷电直接打击输配电线路或者是相关的线缆配电箱等基础设施,引起火灾或者事故。同时,内部要做好电磁屏蔽、等电位连接、共用接地系统和浪涌吸收保护器等一些子输配电系统,通过它们可以将引人建筑物内的浪涌电压和浪涌电流泻放到大地,并将其钳位在一定的电压范围内,以完善地保护电气设备。从整体上做好防雷规划,内外覆盖,这是采取具体防雷措施之前的基础性工作。 3.2减小保护角 随着线路保护角的逐渐减小,线路的绕击率呈下降趋势,减小保护角是降低绕击跳闸率比较有效的方法。但是对于已建线路,改变线路保护角可行性较差,并且对于山区地面倾角较大的杆塔,由于受塔头设计的限制保护角不可能大幅度降低,应采取其它有效的绕击防护措施,减小保护角技术经济性不高。 3.3安装塔头避雷针 通过在塔头安装可控放电避雷针,可有效提高杆塔的引雷能力,增强杆塔对其附近导线的雷电屏蔽能力,从而降低雷电绕击导线的概率,减小绕击跳闸率,同时,由于能发生绕击的雷电流一般较小,接地电阻值控制在允许范围内时被吸引至杆塔时也不会产生反击闪络,不增加反击跳闸率。合理的安装方式和安装方法对可控放电避雷针的防护效果非常关键,同时一定要控制好杆塔接地电阻,对不合格杆塔应进行降阻改造,以确保可控放电避雷针发挥更好的防护效果。 3.4架设耦合地线及耦合地埋线 架设耦合地线虽不能减少绕击率,但能在雷击杆塔时起分流作用和耦合作用,降低杆塔绝缘子上所承受的电压,提高线路的耐雷水平。在 220kV 双避雷线线路上架设耦合地线后,耦合系数由0.275增大到0.364,分流作用也明显增大;当杆塔冲击接地电阻为16―100Ω时,耦合地线分流为8%―21.5%,华东电力试验研究所进行的试验测量并提出耦合地线能分流12%― 22%。在接地电阻较大的山区,杆塔所处的地质条件差,电阻率较高(如达到2000 Ω.m),降低接地电阻非常困难时采用在架空线下加装耦合地线,能起到较好的分流和耦合作用,降低雷击跳闸的概率。与耦合地线雷同的耦合地埋线也可以降低接地电阻及起一部分架空地线的作用。国外的运行经验证明:耦合地埋线是降低高土壤电 阻率地区杆塔接地电阻的有效措施之一,曾在一个 20 基杆塔的易击段埋设耦合地线后,10年中只发生一次雷击故障,国外文献介绍可降低跳闸率40%,显著提高线路耐雷水平。 3.5采用差绝缘或不平衡绝缘方式 这种方式一直以来都存在争议,且它也受到杆塔尺寸的限制。差绝缘方式适宜于中性点不接地或经消弧线圈接地的中低压系统,且导线为三角形排列的情况。采用差绝缘方式的同一基杆塔上三相绝缘有差异,下面两相较之最上面一相各增加一片绝缘子,当雷击杆塔或上导线时,由于上导线绝缘相对较“弱”而先击穿,雷电流经杆塔入地,避免了两相闪络。在同杆双回的线路中也有采用不平衡绝缘方式以达

配网输电线路雷击跳闸故障及对策分析

配网输电线路雷击跳闸故障及对策分析 发表时间:2017-03-28T10:39:24.143Z 来源:《基层建设》2016年36期作者:郑晓铭[导读] 文章主要对配网输电线路雷击灾害及防雷接地措施进行分析,避免更多事故发生。 广东电网梅州大埔供电局广东省梅州市 514299 摘要:雷电现象在我们生活中非常常见,通常情况下雷电具有很高的电压,如果雷电击中输电线路将会出现非常严重的安全隐患。为了最大程度地减少安全隐患出现,电力部门需要采用正确的防雷技术,以减少输电线路出现雷击跳闸的现象,减少雷电现象对输电线路的破坏。文章主要对配网输电线路雷击灾害及防雷接地措施进行分析,避免更多事故发生。 关键词:输电线路;雷击;防雷引言 在社会经济快速发展过程中,人们对电能的需求越来越多,这就给电路行业发展提出了严峻的挑战,为了满足人们的用电需求,电力部门架构了更多的输电线路。但是,因为雷击而引起的输电线路运行故障问题越来越多,每年都有因为雷击而引发的停电事故,影响了输电线路设备的安全运行,造成了严重的经济损失。所以,我国的电力行业要加紧输电线路防雷技术的研究,提高电网系统的安全水平。 1配网输电线路雷击跳闸故障分析雷电主要产生于积雨云中,积雨云某些云团带正电荷,某些云团带负电荷,这些正负电荷会对大地产生静电感应,这样地表物体便会产生异性电荷。当这些电荷积聚到一定程度时,云团与云团间电场强度以及云团与大地间电场强度便可把空气击穿,开始放电,产生闪电与巨响,同时形成很大的雷电流,这就是我们通常所说的雷电。 在现阶段,我国的输电线路往往都是建设在比较空旷的地方,而这部分地方恰恰是雷击发生概率比较大的地方。在雷击发生的时候,可以在短时期内给输电线路造成非常大的破坏,在高压线路遭受雷击之后,系统就会做出跳闸和切断线路额反应,整个系统也会因高压形成损害。在雷击发生的地点,如果其周围的绝缘措施和抗高压能力低,就会出现连锁破坏,而造成更大的财产损失,如果周围有居民区还会起人们的生命财产安全造成威胁。众所周知,雷击对高压线路的损害是非常大的,在雷击发生之后,所要进行的维修工作也需要投入大量的人力和财力才能够很好的对其进行修缮。雷击会造成电力的传输失败,人们生活质量也会受到影响,结合上述所讲,输电线路的防雷接地技术就是非常有必要的。应用防雷接地技术,能够有效的降低甚至避免雷击的负面影响,我国的用电质量和效率也会得到很大程度上的提升。 2配网输电线路防雷措施分析 2.1选择合理的路径 不同区域的地理环境和条件存在一定的差异,导致遭受雷电袭击的几率也不同,容易遭受雷电袭击的往往是输电线路的铺设路径存在问题的地方,为此,在选择输电线路的路径时需要尽量避开容易发生雷电袭击的地点,具体要求如下:尽量不要选择环山、水塘、树木等;尽量不要选择土地电阻率会随时发生变化或已经发生变化的地方;尽量避开山谷和峡谷等区域;尽量避开地下水位高和地下有导体矿物质的区域;不要选择阳面的山坡或者土壤条件较好的山地区域。 2.2架空避雷线 为了有效避免其被雷击,应采用架设避雷线的方式来有效规避雷击,在应用这一措施过程中,相关人员应该在线杆的顶部架设避雷线,当此线架设完成之后,线杆之下的输电线路就会受到避雷线的庇护,这样当雷击出现的时候,雷电就会落在避雷线上,然后顺着此线的引导流入到设置好的接地装置中,之后通过装置导入到大地中。所以说,为了确保输电线路能够规避雷击,就应根据实际情况来设置避雷线,在设置过程中,应该对线路的数量进行考虑,通常情况下设置一根避雷线即可,但若是情况特殊,也可以酌情考虑。 2.3安装避雷器 避雷器的使用弥补了避雷线的不足之处,在输电线路上安装避雷器需要设置一个固定的雷电流值,当雷电流值超过固定值时,避雷器就会启动,避雷器和避雷线两者之间进行良好的配合达到分流的目的,将电流导向地面,从而保证输电线路的电压不会出现问题。在避雷器安装时需要选择最佳的铁塔线路,对现有的资源进行合理利用。 2.4安装自动重合闸装置 为了进一步的提高输电线路的防雷能力,不仅应该安装相应的保护装置,还应该安装自动重合闸,而之所以要安装重合闸,是因为很多线路故障的出现都是瞬时性的,尤其是在线路遭受雷击的时候,绝缘子就会出现闪络现象,进而导致跳闸现象出现。所以说,安装自动重合闸是非常有必要的,此闸的存在可以有效地缓解跳闸现象的出现,进而将雷击的不利影响降至最低,确保输电线路的正常运行。据有关部门统计,国内110kV线路及以上高压线路有75%至95%的线路可成功重合闸,电压等级为35kV与小于35kV的输电线路有50%至80%的线路可成功重合闸。因此,可通过对架空输电线路装设自动重合闸装置,来降低输电线路雷击事故率。 2.5提高绝缘水平 绝缘子是输电线路中的重要元件,能够对母线起到固定、支持的作用,让带电导体与大地之间隔绝足够的安全距离。一般来说,绝缘子需要具有很高的电气绝缘强度和很强的耐潮湿性能。但是,由于长期处于交变电场的环境当中,绝缘子的绝缘性能会发生下降,甚至功能完全丧失。如果电网系统的工作人员没有及时对这些性能下降或者功能丧失的绝缘子进行更换,就容易在雷雨天气发生闪络事故。所以,为了维护电网系统的运行安全,必须提高输电线路的绝缘水平,定期对输电线路的绝缘子进行测试与检修。根据我国的相关规定,测试与检修的周期一般为两年,对于零值、低值、有可能发生闪络效应的绝缘子,要及时进行更换维修;对于一些绝缘水平比较低的输电线路,需要增加绝缘子的数量,加长绝缘子的结构长度来进行防雷。 2.6降低接地电阻 使用避雷线和避雷器的防雷效果并不是最好的,为了使输电线路的防雷效果提高,需要对接地的电阻进行调整,让接地电阻的值减小,下面对减小接地电阻的方法进行介绍。一是,使用爆破技术。此种技术是一种新型的技术,主要原理是改变一定区域内土壤的性质,通过爆破的方法将一定区域的地面炸开,将电阻率比较小的物体压入地下,从而改变土壤的导电性能。二是,使用适量的降阻剂。将降阻剂放置在铁塔的附近,让被包裹的电解质、水分等快速地进入土壤,从而达到降低土壤电阻的目标。 2.7中性点接地

220kV巴墩线雷击风险评估及改造措施

220kV巴墩线雷击风险评估及改造措施 摘要:本文通过分析新疆220kV巴墩线雷击跳闸故障,应用ATP-EMPT对巴墩线 进行反击耐雷水平仿真,用电气改进几何法对巴墩线进行绕击耐雷水平计算。结 合上述计算结果进一步计算出全线每基杆塔的反击跳闸率和绕击跳闸率,并对每 基杆塔进行防雷等级评估,根据评估结果对相应评估较弱的杆塔进行改造,提出 相应的改造措施。 关键词:雷电活动变化跳闸防雷评估耐雷水平防雷措施 0 引言 近年来,新疆电网发展迅速,“十三五”期间,雷击造成电网线路跳闸在近几 年有所增加。需要采取有效的防雷措施来避免雷电对电网稳定和安全运行产生的 威胁。针对相应的雷电活动发生规律制定有效地防范措施十分必要,输电线路雷 电防护是一项长期而复杂的工作。220千伏巴墩I、Ⅱ线地形地貌复杂杆塔遭受雷 击风险很高,所以有必要对该线路进行防雷性能评估。根据防雷性能评估结果结 合影响线路耐雷水平的因素,制定出有效的防雷措施。 1 故障简介 220千伏巴墩I、Ⅱ线2013年7月27日投运。2015年4月17日新疆巴州供 电公司所运行的220千伏巴墩I、II线发生的雷击跳闸故障。巡视人员发现巴墩I、II线78号塔大号侧方向左下相(巴墩II线A相)上下均压环、右上相(巴墩I线 A相)下均压环有明显烧伤痕迹及大号侧避雷线(右)悬垂线夹螺帽有明显灼烧 痕迹。判断此处为巴墩I、II线故障点。 综合以上,发现雷电定位系统记录与现场实际故障点塔号以及时间、测距信 息吻合。结合巴墩线这次雷击跳闸故障,有必要对全线进行雷击跳闸风险评估, 并针对评估结果对线路进行防雷改造。 2 线路雷击跳闸率计算 2.1线路反击跳闸率计算 78#塔的塔型为ZE4-SZC3,。地线弧垂按5.5m考虑,导线弧垂按7.5m考虑 雷电流波形参数取值为0.8/50μs[1]。 通过ATP-EMTP对选取的SZC3型杆塔模型进行耐雷水平仿真,依次得到不同 杆塔高度时,使绝缘子发生闪络的最小闪络电流。 78#杆塔反击一相闪络耐雷水平约为56kA。而实际测得的雷电流达-71.5kA, 远大于计算值,可以确定这是一次反击故障。 2.2线路绕击跳闸率计算 我国《交流电气装置的过电压保护和绝缘配合》中规定,线路的绕击输电线 路发生的概率与地形、保护角和杆塔的高度有直接关系。雷电绕击导线的概率计 算公式: 平原地区线路: ——(1) 山区线路: ——(2) 上式中:为线路受雷电绕击率;为线路的保护角(度);h为杆塔高度(m); 图2-1 酒杯塔电气几何模型

根据电气几何模型对10kV配电线路雷击跳闸率的计算

根据电气几何模型对10kV配电线路雷击跳闸率的计算 发表时间:2019-01-23T11:57:01.113Z 来源:《河南电力》2018年16期作者:黄正洋[导读] 本文先分析了对10kV配电线路雷击跳闸率计算的重要性 黄正洋 (江苏科能电力工程咨询有限公司 210000)摘要:本文先分析了对10kV配电线路雷击跳闸率计算的重要性,然后分析了10kV无避雷线线路电气几何模型原理以及根据电气几何模型对10kV配电线路雷击跳闸率的计算。 关键词:电气几何模型;10kV配电线路;雷击跳闸率;计算1对10kV配电线路雷击跳闸率计算的重要性首先我们要知道10kV配电线路是电力系统发、变、输、配、用五大子系统中可以说是配电系统的一个非常重要的组成部分。所以说它主要是承担着向负荷分配电能的重任,那么这样一来的话其安全稳定运行就显得至关重要,可是实际上由于配电线路的绝缘水平低的影响,那么再加上网架结构复杂,就会使其不具备防护直击雷的最基本的能力。除此之外雷电在导线上产生的感应雷过电压实际上我们也知道能够达到500kV以上,这个数字肯定是大大超过了10kV配电线路的基本的绝缘水平。据不完全统计,实际上在电压等级的电网中,发生的雷击跳闸率居高不下不仅如此它还经常有柱上开关、刀闸、避雷器还有变压器、套管等设备在雷电活动时损坏的问题的频繁出现。 当前我们知道的10kV配电线路主要防雷措施就包括安装避雷器、架设避雷线或者说是耦合地线、安装绝缘子还有过电压保护器及架空绝缘导线等措施也可以同时进行。所以说尽管10kV配电网大量使用避雷器可是也难免会出现问题,这主要表现在运行中因避雷器质量、老化等问题而使一些避雷器在雷电活动的时候就很有可能会发生击穿故障,不仅如此击穿后须停电才能处理好发生的问题,那么这在一定程度上也可以说是降低了供电可靠性。在现有线路架设避雷线、或者耦合地线以及架空绝缘导线工程最大的特点也就是量大而且成本高,所以说这些因素就一定是会在很大程度上制约了该项防雷措施的整体的推广。那么假如说是盲目加强线路绝缘的情况下,就会导致雷电波沿线传播从而就会使线路终端避雷器遭受雷电冲击的频次大大的增强,进而就肯定会增大线路终端避雷器损坏的风险。 所以说对10kV配电线路制定的各项防雷措施实际上并未达到良好的防雷效果,不仅如此而且防雷设备的运行维护不当也在很大程度上严重危害了电网的稳定运行。那么就需要建立一套更好的10kV配电线路防雷性能评估体系,不仅如此还一定要以制定科学、合理的防雷策略或者说是形成各项防雷措施的最佳的优化配置为主要目标,然后要保证良好的运行维护方案是降低配网雷害各种故障的一个非常重要的手段。下文将讨论根据输电线路电气几何模型思想从而就可以建立10kV配电线路电气几何模型,那么这样做的结果就是可以实现对其耐雷性能以及防雷策略的有效评估,更重要的就是可以为10kV配电线路防雷策略的制定提供非常重要的依据。 2 10kV无避雷线线路电气几何模型原理分析 这里我们所说的电气几何模型实际上就是将雷电的放电特性跟线路结构尺寸进行紧密联系从而建立的一种判断雷击点的这样一种几何分析计算模型。而且不仅如此它也主要用于无避雷线的配电线路屏蔽保护计算时的几何作图分析法之中。那么实际上对于三角形排列的单回线路而言,可以这样说线路横担长度与双回杆塔是类似的。所以说假如说我们采用三角形排列导线电气几何模型原理的话,上相导线暴露弧就一定会与边相导线暴露弧交于一点,可是从另一个方面来看我们还可以根据暴露弧投影法原理,而去假设杆塔横档长度是相同的这样一来的话,那么上相导线就一定会暴露弧投影从而就会被两边相导线的暴露弧投影所覆盖,然后我们还要注意雷电直击导线的总暴露弧投影长度实际上是与双回杆塔相同的。所以我们就可用双回塔作为分析10kV配电线路电气几何模型原理的典型模型。换句话说也就是对于10kV配电线路而言,实际上击于大地的雷电流在导线上产生的感应雷过电压它是非常可能会造成线路跳闸的问题的。那么在这种情况下我们对于10kV配电线路就必需得考虑雷击大地时,这种情况下能够在导线上产生的感应雷过电压的影响到底是什么。 实际上我们可以对电气几何模型做了一定程度上的改进。首先基于电气几何模型的雷击距理论我们需要考虑的因素可以说是较多的。而相比之下对于水平导体而言,我们知道不同学者得出的雷击距公式也肯定是不同的,可是实际上大部分学者的雷击距公式有一个共同点就是雷电流的一元方程,所以这样来看的话我们就会发现他们未考虑线路高度的差异对击距的影响。这个时候就应该保证计入导体高度的击距公式一定要适用于导体高度在一定的范围不仅如此还要保证雷电流幅值在一定范围内,只有这样才可以保证雷击距公式具有更好的普适性。其次雷电先导发展到架空导线侧边的时候会发生变化,它就会受到地面形状的影响,进而就很有可能会导线和地面被雷击。这个时候我们会发现实际上雷电先导对地击距同对导线击距的比值或者说是击距系数其实是小于1的。另外就是雷击于大地在导线会产生的感应过电压的大小的情况下,也就会在一定程度上导致感应过电压的大小一定是与雷击点到导线的水平距离的大小、或者说是导线高度以及雷电流大小有着非常密切的关系。就比如说我国规程就规定了雷击大地时在导线上产生的感应过电压的大小,通过分析10kV无避雷线线路电气几何模型原理我们就可以顺利地进行根据电气几何模型对10kV配电线路雷击跳闸率的计算分析。 3根据电气几何模型对10kV配电线路雷击跳闸率的计算分析 3.1线路直击雷跳闸率计算 一直以来我国线路防雷计算中判断绝缘是否闪络的情况下,实际上一直是用比较绝缘子串两端出现的过电压以及绝缘子串或者说是空气间隙放电电压方法作为一个非常重要的判据,这里的过电压超过绝缘的放电电压也就说我们说的判为闪络。具体计算过程就是取10kV配电线路波阻抗,然后就可以根据彼得逊法则从而得出线路直击雷耐雷水平。 3.2感应雷跳闸率的计算 我们知道当雷云对线路附近的地面进行放电时,那么就一定会使得先导通道中的负电荷被迅速中和,不仅如此先导通道所产生的电场也会迅速降低,这样一来就一定会使导线上的束缚电荷得到释放,而且还会使沿导线两侧运动形成感应雷过电压。那么假如说是雷电通道中的雷电流在通道周围空间建立了强大的电磁场的情况下,这个时候电磁场的变化也就肯定会使导线感应出很高的电压,然后就会出现静电感应电压和电磁感应电压两者相互叠加的情况进而就很有可能会使导线上产生过电压。 4结语

输电线路雷击跳闸事故分析与防治探讨

输电线路雷击跳闸事故分析与防治探讨 发表时间:2017-08-08T16:52:14.253Z 来源:《电力设备》2017年第10期作者:王慧莉[导读] 摘要:随着社会的发展,人们生产生活对电力的需求不断提升,输电线路规模跟着逐年扩大,而输电线路又是最易受雷击的地面基础供电设施之一 (绵阳启明星集团有限公司) 摘要:随着社会的发展,人们生产生活对电力的需求不断提升,输电线路规模跟着逐年扩大,而输电线路又是最易受雷击的地面基础供电设施之一,近年来雷电、台风等气候现象频发,,虽电网防雷技术有所上升,但雷击仍是导致跳闸事件发生的首要原因,威胁着整个电网安全,同时影响人们正常用电,因此积极分析输电线路雷击跳闸事故分布、原因是很有必要的,为防治措施的提出提供重要依据,时电网安全得到良好保障。 关键词:输电线路;雷击跳闸;防治措施 近年来我国气候环境有了较大变化,雷电、台风等气象活动更加频繁,它们是正常自然现象,对电网安全威胁不可避免,因此输电线路薄弱处极易发生跳闸事故,造成范围大小不等的片区停电,对人们正常生活及社会经济生产都带来了较大影响,为降低及预防输电线路雷击跳闸事故的发生,首先应对故障原因展开分析,为措施的提出和实施做好铺垫。 1 输电线路雷击跳闸事故特点分析 对近几年来雷击跳闸事件分析发现有以下几方面特点:(1)电压等级,统计发现输电线路雷击事件发生率由高到低位居前3位的电压等级为220kV、500kV和33kV。(2)地形地貌,输电线路遭雷击比例有多到少分别为山地、丘陵和平原。(3)输电线路遭雷击位置,最多被雷击处为边导线,其次为中相导线,再次是三相导线。(4)线路地线对边导线保护角大小因素,保护角超出15°遭雷击较多。分析上述特点可知220kV级电压、山地或丘陵的边导线,以及线路地线和它保护角超出15°的线路是防雷击的重要对象。 2 输电线路雷击跳闸事故原因分析 从上述输电线路雷击跳闸事故特点可以看出发生雷击的重要因素有地形。除此之外还包含接地电阻、绕击和反击影响两个关键方面。(1)接地电阻-接地电阻直接代表着输电线路的电阻的传导能力,它是将雷电传导至大地的最基本手段。需要注意的是其电阻还和时间长短存在密切相关性,早期在进行降阻处理时,基本都符合基本要求,随着时间的推延,使用时间长降阻效果会跟着越来越弱,这会使接地电阻呈逐年上升趋势。(2)绕击和反击影响-线路落雷形式来看,绕击稍多于反击。 3 输电线路雷击跳闸事故防治措施 3.1选择适合的地形架设输电线路 山区、丘陵是输电线路雷击跳闸事故多发地,因此可知地形是雷击发生的重要因素,由此可知选择适宜架设点是预防雷击的首要环节。电网设计人员在输电线安置前,应先清楚考察地势,设计出尽量避免不利地形的优化方案,比如河谷、山区风口处、峡谷顺风口等,这些都是雷电暴走途径;地面以下存在导电体矿物质;电阻率发生异常的土壤地带;周边为丘陵的潮湿盆地位置;断层处;岩石、土壤交界处等等,选好地形架设能有效降低雷击跳闸事件的发生率。 3.2降低接地电阻 首先应择取自然电阻率低的位置设架。当接地电阻难以满足需求时,其一,对水平接地体进行扩延,如接地体多根放射状分布、延伸接地体长度、设接地网等等;其二,使用竖井接地极、深埋接地极等垂直接地体;其三,做降阻剂填充处理,降阻剂应具备合理、经济、性能稳定、无腐蚀性等特点;其四,对于周边土壤有电阻率异常或降低的现象,可采用换土法来替换附近土体;同他多回线路可使用不平衡绝缘方法来降低雷电对输电线路的损害范围;此外还有爆破接地、水体接地等应用较少的降低接地电阻法。 3.3进一步提升输电线路绝缘水平 对山区、丘陵等雷击多发地域,以及雷击遭受频率较高或是预估高发位置,可使用增加绝缘子片数量的方式,来提升线路抗雷击能力。输电线路装置都具备有避雷线,而当杆塔全部高度超出40m后,每增加10m就应跟着增加1片绝缘子(146mm绝缘子)。另外常用来提升耐雷水平的方法还有增加塔头空气间距、另外改用大爬距绝缘子等。 3.4尽量减小避雷线架设保护角 通过输电线路雷击跳闸事故特点分析发现,边导线保护角也是造成雷击的重要危险因素。通常情况下制药输电线电压等级不低于110kV都需全线架设避雷线,并注意其装设方式同雷击可能性大小的密切关系。(1)单回输电线路,330kV电压等级线路及其以下级电压线路保护角最好不超过15°;500kV-750kV电压等级输电线路架设的避雷线保护角还要更小,最好不超出10°。(2)同塔双回及多回线路,110kV输电线路避雷线应不超出10°;而220kV及其以上电压等级书店线路避雷线保护角则不宜超出0°。 除上述常用防治雷击措施外,还可加强线路避雷器,如根据雷击特点安装符合外套的氧化锌避雷器,反击雷多的杆塔应三相全装备,邻杆塔也在内;绕击雷多的杆塔,在绕击一侧或两侧进行安装,来节约经济成本。另外,自动重合闸、安装招弧角、实施可控避雷针技术、应用消弧线圈接地式等也是耐雷、降低输电线路跳闸事故发生的有效措施。 结论 综上所述,电力是人们生产生活不可缺少的重要来源,近年来雷电、台风等自然气象的频出,为保证持续供电,降低输电线路雷击跳闸事故发生率是其重要举措,怎样做到防雷,首先应对以往雷击事故多发位置、地域等特点展开分析,掌握输电线路雷击高危因素,总结发现寻求防雷法应将输电线路运行方式、路线途经地域雷电强度、地貌特点、土壤电阻率等情况做全面考虑,不同条件下的输电线路采取相应科学的防雷措施,因地制宜才能取得更优的避雷效果,减少电力系统经济成本,降低输电线路雷击跳闸率,保障电网正常供电。 参考文献: [1]彭向阳,周华敏,谢耀恒等.同塔多回输电线路几种防雷击跳闸措施的评估[J].南方电网技术,2012,(3):28-32. [2]韩斌,杨金成.关于一起雷击跳闸事故的分析及防治措施探讨[J].科技与创新,2014,(19):37-38. [3]杭帅.输电线路雷击跳闸和防治[J].城市建设理论研究(电子版),2011,(23).

线路雷击跳闸的原因及条件

线路雷击跳闸的原因及条件 本文介绍了线路雷击跳闸的二大条件及主要原因。 一般情况下35kV线路由于绝缘水平不是很高,雷闪放电引起导线对地闪络是不可避免的,线路因雷击而跳闸必须具备两个条件: 1雷击时雷电过电压超过线路的绝缘水平引起线路绝缘冲击闪络,但其持续时间只有几十微秒,线路开关还来不及跳闸。 2冲击闪络继而转为稳定的工频电弧,对35kV线路来说就是形成相间短路,从而导致线路跳闸。 因此对于全线架设避雷线的线路,线路雷击跳闸主要取决于: (1)线路防雷水平的高低雷击档距中避雷线时,一般情况下空气间隙不会发生闪络,而雷电流在向两边杆塔传播时,由于强烈的电晕,当传播到杆塔时,幅值已大为降低,如果杆塔的接地电阻不高,杆塔电位的升高不足以引起绝缘子串发生闪络。而当雷击杆塔引起反击过电压时,雷电流引起杆塔的塔顶电位升高,使绝缘子串电压升高,当绝缘子串电压超过绝缘子串闪络电压时,绝缘子串就可能发生闪络由于塔顶电位的升高和绝缘子串电压的大小和与杆塔冲击接地电阻值直接相关,因此接地电阻越大,塔顶电位越高,绝缘子串上的电位差也就越大,这样就容易造成绝缘子串的闪络,甚至造成多串绝缘子串的同时

闪络,导致相间短路,引起跳闸。由于全线架设避雷线,雷绕过避雷线的保护作用击于导线的概率相对就极低。四川中光防雷。 (2)系统中性点运行方式我国规程规定,35kV系统单相接地电容电流小于10A时,中性点采用绝缘运行方式。如果35kV系统单相接地电容电流超10A,当线路因雷击引起导线单相对地短路后,短路点的单相接地电流往往就以弧光形式出现,这种弧光不易自行熄灭,时燃时灭,这样就容易在系统产生弧光过电压,危及一些绝缘水平较低的电气设备,并且如果这时线路又遭雷击引起其它相短路的话就形成了相间短路,线路马上跳闸。因此系统采用中性点经消弧线圈接地运行方式就是利用单相接地时消弧线圈产生的感性电流补偿接地点的容性电流,使接地电流变小,并自动熄弧,接地故障消失系统恢复正常.

浅论架空输电线路雷电绕击与反击的识别

浅论架空输电线路雷电绕击与反击的识别 摘要:由于防雷与接地措施不到位而引发的跳闸等事故的频繁发生,给经济社 会的发展带来了很多的不便,因此,加强架空输电线路的防雷接地的相关研究是 非常必要的。反击主要靠提高线路绝缘水平、降低杆塔接地电阻来提高耐雷水平,而绕击主要靠改进线路保护角等方式来降低绕击率。对雷击故障类型进行辨识可 以为防雷设计提供依据,有针对性地采取防雷措施,可提高线路防雷水平。 关键词:架空输电线路雷电绕击反击识别 1 架空输电线路的雷电危害 雷电危害大多发生在春夏两季,但是,它也会受不同地区地理环境差异的影响。雷电对输电线路的危害主要表现在以下几方面:一是,雷电自身的高热效应 危害。当遇到输电线路时,雷电的高热效应会转变为电流,使被击中部位瞬间产 生极高的热能,导致此段输电线路被融化,进而燃烧起来。二是,雷电所产生的 电磁场危害。在雷电形成的过程中伴有电磁效应,当输电线路被雷击中时,这部 分电磁效应会在雷击部位形成交变电磁场,使得电路中的电流量瞬间增大,导致 线路高温燃烧。三是,雷电附带的高压效应危害。雷电形成的瞬间电压通常为高压,能够达到十几万伏以上。这种高压在雷击点会对输电线路上的电气设备造成 极大的攻击,导致输电线路被烧坏、出现短路的情况,甚至还会引发更严重的事故。四是,雷电所发出的电波危害。电波也是雷电附带的一种现象,它经常会干 扰防雷装置的正常工作,使其无法有效发挥防雷功能,变为放电器反击输电线路。 2 架空线路雷击跳闸分析 雷电直击、绕击、反击、直击(雷直击铁塔顶部、雷直击避雷线中央)和反 击(过高的接地电阻,造成塔顶电位大幅度上升)现象大体相同,其耐雷水平在 规程中也是做统一规定,由于篇幅有限,在这我们把它们列入一起进行阐述,而 绕击现象与直击和反击不同,它也是引起高压送电线路跳闸的主要原因,也是我 们今后防雷工作的重点。 雷电直击、反击跳闸一般雷电流较大,如500kV典型铁塔反击耐雷水平可达125kA~175kA,雷电反击一般有下列特征:a.多相故障一般是由直击引起; b.水 平排列的中相或上三角排列的上相故障一般是由雷电反击引起;c.档中导地线之 间雷击放电(极为罕见的小概率事件)的,一般是雷电直击、反击引起;d.一次 跳闸造成连续多级铁塔闪络的,有可能是雷电直击、反击引起。 雷电绕击导线引起绝缘闪络对应的雷电流幅值较小,如 500kV线路绕击耐雷 水平为22kA~24kA。理论分析和国内外实践经验表明超高压线路尤其是山区线路存在明显的绕击现象。雷电绕击故障一般有下列特征: a.雷电绕击一般只引起单 相故障; b.导线上非线夹部位有烧融痕迹(有斑点或结瘤现象或导线雷击断股)的,一般是雷电绕击引起;c.水平排列的中相或上三角排列的上相导线一般不可 能雷电绕击跳闸 d.水平或上三角排列的边相或鼓形排列的中相有可能雷电绕击;e.雷电绕击电流与导线保护角和塔高度有关,当雷电流幅值较大时,绕击的可能 性较小。 对于雷电反击故障,降低接地电阻、加强线路绝缘、加装耦合地线、安装线 路避雷器比较有效,对于雷电绕击故障,减小避雷线保护角、安装线路避雷器、 加装耦合地线比较有效。对于双回路或多回线路,差绝缘配置有一定效果。 3 输电线路雷电过电压识别判据 3种雷电过电压的电流行波区别主要体现在三相电流行波相似程度以及电磁

反击跳闸率计算详细说明

反击跳闸率计算说明 1.反击跳闸率定义: 雷击跳闸率是指在雷暴日数40=d T 的情况下、100km 的线路每年因雷击而引起的跳闸次数。它是由绕击跳闸率和反击跳闸率组成。而反击跳闸率是指在雷暴日数40=d T 的情况下、100km 的线路每年因雷击杆塔后引起对导线的逆向闪络发生跳闸的次数。 2.规程法详细计算说明: 规程法中的线路反击计算,工程上应用起来简单方便,而且它经过了实践的检验,能够满足目前我国一般输电线路的雷电反击系统设计要求。 运行经验表明,在线路落雷总数中雷击杆塔所占的比例与避雷线根数及地形有关。雷击杆塔次数与落雷总数的比值称为击杆率(g ),规程推荐的g 值如表1所示。 表1 击杆率(g ) 地 形 避雷线根数 0 1 2 平原 1/2 1/4 1/6 山区 — 1/3 1/4 雷击塔顶时,雷电流的分配状况如图1所示: 图1 雷击塔顶时的雷电流分布 由于一般杆塔不高、其接地电阻i R 较小,从接地点反射回来的电流波立即到达塔顶,使入射电流加倍,因而注入线路的总电流即为雷电流i ,而不是沿雷道 波阻抗传播的入射电流2 i 。 由于避雷线的分流作用,流经杆塔的电流i i 将小于雷电流i ,它们的比值β称 为杆塔分流系数:i i t =β,总的雷电流:g t i i i +=。 杆塔分流系数β的值在0.86~0.92的范围内,各种不同情况下的β值可由表2 i R i R i R t i t L 2 g i 2 g i i

查得。 表2 一般长度档距的线路杆塔分流系数β值 线路额定电压/kV 避雷线根数 β 110 1 0.90 2 0.86 220 1 0.92 2 0.88 330 2 0.88 500 2 0.88 规程法认为雷击塔顶时绝缘子串上的过电压包含四个分量: (1) 杆塔电流t i 在横担以下的塔身电感L a 和杆塔冲击接地电阻R i 上造成的压降使横担具有一定的对地点位u a 。 )(dt di L i R dt di L i R U a i t a t i a +=+=β 式中dt di 为雷电流波前陡度,可取平均陡度,即)/(6 .21s kA I T I dt di μ==,其中 I 为雷电流幅值(kA),1T 为波前时间(μs)。式中横担以下的塔身电感L a 的值可由 表3查得的单位高度塔身电感L 0(t)乘以横担高度h a 求得即t a t a t a h h L h L L =?=)(0, 其中L t 为杆塔总电感。代入上式可得: )6.2(t a t i a h h L R I U ?+=β 表3 杆塔的电感和波阻抗参考值 杆塔型式 杆塔单位高度塔身电感L 0(t)(μH/m) 杆塔波阻抗Z t (Ω) 无拉线钢筋混凝土单杠 0.84 250 有拉线钢筋混凝土单杠 0.42 125 无拉线钢筋混凝土双杠 0.42 125 铁 塔 0.50 150 门型铁塔 0.42 125 (2) 塔顶电压u top 沿着避雷线传播而在导线上感应出来的电压u 1,与上一分量u a 相似,杆塔电流i t 造成的塔顶电位为: )(dt di L i R dt di L i R u t i t t t i top +=+=β 式中L t 为杆塔总电感。 应该指出,如果杆塔很高(例如大于40m),就不宜再用一集中参数电感L t 来表示,而应采用分布参数杆塔波阻抗Z t 来进行计算,其值可以在表3中查得。 因塔顶电压波u top 沿避雷线传播而在导线上感应出来的电压分量u 1为: )6 .2(1t i top L R I k ku u +==β 其中,k 为考虑冲击电晕影响的耦合系数,可按下式得到

浅析输电线路雷击跳闸及防范措施

浅析输电线路雷击跳闸及防范措施 [摘要]阐述了薛家湾地区110—220kV线路投运以来雷击跳闸情况,对雷击原因进行了较详细的分析和判断,给出了判别绕击雷和反击雷的一般性原则,并对如何防止和减少110--220kV线路雷击提出了对策。 【关键词】输电线路;雷击;跳闸 1.前言 薛家湾地区地处鄂尔多斯高原东南部,海拔高度820—1584.6m,本地区内大部分地区沟谷发育,沟网纵横密布,地表被分割,呈支离破碎状。由于地形造成本地区雷击线路跳闸事故频繁发生,给线路的安全稳定运行带来了极大的危害。本文针对历年来的线路雷击跳闸事故进行分析,提出防范措施。 2.110--220kV线路雷击跳闸统计 薛家湾地区输电线路历年雷击跳闸统计如下表1。 表1 历年雷击线路跳闸情况表 序号线路名称电压等级(kV)跳闸时间故障情况 1 薛万线110 2001.7.21 119#塔A相瓷绝缘子第一片炸碎 2 薛万线110 2001.9.11 43#和44#杆A、C相绝缘子闪络 3 薛清线110 2002.5.27 34#杆避雷线炸伤一股 4 薛万线110 2005.8.24 182#B相小号侧距绝缘子4米处导线被雷击断9股,A相合成绝缘子闪络,C相导线有烧伤痕迹。 5 薛清线110 2002.6.25 36#C相第4片瓷瓶闪络。 6 薛清线110 2003.4.22 28#B相瓷瓶闪络。 7 薛万线110 2006.8.31 183#塔C相大号侧瓷绝缘子4片闪络,B相1片瓷绝缘子闪络。 8 万永线220 2007.7.22 65#塔A、B相大号侧、C相小号侧合成绝缘子闪络。 9 万永线220 2008.7.20 76#塔A相合成绝缘子闪络。 10 薛永线220 2012.6.21 4#塔B相合成绝缘子与横担连接处有放电现象,合成绝缘子闪络。 3.跳闸情况分析 由于本地区所有杆塔均处于山顶或山腰上,线路基本是布置在山上或跨越山谷,地形条件复杂,雷电活动相当频繁并容易产生畸变;杆塔所处位置地质条件较差,降低杆塔接地冲击电阻比较困难而使它的耐雷水平较低。线路极易遭受雷击。 线路遭受雷击跳闸的原因有反击和绕击两种,自现场查明雷害事故时,尤其要区分雷击事故是绕击还是反击引起的。区分绕击与反击的几条原则如表2。当雷电流较大,接地电阻较大时,则雷电的反击可能性较大;反之,雷电流较小,接地电阻较小,一旦发生雷电闪络时,则绕击的可能性较大。当发生绕击时,往往是单基单相或两基同相;而反击时,则一基多相或多基多相闪络。地形对绕击的影响较大,特别是山坡或山顶较易遭绕击,而耐雷水平较低相宜受反击[1]。 分析历年来线路遭受雷击跳闸跳闸记录及分析记录,薛万线遭受雷击反击较多,特别是43#和44#杆A、C相绝缘子闪络,由于接地引下线与杆塔连接不好,是造成反击的主要原因。万永线两次雷击中,绕击和反击各占一次,通过分析比

相关主题
文本预览
相关文档 最新文档