当前位置:文档之家› (整理)地源热泵与传统空调运行费用比较.

(整理)地源热泵与传统空调运行费用比较.

(整理)地源热泵与传统空调运行费用比较.
(整理)地源热泵与传统空调运行费用比较.

江西某电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较:

制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。

选用地源热泵机组LTLHM-370,制冷量1300KW,功率245.4KW;制热量1400KW,功率324.6KW。

循环泵功率(估算):37KW(一用一备)

补水泵功率(估算):4KW(一用一备)

地埋管循环泵功率(估算):30KW(一用一备)

冬季使用一台机组。

A、地源热泵系统,冬夏两用

·夏季各设备的配电功率

· a.地源热泵机组:夏季245.4kW/台*2台。

· b.空调侧循环泵:37kW/台。

· c.地埋管侧循环泵:30kW/台。

· d.空调水电子水处理仪:0.2 kW/台。

· e.埋管侧电子除垢仪:0.2 kW/台。

· f.补水泵:4kW/台。

·地埋管热泵工程运行费用如下:

· 1、电价按0.80元/KWH。

· 2、夏季制冷90天,每天间歇运行8小时。

· 3、空调同时使用率取0.8。

· 4、机组运行率取65%。

夏季运行费用:

90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。

·冬季各设备的配电功率

· a.地源热泵机组:夏季324.6kW/台*2台。

· b.空调侧循环泵:37kW/台。

· c.地埋管侧循环泵:30kW/台。

· d.空调水电子水处理仪:0.2 kW/台。

· e.井水电子除垢仪:0.2 kW/台。

· f.补水泵:4kW/台。

·地埋管热泵工程运行费用如下:

· 1、电价按0.80元/KWH。

· 2、冬季制热120天,每天间歇运行8小时。

· 3、空调同时使用率取0.8。

· 4、机组运行率取65%。

冬季运行费用:

120×8×0.8×(0.2×2+4+30+324.6+37)×65%×0.8=15.8万元。

B、水冷冷水机组和燃油锅炉

选用水冷冷水机组LTLS-280两台,制冷量1021KW,功率243KW。另选用水冷冷水机组LTLS-160一台,制冷量550KW,功率130KW。

循环泵功率(估算):37KW(一用一备)

补水泵功率(估算):4KW(一用一备)

冷却塔循环泵功率(估算):30KW(一用一备)

·夏季各设备的配电功率

· a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台

· b.空调侧循环泵:37kW/台。

· c.冷却塔循环泵:30kW/台。

· d.空调水电子水处理仪:0.2 kW/台。

· e.冷却水电子除垢仪:0.2 kW/台。

· f.补水泵:4kW/台。

·冷水水冷工程运行费用如下:

· 1、电价按0.80元/KWH。

· 2、夏季制冷90天,每天间歇运行8小时。

· 3、空调同时使用率取0.8。

· 4、机组运行率取65%。

夏季运行费用:

90×8×0.8×(0.2×2+4+37+243×2+130+30)×65%×0.8=20.58万元。

冬季各设备的配电功率

选用燃油锅炉机组LTR-100一台,制热量1163KW,燃油量106. 1Kg/h。

· a.燃油机组:耗油量(轻油):106.1Kg/h

· b.空调侧循环泵:37kW/台。

· c.空调水电子水处理仪:0.2 kW/台。

· d. 补水泵:4kW/台。

·冬季燃油锅炉工程运行费用如下:

· 1、电价按0.80元/KWH。

· 2、冬季制热120天,每天间歇运行8小时。

· 3、空调同时使用率取0.8。

· 4、小时耗油量106.1Kg,若油价为4.80元/㎏。

冬季运行费用:

120×8×0.8×(0.2×2+4+37)×65%×0.8=1.65万元。

油价:106.1Kg/h×120×10×4.8×0.8=48.89万元。

冬季总运行费用:50.54万元。

C、水冷冷水机组和空气源热泵

·夏季各设备的配电功率

a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台

· b.空调侧循环泵:37kW/台。

· c.冷却塔循环泵:30kW/台。

· d.空调水电子水处理仪:0.2 kW/台。

· e.冷却水电子除垢仪:0.2 kW/台。

· f.补水泵:4kW/台。

·冷水水冷工程运行费用如下:

· 1、电价按0.80元/KWH。

· 2、夏季制冷90天,每天间歇运行8小时。

· 3、空调同时使用率取0.8。

· 4、机组运行率取65%。

夏季运行费用:

90×8×0.8×(0.2×2+4+37+243×2+130+30)×65%×0.8=20.58万元。

冬季各设备的配电功率

选用风冷机组LTLF-500两台,制热量578.7KW,功率152.2KW。

循环泵功率(估算):37KW(一用一备)

补水泵功率(估算):4KW(一用一备)

· a.空气源热泵机组:152.2 kW/台*2台。

· b.辅助电加热:360kW/台。

· c.空调侧循环泵:37kW/台。

· d.空调水电子水处理仪:0.2 kW/台。

·冬季空气源热泵工程运行费用如下:

· 1、电价按0.80元/KWH。

· 2、冬季制热120天,每天间歇运行8小时。

· 3、空调同时使用率取0.8。

· 4、机组运行率取65%。

冬季运行费用:

120×8×0.8×(0.2+37+360+152.2×2)×65%×0.8=28.0万元。

D、空气源热泵风冷冷、热水中央空调机组

选用风冷机组LTLF-500五台,制冷量536.1KW,功率164KW。制热量578.7KW,功率152.2KW。冬季使用两台。

循环泵功率(估算):37KW(一用一备)

补水泵功率(估算):4KW(一用一备)

· a.空气源热泵机组:173 kW/台*2台。

· b.辅助电加热:360kW/台。

· c.空调侧循环泵:37kW/台。

· d.空调水电子水处理仪:0.2 kW/台。

·夏季各设备的配电功率

· a.水冷冷水机组:夏季164kW/台*5台。

· b.空调侧循环泵:37kW/台。

· c. 空调水电子水处理仪:0.2 kW/台。

·空气源热泵工程运行费用如下:

· 1、电价按0.80元/KWH。

· 2、夏季制冷90天,每天间歇运行8小时。

· 3、空调同时使用率取0.8。

· 4、机组运行率取65%。

夏季运行费用:

90×8×0.8×(0.2+164×5+37)×65%×0.8=25.6元/㎡。

冬季各设备的配电功率

· a.空气源热泵机组:152 kW/台*6台。

· b.辅助电加热:1000kW/台。

· c.空调侧循环泵:45kW/台*2台。

· d.空调水电子水处理仪:0.2 kW/台。

·冬季空气源热泵工程运行费用如下:

· a.空气源热泵机组:173 kW/台*2台。

· b.辅助电加热:360kW/台。

· c.空调侧循环泵:37kW/台。

· d.空调水电子水处理仪:0.2 kW/台。

·冬季空气源热泵工程运行费用如下:

· 1、电价按0.80元/KWH。

· 2、冬季制热120天,每天间歇运行8小时。

· 3、空调同时使用率取0.8。

· 4、机组运行率取65%。

冬季运行费用:

120×8×0.8×(0.2+37+360+152.2×2)×65%×0.8=28.0万元。

3、比较结果:

注:1、以上各形式运行费用是在同条件下对比。

地源热泵系统冬夏季负荷不平衡时,可在末端串联冷却塔。

地源热泵与传统空调运行费用比较

XXX电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245. 4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。

· e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、夏季制冷90天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。·冬季各设备的配电功率 · a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、冬季制热120天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 冬季运行费用:

中央空调系统运行费用概算

中央空调系统运行费用概算 一、亘元大厦中央空调工程方案简介 亘元大厦为综合办公楼,框架结构,地下一层,地上十四层,建筑面积为36887㎡,总高度为H=,属于一类高层建筑。该工程空调系统为风机盘管加新风的形式,冷源由两台螺杆式水冷机组提供,冬季采暖采用风机盘管+地板敷设采暖方式,热源为燃气锅炉+板换机组。中央空调系统主要设备参数见下表: 1、末端设备 序号设备名称型号规格 单 位 数 量 备注 1 吊顶式新风 机组(新风工况) TF3D型L=3000m3/h Q冷= Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台8 K1 2 卧式新风机 组(新风工况) TF4DW型L=4000m3/h Q冷= Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 1 K2 3 吊顶式新风 机组(新风工况) TF5D型L=5000m3/h Q冷= Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 3 K3 4 吊顶式新风 机组(新风工况) TF6D型L=6000m3/h Q冷= Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 2 K4 5 卧式新风机 组(新风工况) TF06W型L=6000m3/h Q冷= Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 2 K5 6 卧式风机盘 管 FP-34WAX型L=340m3/h Q冷= Q热= N=40W H=30Pa 出口噪音<40dB(A) 后回风箱 台 3 53 7 卧式风机盘 管 FP-51WAX型L=450m3/h Q冷= Q热= N=54W H=30Pa 出口噪音<42dB(A) 后回风箱 台 5 74 8 卧式风机盘 管 FP-68WAX型L=600m3/h Q冷= Q热= N=72W H=30Pa 出口噪音<44dB(A) 后回风箱 台 8 9 卧式风机盘 管 FP-85WAX型L=730m3/h Q冷= Q热= N=92W H=30Pa 出口噪音<46dB(A) 后回风箱 台 6 5 2、制冷机房(含锅炉房/水泵间)设备 序号设备名称型号规格 单 位 数 量 备注 1 双螺杆半封 闭冷水机组 30HXC400A;制冷量1392KW;输入功率279KW。台 2 开利 2 燃气锅炉 GE-615-1020型;额定热功率= MW;N=;G=;耗 气量130m3/h 台 2 泰州安信 3 燃气锅炉型;额定热功率= MW;N=;G=;耗气量h 台 1 广州迪森 4 热水循环泵KQW80/2型;流量=h;扬程=28m;N= 台 4 3用1备

河南某小区水源热泵中央空调工程投标文件_secret

灵宝市XXX小区 水源热泵中央空调工 技 术 方 案 与 预 算 编制单位: 单位地址: 联系电话: 编制日期:二0一0年三月

目录 一、工程概况 (2) 1.1 工程说明 (2) 1.2 设计依据 (2) 1.3 工程安装说明 (3) 二、空调系统及组成说明 (5) 2.1空调系统说明 (5) 2.2 空调相关图纸(见附页) (5) 2.3 建筑空调面积汇总、冷负荷及末端的确定 (5) 2.4空调系统组成说明 (6) 2.5主要设备表 (9) 2.6工程预算 (10) 2.6.1概算汇总表 (10) 2.6.2机房设备及安装预算 (11) 2.6.3室外管网及深井预算 (17) 2.6.4末端设备及安装预算 (22) 2.6.5分户计量工程预算 (27) 2.7 工程运行分析 (31)

一、工程概况 1.1 工程说明 本工程由住宅和商业楼组成,1#、7#楼为综合楼,一到二层为商业楼,三层以上为住宅楼, 3#--5#楼为六层住宅楼,,外加一栋二层商业楼。总建筑空调面积29988平方米(不含6#楼),本建筑属常规民用建筑舒适性空调,采用概算法进行设计。 本小区住户188户;商业门面房22套,商场一栋(二层) 1.2 设计依据 1.2.1 室内外计算参数 名称干球温度(℃)湿球温度(℃)室外平均风(m/s) 夏季37.20 25.90 2.90 冬季-7 - 4.4 名称夏:温度 (℃) 相对湿 度(%) 冬:温度 (℃) 相对湿 度(%) 新风量 (m3/h) 住宅24-26 《65 18-20 》40 30 商场26-27 55-65 15-18 30-40 20 1.2.3 设计依据 《办公建筑节能设计标准》 GB50189-2005。 《河南省公共建筑节能设计标准实施细则》DBJ41/075-2006。 《采暖通风与空气调节设计规范》GB50019-2003(2003年版)。 《高层民用建筑设计防火规范》GB50045-95(2005版)。 《办公建筑设计规范》JGJ67-2006。

地源热泵造价与运行费用对比

目录 一、公司简介。。。。。。。。。。。.。。。。。。。。。。2 二、标志性工程案例。。。。。。。。。。。。。。。。。。。3 三、地源热泵技术原理介绍。。。。。。。。。。。。。。。。6 四、冷暖方式的分析。。。。。。。。。。。。。。。。。。。15 五、设计方案说明。。。。。。。。。。。。。。。。。。。。17 六、系统设计方案。。。。。。。。。。。。。。。。。。。。20 七、投资概算及运行费用对比。。。。。。。。。。。。。。。25 八、补充说明。。。。。。。。。。。。。。。。。。。。。。29 九、附件(图纸、企业资质及相关政策文件)。。。。。。。。30

一、公司简介 浙江亿能建筑节能科技有限公司其前身是台州亿能建筑节能科技有限公司,于2010年4月由浙江省工商行政管理局批准正式更名,是台州首家集科技、设计、培训、咨询、新能源投资、建筑节能、环境保护于一体的科技型企业,公司成立至今一直从事于节能、环保工作。随着人们生活水平的不断改善与提高,环境保护意识的日益增强,国家政府大力提倡减排,公司于2010年5月在山东滨州先后成立了“浙江亿能建筑节能科技有限公司滨城分公司”、“滨州市艾斯达节能材料有限公司”,致力于建筑节能新技术与新产品的开发与利用、节能环保型中央空调系统配件与设备的研发与推广,形成产品系列化。 目前,公司已经建立了包括生产、营销、采购、供应、质量控制、设计、决策等在内的科学、高效的管理体系,为公司的迅速发展提供了组织机构和管理制度保障,使公司呈现良好的发展态势。现与中国建筑科学研究院建筑环境与节能研究院等多家科研机构建立了战略合作同盟体,可以为客户提供各种建筑节能方案和先进的节能设备。 公司08年度被浙江省科学技术协会、浙江省科技报社评为“浙江省优秀创新型企业”,被中国质量诚信企业协会、中国品牌价值评估中心评为“浙江省重质量守承诺创品牌”单位,暨“首批三满意单位”。2008年12月份公司参与了国家4个标准的制定:①地源热泵系统经济运行标准;②溴化锂吸收式冷水机组能效限定值节能标准;③地源热泵机组能效限定值及能源效率等级标准;④商业或工业用及类似用途低温空气源热泵机组标准,其中地源热泵系统经济运行标准由我司参与主编。2009年6月,我司与台州职业技术学院于市政府签订了“台州市校企校地合作协议书”。 公司始终坚守“高效、节能、环保”为重的经营理念及“诚信、团结、创新”的企业精神,以推广建筑节能事业为目标,以缓解能源紧张,降低能源消耗为己任,大力促进可再生能源应用和节能环保项目的推广,为加快建设“十一五”规划提出的能源节约型社会做出自己的贡献。亿能人以精湛的合作团队,凭借先进的技术真诚希望与国内外的客商携手共创节能型社会!

水源热泵中央空调(免费).

勤诫创业 技术文件Page 1 of 4 bm.moq -lcr^ro-hu.ma:. r 水源热泵中央空调 水系统存在问题及解决方案 1 .水源热泵概念 水源热泵是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)或再生水源(包括生活污水、工业废水、热电厂冷却水,油田废水等)的,既可供热又可制冷的高效节能空调系统。水源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。通常水源热泵消耗1KW勺能量,用户可以得到4KW以上的热量或冷量。 2. 水源热泵中央空调工作原理 “热泵”是借鉴“水泵”一词得来。在自然环境中,水向低处流动,热向低温位传递。水泵将水从低处送至高处,而热泵可将低温位热能交换至高温位提供利用。热泵在本质上是与制冷机相同的,只是运行工况不同。其工作原理是,由电能驱动压缩机,使水质循环运动反复发生,在蒸发器吸热,冷凝器放热,使热量不断交换传递,并通过阀门切换使机组实现制热式制冷式功能。水源热泵工程是一项系统工程,一般由水源系统,水源热泵机组和末端散热器三部分组成。水源系统包括水源、取水构筑物、输水管网和水处理设备。 3. 水源热泵中央空调水系统存在的问题 a. 由于水源热泵机组采用地下水来做为外循环水,地下水含有一定量的泥砂和悬浮物,使其在进入设备时会对机组和管、阀造成磨损,含砂量高和浑浊度高的地下水,若在使用过程中未处理,则回灌时会造成含水层堵塞,使回水量逐渐降低。 b. 地下水还含有不同的离子、分子、化合物和气体,使地下水具有酸碱度、硬度、腐蚀性等化学性质,会对机组材质造成一定的影响。特别是在冬季制热工况下,水温常常在50C以上,水中的钙、镁离子容易析出结垢,影响换热效果。 4. 水源热泵中央空调水系统存在问题之水处理方案 如果水源的水质不适宜地源热泵机组使用时可以采取相应的技术措施进行水质处理,使其符合机组要求。 在水源系统中经常采用的水处理技术有以下几种:

(整理)地源热泵与传统空调运行费用比较.

江西某电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245.4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、夏季制冷90天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。 ·冬季各设备的配电功率

· a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、冬季制热120天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 冬季运行费用: 120×8×0.8×(0.2×2+4+30+324.6+37)×65%×0.8=15.8万元。 B、水冷冷水机组和燃油锅炉 选用水冷冷水机组LTLS-280两台,制冷量1021KW,功率243KW。另选用水冷冷水机组LTLS-160一台,制冷量550KW,功率130KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 冷却塔循环泵功率(估算):30KW(一用一备) ·夏季各设备的配电功率 · a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台 · b.空调侧循环泵:37kW/台。 · c.冷却塔循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.冷却水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·冷水水冷工程运行费用如下:

中央空调(运行成本)收费标准

中央空调(运行成本)收费标准 商业物业包括各类商业广场及SHOPPING MALL等,由于商业物业公共设施配套齐全,每年公共设施能源费的消耗大都在数百万元乃至数千万元不等。中央空调系统作为公共设施中的一个重要组成部分,运行期间水电费的消耗颇巨,控制其运行成本,并有效地处理实际管理中遇到的各类问题,是商业物业管理工作中的一项不可或缺的重要环节,特别是对多产权、多业态的商业物业而言,尤为突出。 笔者根据对江苏省首家SHOPPING MALL四年多的管理实践,对中央空调运行成本及相关管理工作在此做一初探。 一、中央空调运行费用 中央空调系统,由于管道多,覆盖面积大,运行成本亦较高。在对商业物业的中央空调系统运行成本进行估算时,应主要考虑以上因素: 1、用电成本(P1、K1、P2) 主机(P1、K1) 根据商业物业所配备的空调主机数量、用电功率、营运时间、使用周期、用电价格等,对一年中夏冬二季的运行成本进行计算,然后按一年12个月进行平均,得出每个月的平均电费P1。 在实际操作过程中,由于主机并非满负荷运行,故根据具体情况,在计算中要考虑其负荷系数K1,K1≈0.6~0.9。 辅机(P2) 此处主要指中央空调系统中的冷却塔、冷却泵、冷冻泵、空气处理机组、各类风机盘管等。可根据实际不同的类型、数量和功率,进行估算。需注意的是因季节的不同,在制冷和供暖时,辅机的数量和类型亦有所不同。 2、用水成本(P3) 中央空调管道内的循环用水,开放式冷却塔的日常消耗用水,应根据空调供应期间的实际耗水量及每天的日均正常用水量综合进行考虑。 3、用汽成本(P4) 对于以蒸汽为能源的溴化锂机组,除考虑空调系统的用电成本外,还要考虑用汽费用。根据每台主机每小时耗汽量、每天运行时间、蒸汽单价、每年空调运行的天数等,计算出每月的平均蒸汽费用。 4、管道损耗(K2) 冷暖气在中央空调管道输送过程中,因气流的紊流损耗,管壁损失等所产生的管道损耗,以管道损耗系数K2表示,K2≈1.02~1.05。 5、预温损耗(K3) 因管道内外温度差异,冷暖气在输送过程中,在管道内要经过一段时间的预热或预冷后,才能达到一定的出口温度,故冷暖气在传输过程中的能量损失,可用预温损耗系数K3表示,K3≈1.05~1.08。 夏季预温时间随管道长短不同而有所变化,通常在40分钟左右,冬季预温时间较夏季短。 6、变损线损(K4) 广场内电能的变压器损耗和线路损耗应由所有用户共同承担,变损线损约占供电量的1%~3%,作为中央空调系统,该项损耗可在其用电成本中,取变损系数K4≈1.01~1.03加以考虑。 7、电价差异(K5、K6) 在估算上述用电成本中,注意各地动力用电和照明用电的电价差异,动力用电比照明用电通常约低15%左右,故应根据各地实际电价对之进行计算。 另外,白天用电高峰时期与夜间低谷时期电价也不同,在计算中,应根据用电的不同时间段加以区分,在此白天和夜间的电价分别以K5、K6表示。

什么是水源热泵中央空调 水源热泵机组原理及优缺点

什么是水源热泵中央空调水源热泵机组原理及优缺点 水源热泵中央空调是一项节能环保新技术,与地源热泵从大地中提取冷热量相比,水源热泵机组是利用地表水作为冷热源,然后进行能量转换的供暖空调系统。简单来说,水源热泵和地源热泵都是冷暖空调,不存在传统空调冬季化霜等难点问题,只不过水源热泵是通过地下水达到冷却制冷剂的效果,不占建筑面积。下面,我一起来看看水源热泵中央空调的定义、水源热泵机组原理及优缺点。 什么是水源热泵中央空调 水源热泵中央空调是一种利用地下浅层地热资源(如地下水、河流和湖泊中吸收地太阳能和地热能等)的既可供热又可制冷的高效节能空调系统。水源热泵机组以水为载体,在冬季采集来自湖水、河水、地下水的低品位热能,取得能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调供冷的目的。 水源热泵机组原理

夏季制冷时,水源热泵中央空调井水为机组的排热源。制冷剂在蒸发器内吸热蒸发,制取7℃冷水,送入房间使用,由于水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高;制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,由井水带走热量并排至井中。 冬季制热时,水源热泵中央空调井水为机组的吸热源。制冷剂在蒸发器内吸取井水的热量蒸发,井水回灌井内,由于水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,加热循环水,制取45℃到50℃(最高可达65℃)的热水。 水源热泵机组原理的优缺点 水源热泵中央空调具有可再生能源利用技术、高效节能、制冷采暖生活热水三位一体、节省建筑空间、环境效益显著等多种优点,其缺点是对地下水质量要求比较高,需要良好的地下水源条件,用户在装水源热泵之前,需要先向各地水资委申请,申请通过之后才能装,

锅炉和空气热泵成本对比

广东工商职业学院室内泳池加热系统 空气源热泵与锅炉费用对比 一、广东工商职业学院室内比赛池和跳水池设计参数 室内跳水池:25m*25m、水深5.65m-5.85m,总水量3162.5m3,水温28° 室内跳水池:25m*25m、水深5.65m-5.85m,总水量3162.5m3,水温28° 二、设计能源参数表 三空气能热水系统设计 3.1 游泳池能耗计算 根据泳池性质结合上述标准,设计补充水量为总容积的1%。 游泳水容量为6475m3 ;游泳池水表面积为1875m2;每天补充水量为 64.75m3。 3.2 热量计算 游泳池水加热所需热量,应为下列各项耗热量的总和:(《游泳池和水上游乐池给水排水设计规程》CECS14:2002规定) A、水表面蒸发和传导损失的热量; B、池壁和池底传导损失的热量; C、管道的净化水设备损失的热量; D、补充水加热需要的热量。 3.3 详细热量计算过程 (1)水表面蒸发损失热量计算: Qz=a·r(0.0174Vi+0.0229)(Pb-Pc)A(760/B) 式中:Qz——游泳池水表面蒸发损失的热量(kJ/h); A——热量换算系数,a=4.18KJ/Kcal; r——与游泳池水温相等的饱和蒸汽的蒸发汽化潜热(Kcal/kg); Vi——游泳池水面上的风速(m/s)室内0.2~0.5m/s,室外 2~3m/s; Pb——与游泳池水温相等的饱和空气的水蒸汽压力(mmHg); Pc——游泳池的环境空气的水蒸汽压力(mmHg); A——游泳池的水表面面积(㎡); B——当地的大气压力(mmHg);

将数值代入计算得: Qz=a·r(0.0174Vi+0.0229)(Pb-Pc)A(760/B)=4.18×582.5×(0.0174×0.5+0.0 229)×(28.2-17)×1875×760/760=1605540(kJ/h)=446kw/h (1kw/h=3600kJ) (2)游泳池的水表面、池底、池壁、管道和设备等传导所损失的热量,应按游泳池水表面蒸发损失热量的20%计算确定,即: Qc=446×20%=89.2kw/h (1kw/h=3600kJ) (3)游泳池补充水加热所需的热量,按下式计算: Qb= qbr( tr-tb ) Qb——游泳池补充水加热所需的热量(KJ); 热量换算系数,a=4.18KJ/Kcal; Qb——游泳池每日的补充水量(L),qb=64.75m3; r——水的密度(kg/L),r=1kg/L; Tr——游泳池水的温度(℃),tr=28℃; tb——游泳池补充水水温(可参照土壤温度)(℃),tb=10℃; 代入数值计算如下: Qb=qb r( tr- tb )=4.18×64.75×1000×1×(28-10)= (kJ/h)=1354kw/h(1kw/h=3600kJ) (4)游泳池日用总热负荷计算: 将以上各项耗热量相加,即为每天需补充的热量。 ΣQh=(Qz+Qc)×24+Qb=(446+89.2)×24+1354=14201.8kw/h (5) 游泳池一次性冲击负荷(初次充水或换水)计算: 一次性冲击负荷(初次充水或换水),按照换水量以及水温差来计算其总用热负荷和单位(小时)热负荷(机器所需的制热功率)。自来水按水温10℃计算,换水周期根据实际情况设计,则: 一次性冲击负荷:Qzh=[1.1×V×(T2-T1)]÷0.86kwhr 小时热负荷:Pzh=Qzh÷T 式中:V- 游泳池的总容积m3;(V=6475m3) T2- 池水所需温度,℃;(T2=28℃) T1- 平均冷水温度,℃;(T2=10℃) T- 初次加热时间,h;(取T=48小时) 1.1- 考虑在换水周期内的热损失附加值。 代入数值计算如下: Qzh=1.1×6475m3×1×(28-10)℃÷0.86=149075kwh 四、根据上述热量计算结果,测算空气热源泵与燃气锅炉运行成本对比如下(一年按照270天计算):

埋管式地源热泵系统介绍,成本,运行费用.

一、地源热泵系统简介 0 引言 “热泵”这一术语是借鉴“水泵”一词而来。在自然环境中,水往低处流动,热向低温位传递,水泵将水从低处“泵送”到高处利用。而热泵可将低温位热能“泵送”(交换传递)到高温位提供利用。在我国《暖通空调术语标准(GB50155-02)》中,对“热泵”的解释是“能实现蒸发器和冷凝器功能转换的制冷机”。我们也可以称热泵为既可以制冷又可以供热的机组。热泵的分类多种多样,国际上通常根据热泵的热汇:即冷源和热源的不同,以及供暖和制冷输送介质的不同进行热泵分类。当按冷源和热源分类时,可分为空气源热泵、水源热泵、地源热泵三大类。由于输送冷、热量的介质主要为空气和水,当同时考虑冷、热源的输送介质时,就形成了:空气-水热泵、水-空气热泵(包括地下水热泵和地表水热泵)、水-水热泵、以及地下耦合热泵。 地源热泵(GSHP)是一个广义的术语,它包括了使用土壤、地下水和地表水作为热源和冷源的热泵系统。即:地下耦合热泵系统,也叫地下热交换器地源热泵系统、地下水热泵系统、地表水热泵系统。地源热泵还有一系列其他术语:如地热热泵、地能热泵、地源系统等。1997年之后由ASHAE统一为标准术语:地源热泵(ground-source heat pump,GSHP)。 00 空气源热泵 空气源热泵以室外空气作为热源。在供热工况下将室外空气作为低温热源,从室外空气中吸收热量,经热泵提高温度送入室内供暖。空气源热泵系统简单,初投资较低。空气源热泵的主要缺点是在夏季高温和冬季寒

冷天气时热泵的效率大大降低。而且,其制热量随室外空气温度降低而减少,这与建筑负荷需求正好相反。因此当室外空气温度低于热泵工作的平衡点温度时,需要用电或其它辅助热源对空气进行加热。此外,在供热工况下空气源热泵的蒸发器上会结霜,需要定期除霜,这也消耗大量的能量。在寒冷地区和高湿度地区热泵蒸发器的结霜成为较大的技术障碍。在夏季高温天气,由于其制冷量随室外空气温度升高而降低,同样可能导致系统不能正常工作。空气源热泵不适用于寒冷地区,应用受到很大局限。 01地下水源热泵 地下水源热泵系统的热源是从水井或废弃的矿井中抽取的地下水。经过换热的地下水可以排入地表水系统,但对于较大的应用项目通常要求通过回灌井把地下水回灌到原来的地下水层。最近几年地下水源热泵系统在我国得到了迅速发展。但是,应用这种地下水热泵系统也受到许多限制。首先,这种系统需要有丰富和稳定的地下水资源作为先决条件。因此在决定采用地下水源热泵系统之前,一定要作详细的水文地质调查,并先打斟测井,以获取地下温度、地下水深度、水质和出水量等数据。地下水热泵系统的经济性与地下水层的深度有很大的关系。如果地下水位较低,不仅成井的费用增加,运行中水泵的耗电将大大降低系统的效率。此外,虽然理论上抽取的地下水将回灌到地下水层,但目前国内地下水回灌技术还不成熟,在很多地质条件下回灌的速度大大低于抽水的速度,从地下抽出来的水经过换热器后很难再被全部回灌到含水层内,造成地下水资源的流失。此外,即使能够把抽取的地下水全部回灌,怎样保证地下水层不受污染也是一个棘手的课题。水资源是当前最紧缺、最宝贵的资源,任何对水

空调年运行费用计算

三、空调年运行费用计算 系统一(A栋5-14层) 1、设备耗能指标 总制冷量:1886 kw 主机耗能:532.7 kw 冷却水泵功耗:55 kw 冷却塔功耗:15 kw 辅助电加热:460 kw 2、运行费用 A夏季 主机: 532.7千瓦×8小时×30天×3月×1.0元/千瓦时×0.8(开机率) =30.68万元 冷却塔、水泵: (55+15)千瓦×8小时×30天×3月×1.0元/千瓦时=5.04万元 小计:35.72万元 B冬季 冬季供暖负荷: 1131.6 kw 主机、辅助热源: (1131.6/4.3(制热能效比)千瓦+460千瓦)×8小时×30天×3月×1.0元/千瓦时×0.8(开机率) =41.65万元

冷却水泵: 55千瓦×8小时×30天×3月×1.0元/千瓦时=3.96万元 小计:45.61万元 合计:81.33万元 系统二(A栋15-24层) 1、设备耗能指标 总制冷量:1886 kw 主机耗能:532.7 kw 冷却水泵功耗:55 kw 冷却塔功耗:15 kw 辅助电加热:460 kw 2、运行费用 A夏季 主机: 532.7千瓦×8小时×30天×3月×1.0元/千瓦时×0.8(开机率) =30.68万元 冷却塔、水泵: (55+15)千瓦×8小时×30天×3月×1.0元/千瓦时=5.04万元 小计:35.72万元 B冬季 冬季供暖负荷: 1131.6 kw 主机、辅助热源:

(1131.6/4.3(制热能效比)千瓦+460千瓦)×8小时×30天×3月×1.0元/千瓦时×0.8(开机率) =41.65万元 冷却水泵: 55千瓦×8小时×30天×3月×1.0元/千瓦时=3.96万元 小计:45.61万元 合计:81.33万元 系统三(B栋5-14层) 1、设备耗能指标 总制冷量:1968 kw 主机耗能:564 kw 冷却水泵功耗:55 kw 冷却塔功耗:15 kw 辅助电加热:460 kw 2、运行费用 A夏季 主机: 564千瓦×8小时×30天×3月×1.0元/千瓦时×0.8(开机率)=32.48万元 冷却塔、水泵: (55+15)千瓦×8小时×30天×3月×1.0元/千瓦时=5.04万元 小计:37.52万元 B冬季

水源热泵有哪些优点

水源热泵有哪些优点 (资料来源:中国联保网)水源热泵与常规空调技术相比,有以下优点: 高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。与空气源热泵相比,其运行效率要高出20~60%,运行费用仅为普通中央空调的40~60 %。 可再生能源 水源热泵是利用了地球水体所储藏的太阳能资源作为热源,利用地球水体自然散热后的低温水作为冷源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵利用的是清洁的可再生能源的一种技术。 节水省地 以地表水为冷热源,向其放出热量或吸收热量,不消耗水资源,不会对其造成污染;省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规空调系统,节省建筑空间,也有利于建筑的美观。

水源热泵与其它空调形式运行费用比较1

常用几种中央空调系统比较分析 随着国内外建筑空调技术的日新月异,尤其是市场经济促使空调设备得到了空前的发展,各种新技术、新设备层出不穷。具体到空调冷热源系统,各种形式的电制冷机组、溴化锂吸收式机组、各种热泵机组、蓄冷设备等,品种繁多,各有特色。设计人员或业主在决定空调方案时,有了更多余地。但雾里看花,何种方案技术经济最优,让人日感困惑。各设备厂家为力争市场,在推销自己产品的同时,也提供一些产品技术经济比较资料,但往往是各持一端,带有较大的片面性。所以,设计人员或业主在选择空调设备时,应结合建筑物用途、特点,综合考虑各种因素,最终选择一种最适合建筑物的机型。下面就从运行费用来比较各种空调系统的经济性,供业主在选择空调系统时作参考。 一、常用中央空调冷热源设备方案 1、地源/水源热泵空调系统:冬夏两季均采用地源/水源热泵设备供冷供暖,为 电制冷设备,此方案的最大的特点是充分利用了地下储藏的自然能源(地下水或地下土壤所含的巨大能源)。 2、水冷冷水机组加燃气锅炉:夏季采用水冷冷水机组供冷,冬季采用燃气锅炉供 暖。水冷冷水机组为电制冷设备,燃气锅炉则采用天然气作能源。 3、风冷热泵机组加燃气锅炉:夏季采用风冷热泵供冷,过渡季节可采用风冷热泵 机组供暖,冬季则采用燃气锅炉供暖。风冷热泵机组为电制冷设备,燃气锅炉则采用天然气作能源。 4、直燃型溴化锂冷热水机组:冬夏两季均采用溴化锂冷热水设备供冷供暖,采用天然气作能源。 二、运行费用计算 运行费用计算依据: 以12000平米办公楼项目为例,按夏季负荷制冷量1519KW,冬季满负荷制热量1564KW计算,所有设备均投入运行,电价按0.6元/度计算,每日按10小时运行时间计算,水价按3元/M3,空调负荷率按0.6系数计算(说明:由于机组的功率通常是按夏季最热、冬季最冷的时间计算的,所以一般时间使用,机组的制冷或制热量要远大于房间负荷,这时机组经常属于停机状态,这就象家用空调或冰箱一样。

地源热泵设计方案及运行费用分析实例

地源热泵设计方案及运行费用分析实例 时间:2006-2-19 9:24:58 作者:天津大学机械工程学院热能工程系朱强汪健生 浏览次数:4666 摘要:本文对津晋高速公路津港收费站地源热泵系统的设计进行了分析与计算,并对系统的实际运行费用进行了分析。与以空气作为热源的一般空调器在相同的供热、供冷负荷下运行相比,地源热泵系统具有显著的节能效果。 关键词:热泵供热制冷 引言 地源热泵作为热泵技术应用的一个新的分支,由于其节能和优越的环保性能,近年来正在得到广泛的应用。地源热泵是利用土壤的良好蓄热及蓄冷特性进行的热力学逆循环的一种工程应用;在冬季供热时,热泵系统通过预埋在地下的管道将储存在地下的热通过传热介质吸收,作为逆循环中的低温热源,由热泵完成逆循环并向热用户提供热量;在夏季供冷时,利用地下环境温度较低的特点使制冷系统中的冷凝温度降低,从而提高系统的制冷系数,与冷凝器直接与空气环境进行热交换的普通空调器制冷相比,有一定的节能效果。由于地源热泵系统在运行工作过程中除驱动热泵的动力外,无需其他热源或动力,而驱动热泵的动力主要是电能。因此,如不考虑电能的来源,地源热泵系统是城市供热及供冷的一种清洁能源,它不需要建立一般城市供热所需的锅炉房,同样也不存在由于燃料燃烧(燃煤、燃油)而带来的城市环境污染问题,可以实现冷热联供。此外,在实际使用中,对于一些受客观条件限制而无法采用其他供热、供冷方式的场所,如高速公路收费站、人员设备相对较少的科考站、边防哨所,地源热泵则更体现出其特有的优越性;基于以上特点,本文对津港高速公路收费站地源热泵系统的设计及实际运行效果进行了系统分析。 一、地源热泵系统负荷计算 1.1 热泵系统负荷计算 津晋高速公路天津段自天津起至大港,全长35公里,建有三个收费站。津港收费站包括综合楼、综合楼附属用房及7个收费亭。其中综合楼建筑面积为744m2;综合楼附属餐厅为80m2;7个收费亭合计建筑面积47m2;津港收费站合计总建筑面积为871m2。 根据天津气候条件及收费站建筑物的土建围护结构,本设计采用了ASHRAE推荐提供的CLF冷负 荷系数法计算收费站建筑负荷;地源热泵系统在制冷工况时,蒸发器温度为7~12℃,冷凝器温度为30~35℃,室内温度25℃。其中收费站综合楼和附属用房的供冷负荷为120W/m2,收费亭供冷负荷 为220W/m2。据此,津港收费站供冷最大负荷合计为113 KW,津港收费站埋地换热器放热最大负荷 合计为146 KW。 热负荷计算,本设计采用了ASHRAE推荐提供的方法计算收费站建筑热负荷,地源热泵系统在制 热工况时,冷凝器温度为45~50℃,蒸发器温度为2~6℃,室内温度为18℃。其中收费站综合楼和附属用房的供热负荷为100w/m2,收费亭供负荷为120 W/m2。由此可以计算出津港收费站最大供 热负荷为92KW。 1.2 室内末端系统设计

湘江江水源热泵空调系统方案

中泰财富湘江江水源热泵中央空调系统 项 目 建 议 书

目录 第一章项目概况 (4) 1.1 项目简介 (4) 1.2 项目负荷及能源价格 (5) 1.2.1 项目负荷 (5) 1.2.2 当地能源价格 (6) 1.3 项目发展背景 (6) 1.3.1 能源背景 (6) 1.3.2 国家相关政策 (8) 1.4编制依据 (10) 1.4.1 空调系统相关规范 (10) 1.4.2 智能控制相关规范 (10) 第二章项目空调技术方案设计 (11) 2.1项目系统形式 (11) 2.2水源热泵技术 (12) 2.2.1 水源热泵系统技术原理 (12) 2.2.2 水源热泵系统的特点 (13) 2.3水源热泵系统设计 (15) 2.3.1 能源中心面积及装机配置 (15) 2.3.2 能源中心配电容量 (15) 2.3.3水源热泵系统水源水小时流量的计算 (15) 2.3.4 取回水方式确定 (15) 2.3.5 取回水管线的布置 (18) 2.3.6水源水管确定 (18) 2.3.7水处理主要措施 (19) 2.3.8水处理工艺流程 (19) 第三章年运行费用及初投资分析 (21) 3.1系统年运行费用 (21) 3.1.1 夏季运行成本 (21) 3.1.2 冬季运行成本 (21) 3.1.3 年运行维护成本 (21) 3.2系统初投资 (22) 3.2.1投资估算范围及内容 (22) 3.2.2 投资费用估算表 (23) 第四章商业合作模式 (24) 4.1合同能源管理 (24) 4.1.1合同能源管理EPC操作模式 (24) 4.1.2 合同能源管理EPC操作流程 (24) 4.1.3合同能源管理融资模型 (25) 4.1.4合同能源管理盈利模型 (26)

几种电采暖运行费用对比

几种户式电采暖运行费用的分析 中科合康(北京)电气有限公司 随着北京地区煤改电的深入进行,农村地区的居民采暖也纳入煤改电行列,由于居住分散,单户建筑面积小,不适合大规模集中供暖,比较适合单户电采暖的方式有:直热式电暖器、蓄热式电暖器和空气源热泵等三种,现对以上供暖方式的运行费用进行对比。 数据分析依据: 以北京地区农村每户3间房,每间建筑面积30㎡,且已进行过节能改造的房屋为例,则每㎡供暖热负荷指标为70W/m2,平均负荷率为0.7,日平均供暖时间为18小时,则每间房的采暖负荷计算如下: 最大小时最大热负荷为:30㎡*70W/m2=2100W; 全天最大平均总热负荷为:2100W/h*0.7*18h=26460W 全年总热负荷为:2100W/h*0.7*18h*120=3176KW 一:设备选型: 1、直热式电暖器:功率为30㎡*70W/m2=2100W/h;选型2100W共三台 2、蓄热式电暖器:功率为26460W/9h=2940W/h;选型3200W三台 3、空气源热泵:按冬季最小能效比2.0计算, 空气源热泵输入电功率为:2100W*3/2/0.95=3316W; 选型为输入功率为3.9KW(4匹)一台 注:空气源热泵系统末端需为地采暖或风机盘管。 二、采暖季耗电量及运行费用计算: 按每天晚上23:00-早上5:00基本不供暖,其余时间供暖考虑,则其中3小时使用低谷电,15小时使用平电,采暖低谷电价为0.1元/KWh,其余时间电价为0.488元/h,北京地区低谷电时间为晚上21:00-早上 6:00,则每户全年耗电量和运行费用为:

1、直热式电暖器: 年耗电量: 2.1KW*18*0.7*120天*3台=9526Kwh 年运行费用:2.1KW*(3h*0.1元/KWh+15h*0.488元/KWh)*0.7*120天*3台=4032元 每平米年运行费用为:4032元/90㎡=44.8元/㎡ 2、蓄热式电暖器: 年耗电量: 3.2KW*9h*0.7*120天*3台=7258Kwh 年运行费用:3.2KW*9h*0.1元/Kwh*120天*3台=725.76元 每平米年运行费用为:725.76元/90㎡=8.06元/㎡ 3、空气源热泵:因空气源热泵机组为水系统,晚上不能停止,需要低温运 行,低温运行按30%负荷率考虑,则计算如下: 年耗电量:3.9KW*18h*0.7*120+4.87*6h*0.3*120=6879KWh 正常运行费用:3.9KW*(3h*0.1元/KWh+15h*0.488元/KWh)*0.7*120天 =2497元 低温运行费用:3.9KW*6h*0.1元/KWh*0.3*120天=84元 每平米运行费用为:(2497+84)元/90㎡=28.67元/㎡ 根据以上分析,直热式电暖器运行费用最高,蓄热式电暖器运行费用最低,且放置位置灵活,不需要进行维护,空气源热泵运行费用也较低,但还需要进行末端采暖管道的安装,系统比较复杂,且需要专业人员进行日常维护。

海水源热泵空调工程应用实例

1工程概况 该工程位于青岛发电厂内,建筑共2层,一层为职工食 堂,二层为工会办公楼,层高均为4.5m,建筑面积2400m2,空调总面积为1871.5m2(不计算浴室面积)。此热泵空调系 统同时供应洗澡热水,按100m2 /d计。 一层为职工食堂,分就餐区和厨房灶间两部分,24h正常营业。厨房灶间由于有蒸汽锅等散热量较大的设施、设 备,冬季白天温度大约在26! ̄28!,需要制冷运行;晚上需要制热运行。二层为工会办公室、歌舞厅、健身活动室以及会议室,各自冷热温度需求不同,使用时间分散且不固定。 2空调设计参数 2.1室内空气设计参数 室内空气设计参数按照采暖通风与空调设计规范选 取,其参数见表1。 表1室内空气设计参数表 2.2海水设计温度 青岛沿海海水温度水下5m处,冬夏海水温度变化不 大,因此本设计海水温度按照最低水位水下5m计算,其数 值夏季(7月"9月)25.2!;冬季(12月)6.39!,冬季(1月"2月) 3.74!。2.3空调负荷 1)夏季冷负荷:!L=231.5kW;冬季热负荷:!R=187.2kW。2)浴室热负荷: !R=273.5kW。3海水源热泵系统 3.1海水处理 海水中含有一些生物活性和高含量的固体粒子(砂子、 有机物质等),含盐量也很高。这些颗粒可能会在表面形成沉淀物,结果会增加生物活性以及微生物腐蚀的可能性。为了避免这些,在海水引入口安装一个机械过滤器来过滤掉这些颗粒,还要通过杀死细菌的方法减少生物活性。 3.2蒸发器 为了避免海水直接进入热泵机组,而对蒸发器产生腐蚀,该系统设计中我们引入了抗海水腐蚀的二级换热器,换热器采用钛板制作,其示意图如图1所示。 图1二级闭式循环换热器设计 3.3海水管道设计 海水管道采用硬聚氯乙烯给水管材(U—PVC),海面下管道在海底开槽挖沟安装,陆地上管道直埋敷设。 4空调系统设计 为满足不同区域在同一时间对冷热的不同需求,该工程中在室内采用水—空气热泵机组,保证机组可以随时冷热切换,用“二管制”替代了“四管制”,从而节省了水管路的费用,而且方便运行管理。 每台热泵机组根据室内新风需求,在回风管道上引入适量的新风,新风入口装有电动调节阀,风阀的开启与关闭与热泵机组的风机连锁。 每台机组具有制冷、制热与通风功能,并且均配有室内控制器。过度季节,可根据实际需要制冷、制热或通风运行。 水系统为异程设计,每台水—— —空气机组进水管上装有过滤器,回水管上装有自动排气阀。每层水管路连接的第 二次网循环系统 蒸发器 二级闭式循环换热器 海水 ?¢ ?¢ ?¢ ?¢ ?¢ ?¢/? ?¢£¤/(%) ?¢/? ?¢£¤/?%? NC ?¢ 23~26 55~60 21~23 20~30 ? ?¢ 26~28 ? 21~23 ? ? ?¢£ 24~26 40~50 20~22 20~30 33~35 ?¢£ 25~27 40~50 18~20 20~30 34~36 工程建设与设计#$$%年第&期地源热泵专题 [作者简介]祁俊山(1972"),男,山东陵县人,助理工程师,从事海水源热泵的研究与推广应用. 海水源热泵空调工程应用实例 祁俊山1,薛越霞2 (1.青岛新天地环境保护有限公司,山东青岛266003; 2.青岛市环境监察支队,山东青岛266003) [摘要]通过目前国内建成的海水源热泵空调系统示范工程的实施,介绍海水源热泵空调系统工作原理、工程设计、运行参数、节能效益分析,为实施大型海水源热泵区域供热供冷提供理论和实践样板。 [关键词]海水源热泵;示范工程;系统设计;节能环保 [中图分类号]TU833.+3[文献标识码]A[文章编号]1007-9467(2005) 09-0012-02’#

相关主题
文本预览
相关文档 最新文档