当前位置:文档之家› 开关柜局部放电的检测方法

开关柜局部放电的检测方法

开关柜局部放电的检测方法
开关柜局部放电的检测方法

浅析开关柜局部放电的检测方法摘要:本文介绍了开关柜局部放电的检测、定位手段及其分析方法,并对其在实际现场运用存在的不足进行了分析,最后给出了适合现场测量的相对行之有效的方法,即结合开关柜局部放电的机理进行综合分析判断,对缺陷的位置、严重程度作出准确判断。

关键词:开关柜,局部放电,定位,现场工作

中图分类号:u665.12 文献标识码:a 文章编号:

1 引言

随着电网的快速发展,电网规模的迅速扩大,传统的周期性设备检修模式已不能适应国家电网公司发展和电网发展要求,逐渐暴露出维修不足的问题。经过长期的探索研究,国家电网公司制定并推行了一种新的检修管理策略─“状态检修”[1],即根据状态检测信息,对设备健康状态和故障发展趋势做出评估,依据设备的实际状况制订维护、检修策略和计划,合理降低了检修成本,提高检修效率,保障设备可靠运行。

本文所阐述的开关柜局部放电的测试就是状态检修的重要组成部分。由于此类项目开展时间不长,现场经验积累不够,以及根据测试结果对设备状态判定的有效性受到诸多因素的影响,因此,需要状态检修人员在实践中总结典型的故障类型,在不同的外界影响因素下探索与之对应的有效的测试方法,让开关柜的状态检修慢慢成熟起来,最终摆脱对设备周期性状态检修模式的依赖。

开关柜超声波地电波局放检测仪-Ultra TEV Plus 2

1.UltraTEV Plus2以做什么? UltraTEV Plus2是一台多功能的手持式仪器,可以非常简便的检测,甄别多种类型电力设备中的局部放电。 UltraTEV Plus2内建有 TEV 和超声波传感器及多种外接附件,可以用来检测开关柜、电缆和架空线的潜在破坏性局部放电活动。 UltraTEV Plus2在一台手持仪器中,包含了三种不同又相互补充的传感器。定期的使用 UltraTEV Plus2检查运行中的设备,可以有效故障风险并及时进行维护避免故障。 UltraTEV Plus2内置的算法和分析能力,能提供非常直接的分析能力,能够分析所检测到的数据,支撑所做的判断和告知客户的结论。绝不是简单告诉用户检测数据的含义和检修方向。 UltraTEV Plus2可以记录测量数据。内置的存储器可以保存历史数据,以便不在现场时查看。记录这些测试数据,可以绘制设备的趋势图。

配置表 X (T-Loc II)X (T-Loc IV)X (T-Loc II)X (T-Loc IV)备件和附件

非侵入式局部放电检测 什么是局部放电? 局部放电是不同电极之间尚未完全贯穿的轻微放电。这些放电的强度通常非常微小,但是它们会加速绝缘老化,并最终导致故障。 非侵入式局部放电检测提供了一种检测这些导致绝缘失效的潜在缺陷。如果对这些问题放任不管,不仅可能导致供电中断,和变电站故障,并有可能引起工作人员的严重伤害。 如何检测局部放电? 局部放电会通过不同的方式放出能量,并产生一系列的产物,这使得局部放放点可以被检测:电磁: ?射频电磁波 ?光 ?热 声学: ?声波 ?超声波 气体: ?臭氧 ?氮的氧化物 非侵入式检测最有效的技术是基于检测电磁频谱中的无线电射频率部分以及超声波信号。UltraTEV Plus2 是专门开发的易操作的用于检测电磁波及超声波活动的仪器。 局部放电活动产生的空气传播的超声波 局部放电活动中的声波辐射出现在整个声谱范围中。仅依靠分辨声音(非超声波)是可行的,但是要取决于个人的听觉能力。使用仪器来检测声谱中的超声波,这种做法具有几个优点。仪器比人耳更敏感,与使用者无关,且工作在声频以上的频率,又具有更强的方向性。

局部放电缺陷检测典型案例和图谱库

电缆线路局部放电缺陷检测典型案例 (第一版) 案例1:高频局放检测发现10kV电缆终端局部放电 (1)案例经过 2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk 局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。 2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。 (2)检测分析方法 测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。 信号采集单元主要有高频检测通道、同步输入及通信接口。高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。 利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。 图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号 将传感器放置不同距离时耦合的脉冲信号如图1-3所示。距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来

浅谈局部放电检测在开关柜中的应用

浅谈局部放电检测在开关柜中的应用 发表时间:2019-11-25T11:31:51.227Z 来源:《基层建设》2019年第24期作者:王英郑江丽任毅孟祥海茹世豪 [导读] 摘要:供配电系统的安全运行对工业企业来说至关重要,特别是大型石化企业对供电的可靠性、连续性和安全性要求更高。 国网山西省电力公司晋城供电公司 摘要:供配电系统的安全运行对工业企业来说至关重要,特别是大型石化企业对供电的可靠性、连续性和安全性要求更高。工厂配电网络中的设备运行可靠性直接关系到整个工厂生产能否安全稳定,进而直接影响到企业的经济效益。随着经济的快速发展,科技水平的不断进步,工厂对供电的需求和可靠性要求也越来越高。开关柜在工厂配电网络中广泛应用,其安全运行对供电可靠性起举足轻重的作用。因此及时发现开关柜早期绝缘缺陷,保证供电安全可靠性对整个工厂的安全高效生产和效益增长都有着十分重要的意义。 关键词:开关柜;局部放电;在线检测 1. 局部放电检测技术概述 对于局部放电检测技术而言,它主要可分为四种类型。 1.1紫外线检测技术 在外绝缘局部放电的情况下,由于击穿的影响放电点附近气体会有电离产生,而气体种类与放射光波的频率存在一定关系,电离后产生的氮离子发射的光谱则会落于紫外光波段。此时,借助特殊仪器接收紫外信号,利用可见光图像叠加与成像处理,即可确定电晕的位置与强度。一般,紫外检测技术属于辅助性的带电检测技术,需要与其他检测技术配合使用,从而寻找到局部放电信号,进而确定放电点的放电部位和放电程度。 1.2超声波检测技术 它主要是借助超声波传感器采集超声波信号,有效确定设备局部放电的位置及大小,其中超声波信号的频率范围应保持在20~ 200kHz。由于超声波信号属于机械振动波,不会受电气的干扰,因此可通过时差法和幅值法定位信号源。 1.3暂态地电压检测技术 一般,在针对电气设备实施局部放电的情况下,可以经由玻璃窗与开关柜的缝隙传出电磁波。当然,设备表层的金属也可传出电磁波,对地面形成持续性的暂态电压脉冲信号。在开关柜金属表层,该信号能实现传播,并通过柜门缝隙或开关柜孔洞传出,经过金属壳体外表面传到大地。该技术在实际工作中的应用,往往需要在开关柜的不同开口缝隙处装设电容耦合式传感器。要贴紧金属外壳,才能对暂态地电压信号进行检测。此外,对表征布局放电进行判断时,应以测试读数大小为依据,通过电磁波的特性定位设备内部的放电源。 1.4特高频检测技术 该技术也称之为超高频检测技术,最常见的是利用特殊的特高频传感器,针对电磁波内的特高频分量进行检测,并基于此深层次地研究或许会发生放电的地方及其具体的类型。现场开关柜的带电检测工作中常采用该技术,可通过时差法和幅值法定位放电源。 2. 开关柜中局部放电检测的技术应用 2.1应用实例 本文通过对某个变电站开关柜局部放电检测的实际过程为例进行分析。具体地,采取比较研究的方式,针对在检测开关柜局部放电过程中单一带电检测技术以及综合检测技术的不同特点,展开具体的剖析与论述。该变电站小室内采用的是6面铠装移开式金属封闭开关柜,图1为母线小室内开关柜示意图。实际运行过程中,小室内臭氧味十分重,故而发出小时内存在局部放电问题的质疑。鉴于此,分别采取综合检测技术和单一带电检测技术检测小室内的各个开关柜。 2.2具体应用 ①暂态地电压检测 利用暂态地电压检测技术检测开关柜的后下、后上、前下、前上等位置,检测结果如表1所示,其中12dB为背景噪声。由表1可知:313开关柜的最大信号为26dB,最大信号幅值为29dB,分别比背景噪声大14dB和17dB。由此可得,此开关柜或许存在放电点。

亿森开关柜局部放电在线监测系统

开关柜局部放电在线监测系统 技 术 资 料 福州亿森电力设备有限公司

开关柜局部放电在线监测系统简介 前言: 高压开关柜是使用极广且数量最多的开关设备。由于在设计、制造、安装和运行维护等方面存在着不同程度的问题,因而事故率比较高,在诸多性质的开关柜事故中,绝缘事故多发生于10千伏及以上电压等级,造成的后果也很严重。特别是小车式开关柜,绝缘事故率更高,而且往往一台出现事故,殃及邻柜的现象更为突出。因此,迫切需要对开关柜实行状态检修,对设备运行状况进行实时在线监测,根据设备的运行状态和绝缘的劣化程度,确定检修时间和措施,减少停电时间和事故的发生,提高电力系统运行的安全可靠性及自动化程度。 高压开关柜的绝缘故障主要表现为外绝缘对地闪络击穿,内绝缘对地闪络击穿,相间绝缘闪络击穿,雷电过电压闪络击穿,瓷瓶套管、电容套管闪络、污闪、击闪、击穿、爆炸,提升杆闪络,CT闪络、击穿、爆炸,瓷瓶断裂等。

各类绝缘缺陷发展到最终击穿,酿成事故之前,往往先经过局部放电阶段,局部放电的强弱能够及时反映绝缘状态,因此通过在线监测局部放电来判断绝缘状态是实现开关柜绝缘在线监测和诊断的有效手段。 本系统采用声电联合检测方法,即通过同时检测局部放电产生的暂态对低电压(TEV,国内俗称地电波)和超声波信号实现对开关柜绝缘状态的监测。 一、局放产生 局部放电,是绝缘介质中的一种电气放电,这种放电仅限制在被测介质中一部分且只使导体间的绝缘局部桥接,这种放电可能发生或可能不发生于导体的邻近。电力设备绝缘中的某些薄弱部位在强电场的作用下发生局部放电是高压绝缘中普遍存在的问题。虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,对电力设备进行局部放电测试是电力设备制造和运行中的一项重要预防性试验。 基于对发生局部放电时产生的各种电、光、声、热等现

局部放电检测仪(mini TEV)判定导则

局部放电检测仪(mini TEV)判定导则 一、基本原理 电气设备在发生局部放电的过程中,将产生电磁波,电磁波首先传到金属外壳的内表面,然后从金属箱体的内表面通过箱体的连接处或绝缘衬垫等处传播出去,同时产生一个暂态对地电压(TEV)信号,通过设备的金属箱体外表面而传到地下去(如下图所示)。 图一原理图 这种(TEV)信号的大小与局部放电的激烈程度及放电点的远近有直接关系。可以利用专门的耦合探测器进行检测。这样相应地产生了一门在外部检测不同型号、不同电压等级的设备绝缘状况的先进技术。为了简单明了,我们用相对的读数(dB),来描述局部放电活动程度。通过检测局部放电产生的(TEV)信号,不仅可以对运行中的开关柜内的设备局部放电状况进行定量测试,又可通过同一放电源到不同位置的时间差异来对局部放电源进行定位,同时还可以对现场的开关设备的局部放电状况进行在线监测。 二、判断方法 (1)比较法

由于测量局部放电产生的暂态对地电压(TEV)信号是一种相对的测量方法,在刚开始使用此系列仪器时需对所有的待试设备做一次普测,建立相应的数据库,供设备今后的分析比较用,对某一设备的测试结果可以通过横向比较和纵向比较两种方法。 ●横向比较 所谓横向比较就是对同类设备的测试结果进行比较,当同类型的某一设备个体的测试结果比其它同类设备的测试果均大时,就可以此设备存在缺陷的可能性,表一为某组10kV XLPE测试结果: 表一 从表一可以得出电缆头6的测试结果远远地大于其它同类电缆头的测试结果,根据此测量结果,可以得出在电缆头6上发现了放电现象,需采取相应的措施。 ●纵向比较 所谓纵向比较,就是对同一设备不同时间的测试结果进行分析,从而比较分析得出设备的运行状况,表二是某10kV电流互感器所对应隔室的在不同时间内的测试结果: 表二 从以上测试结果可以得出,此电流互感器的放电强度逐渐加强,到第十个月,放电强度己达到50dB,需对此电流互感器采取相应的措施。 (2)绘制曲线法 因现场干扰在所有设备上作用的一致性,我们也可以通过快速地对开关室内的所有开关柜进行测试,然后记录测试结果,将其绘制成曲线图,若曲线图平缓(如图五),说明开关柜内不存在明显的放电现象,若曲线在某个开关柜处的曲线突出(如图六),说明此开关柜存在一定的放电现象,需用缩短现场测试的周期。

国内外几种电缆局部放电在线检测方法技术分析

国内外几种电缆局部放电在线检测方法技术分析 李华春周作春张文新从光 北京市电力公司 100031 [摘要]:本文简要的介绍国内外几种电缆局部放电在线检测方法的原理和特点,并进行了简单的分析比较。结合国内外电缆局部放电在线检测方法研究和应用情况提出当前XLPE电缆局部放电在线监测存在的问题以及在高压XLPE电缆附件局部放电在线检测研究方面今后还需要做的工作。 [关键词]:电缆、局部放电、在线检测、分析 前言 常规XLPE电缆局部放电测量多采用IEC60270法,但是其测量频带较低,通常在几十到几百kHz范围内,易受背景干扰的影响,抗干扰能力差。理论研究表明,XLPE电力电缆局部放电脉冲包含的频谱很宽,最高可达到GHz数量级。因此,选择在信噪比高的频段测量有可能有效地避免干扰的影响。目前国内外已把电缆局部放电测量的焦点转移到高频和超高频测量上。 [2][1]。 迄今为止,国内外用于XLPE电缆局部放电检测的方法有很多。但由于X LPE电缆局部放电信号微弱,波形复杂多变,极易被背景噪声和外界电磁干扰噪声淹没,所以研究开发电缆局部放电在线检测技术的难度在所有绝缘在线检测技术中是最高的。由于电缆中间接头绝缘结构复杂,影响其绝缘性能的原因很多,发生事故的概率大于电缆本体,同时在电缆中间接头处获取信号比从电缆本体获取信号灵敏度要高且容易实现,因

此通常电缆局部放电在线检测方法亦多注重于电缆附件局部放电的检测,或者在重点检测电缆中间接头和终端的同时兼顾两侧电缆局部放电的检测。电缆局部放电在线检测方法中主要的检测方法有差分法 耦合法[6、7、8、9][3、4]、方向耦合法、电磁[13、14、15、16][5]、电容分压法[10]、REDI局部放电测量法 [18][11、12]、超高频电容法、超高频电感法[17]、超声波检测法等。在众多检测方法中,差分法、方向耦合法、电 磁耦合法检测技术目前已成功应用到现场测量中。下面简要的介绍这些方法的原理和特点。 1. 电缆局部放电在线检测方法中主要的检测方法 1.1. 差分法(the differential method) 差分法是日本东京电力公司和日立电缆公司共同开发的一种方法。其基本原理见图1。将两块金属箔通过耦合剂分别贴在275kV XLPE电缆中间接头两侧的金属屏蔽筒上(此类中间接头含有将两端金属屏蔽筒连接隔断的绝缘垫圈),金属箔与金属屏蔽之间构成一个约为1500~2000pF 的等效电容。两金属箔之间连接50欧姆的检测阻抗。金属箔与电缆屏蔽筒的等效电容、两段电缆绝缘的等效电容(其电容值基本认为相等)与检测阻抗构成检测回路。当电缆接头一侧存在局部放电,另一侧电缆绝缘的等效电[3] 容起耦合电容作用,检测阻抗便耦合到局部放电脉冲信号。耦合到的脉冲信号将输入到频谱分析仪中进行窄带放大并显示信号。研究发现,频谱分析仪中心频率设在10~20MHz时,信噪比最高。差分法的检测回路

电气设备局部放电检测技术的思考

电气设备局部放电检测技术的思考 发表时间:2018-05-02T11:44:18.290Z 来源:《科技中国》2017年11期作者:安军红[导读] 摘要:在电气设备中,局部放电检测技术是一种公认的绝缘状态评判办法,目前该技术的应用尤为广泛,且成效显著。设备局部放电过程中,会在周边的空间中产生电气、声、光等变化,而伴随着这些变化的产生,可为设备绝缘状态提供相应的检测信号。本文主要对电气设备局部放电检测技术进行了研究和思考。 摘要:在电气设备中,局部放电检测技术是一种公认的绝缘状态评判办法,目前该技术的应用尤为广泛,且成效显著。设备局部放电过程中,会在周边的空间中产生电气、声、光等变化,而伴随着这些变化的产生,可为设备绝缘状态提供相应的检测信号。本文主要对电气设备局部放电检测技术进行了研究和思考。 关键词:电气设备;局部放电;检测技术;绝缘介质;高场强区域前言:局部放电与闪络和击穿不同,其属于绝缘部分区域的微小击穿。而电器设备中的绝缘材料通常都是由有机材料构成,如环氧、绝缘纸等等,由于其在运行过程时常出现杂质和气泡问题,进而使绝缘介质表面产生高场强区域,最终出现了局部放电的现象。 1电气设备局部放电检测技术局部放电测量工作通常都是在设备运行、现场试验以及设备出厂的过程中进行,借助局部放电定位、模式以及强度等因素,对测量结果的精准性进行判断。在此过程中,检测技术处于基础与核心的地位。结合上述几个重要因素,可对介质的绝缘状态进行精准、合理的评估。具体分析如下: 1.1脉冲电流法 目前,该方式是唯一具有国际认证标准的检测方法,其主要是借助设备的接地点和中性点,对局部放电所导致的脉冲电流进行测量,由此可精准获得放电频次、放电相位以及实际放电量等信息。在传统的测量方式中,通常可分为窄带测量和宽带测量2种。前者频带宽度较窄,通常保持在9~30KHz之内,具有强大的抗干扰能力和较高的灵敏度,但缺陷在于信息丰富度低和脉冲的分辨率低等等。后者在应用过程中,检测频率范围在30~100KHz之间,具有信息量丰富、脉冲分辨率高峰优势,但缺陷在于噪音比较低。 基于上述两种检测方式中存在的缺陷和不足,目前,相关学者尝试将更高检测频率应用于实践测量工作中,如测量阻抗,其宽带频率为30KHz,该方式主要借助了特殊的数据处理办法,对噪声加以剔除,并结合脉冲表现特征中局部脉冲和噪声脉冲之间的差别,实现了脉冲在频域和时域的变换,并对各脉冲的等效时间和宽带进行精准计算。该方式目前的应用十分广泛,其在局部放电识别、分离等领域也具有着十分突出的效果[1]。 1.2特高频检测法 设备在局部放电过程中,所产生的电磁波谱特性与放电间隙绝缘强度和电源的几何波形之间存在着十分密切的关系。若实际的放电间隙较小,则高频电磁波的辐射水平也就比较高。 特高频检测方式起初在气体组合电器(GIS)中应用较为广泛,据相关研究实验表明,在GIS中局部放电中,信号通常都是以横磁波、横电波以及横电磁波等形式传播。发生于变压器中的局部放电,由于绝缘结构具有一定的复杂性,进而导致电磁波在传播的过程中出现了衰减和折反射的现象,与此同时,变压器内箱壁同样也会影响电磁波传播,进而大幅度增加了局部放电测量工作的难度。基于上述情况,相关研究人员又开展了一系列的实验研究,如将特制的高频天线应用于变压器油阀中,使油箱内壁和天线保持在同一平面,并借助波导结构将所获取的信号导入到检测装置中,以此降低电磁波传播过程中产生的衰减,从而大幅度提升测量结果的精准性和测量过程的灵敏性。与此同时,研究人员还对变压器进行了深入分析和实验,即在其顶部开设介质窗,特高频天线便可借助该窗口对局部放电信号进行提取,该方式的实践应用效果尤为显著[2]。 1.3超声波检测法 GIS、变压器等设备在产生局部放电现象的过程中,通常都会经历电荷中和的过程,与此同时,也会产生一定的电流脉冲,最终产生类似于“爆炸”的现象,在结束放电之后,发生膨胀的区域才会慢慢恢复至原有体积。局部放电主要是脉冲形成,由此也会产生一系列的声波,另外,超声波检测法在具体应用的过程中,还可实现对机械波的检测,并以此判断颗粒实际的运动状态。 局部放电过程中,声波频率通常在10~107Hz,随着电气设备、环境条件、传播媒介、放电状态的不断变化,声波频率也会随之发生一定改变。在GIS中,局部放电不仅会产生声波,同时还伴有操作、机械振动、颗粒碰撞等产生的声波,但频率通常都比较低,在检测GIS局部放电的过程中,超声波传感器的谐振频率通常保持在25kHz左右,但在变压器中,则通常保持在150kHz左右。 相关研究人员借助超声传感器,实现了模型内部缺陷的检测,并通过超声符号的分量和幅值等因素,对缺陷类型进行精准定性,通过对超声信号进行分析,可对自由颗粒的实际移动方向进行精准推测。而变压器局部放电测量装置的诞生主要是依靠了LABVIEW平台,通过实验室研究,发现该装置在应用的过程中,可精准的获取局部放电量、模式以及放电位置等信息。 2局部放电检测技术存在的不足及未来发展途径电气设备局部放电检测技技术经常长时间的发展和应用,目前已经逐渐形成完善的检测流程和方法,其中,具有代表性的要数超声检测法和特高频检测法,其与常规的检测技术存在较大差别。在实际应用的过程中,可查找出很多绝缘缺陷问题,降低了事故问题的发生概率。但局部放电的故障和缺陷往往是针对于电气设备而言,若设备的电压等级较高,则一般无法从根本上解决顽疾问题。具体缺陷和发展途径分析如下:第一,在线监测和带电检测在具体应用的过程中,最显著的问题在于其自身存在的不可靠性,且缺乏完善的测试标准和准入机制,进而直接对监测低结果造成不良影响。解决该问题的办法,一方面要确保装置本身的灵敏性、精准性和可靠性,为此,需对信号分析技术、数据采集技术以及传感器技术等进行深入分析;另一方面,还应强化装置的检测力度,并对其质量加以控制[3]。 第二,GIS、变压器等设备在局部放电的过程中,最为常见的测量方式为超声波法和特高频法。但在实践应用的过程中,发现上述两种测量方式并不能发现设备内部的所有缺陷,可见,其仍存在较多缺陷问题。基于上述情况,相关研究人员已将检测技术的深入研究作为工作重点,且也开发出很多全新的检测方式,如光检测法、化学检测法等等,虽然这些技术目前均处于应用的初级阶段,存在一定的缺陷和不足之处,但随着科学技术的不断发展以及人员研究力度的不断加大,检测技术在未来发展过程中必定更加完善,其应用效果也会得到显著提升。

变压器局部放电在线监测技术

变压器局部放电在线监测技术 目录 目录 (1) 前言 (2) 1在线监测方法 (2) 1.1超声监测法 (2) 1.2光测法 (3) 1.3电脉冲法 (3) 1.4射频监测法 (3) 1.5超高频监测法 (3) 2在线监测监控技术 (4) 2.1.1现场噪声的抑制 (4) 2.1.1.1 周期性干扰的抑制 (4) 2.1.1.1.2 脉冲型干扰的抑制 (5) 2.1.1.1.3白噪声干扰的抑制 (5) 2.1.2局部放电模式识别 (5) 2.1.3局部放电定位技术 (6) 3结束语 (7) 结论 (7) 致谢 (7) 参考文献 (7)

前言 近年来 , 随着电力系统的快速发展 , 变压器的容量和电压等级不断提高 , 运行中的安全问题也越来越受到重视。在变压器所发生的故障中 , 绝缘问题占很大的比重 , 因此需要一种有效的手段对变压器的绝缘状况进行监测 , 确保运行中变压器的安全。 局部放电监测作为检测变压器绝缘的一种有效手段 , 无论是检测理论还是检测技术 , 近年来都取得了较大的发展 , 并在电厂和电站中得到了实际应用。 相对传统的停电局部放电检测 , 在线局部放电检测可以长时间连续监测变压器局部绝缘放电情况 , 在放电量达到危险时 , 及时停机做进一步的检查 , 因此在检修工时和经济效益等方面有很大的优势 , 是目前惟一的一种有效避免变压器突发性事故的监测手段。在线局部放电监测反映的是变压器实际工作状态下的绝缘放点情况,比离线检测更符合设备的实际运行工况。 1在线监测主要方法 根据变压器局放过程中产生的电脉冲、电磁辐射、超声波、光等现象,相应出现了电脉冲检测法超声波检测法、光测法及射频检测法和UHF超高频检测法。、 1.1超声监测法 用固体在变压器油箱壁上的超声传感器接收变压器内部局放产生的超声波来检测局放的大小和位置。通常采用的超声传感器为电压传感器,选用的频率范围为70-150kHz,目的是为了避开铁心的磁噪声和变压器的机械振动噪声。超声检测法主要用于定性判断是否有局放信号,结合电脉冲信号或直接利用超声信号对局放源进行物理定位。近年来,由于声电换能元件效率的提高和电子放大技术的发展,超声检测的灵敏度有了较大的提高。 1.2光测法 光测法是利用局部放电产生的光辐射进行检测。在变压器油中,各种放电发出的光波不同,光电转换后,通过检测光电流的特征可以实现局放的识别。虽然是实验室中利用光测法来分析局放特征及绝缘劣化机理等方面取得了很大进展。但由于光测法设备复杂、昂贵、灵敏度低在实际中并未直接使用。尽管如此,光纤技术作为超声技术的辅助手段应用于局放检测,将光纤伸入变压器油中,当变压器内部放生局放时,超声波在油中传播,这种机械力波挤压光纤,引起光纤变形,导致光纤折射率和光纤长度发生变化,从而光波被调制,通过适当的解调器即可测量出超声波,实现放电定位。

第章高频局部放电检测技术

《电网设备状态检修技术(带电检测分册)》 弟五章咼频局部放电检测技术 目录

第 1 节高频局部放电检测技术概述 发展历程 高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。 高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。 罗格夫斯基线圈(Rogowski coils ,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887 年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20 世纪90 年代被英国的公立电力公司(CEGB用在名为“ El-Cid ”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963 年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20 世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。如法国ALSTHO公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80 年代英国Rocoil 公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20 世纪60 年代兴起,在80 年代取得突破性进展,并有多种样机挂网试运行,90 年代开始进入实用化阶段。尤其进入21 世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20 世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的. Montanari 和 A.

手持式TEV超声局部放电检测仪用户手册

PD-HAT 局部放电检测仪用户手册

目录

1 产品概述 中压开关柜(3-66KV)是城市配电网中重要基础设施,其运行的稳定性直接影响到城市经济的发展与人民生活水平质量的提高。开关柜设备的可靠性直接决定了用户供电的可靠性。状态检修是提高供电设备可靠性的重要技术手段。但是开关柜不可能采取像变压器、GIS设备那样实现全面、实时的在线监测。因为开关柜数量众多,开关柜的设备造价低,监测设备的成本很高。但往往开关柜的故障会导致严重的后果,导致供电中断,严重影响城市电网稳定运行。经统计,开关柜的绝缘与载流故障占整个开关柜的30%-50%,并且绝缘与载流故障与局部放电现象密切相关,对中压开关柜的局部放电检测能显着减少故障概率。 为此,我们精心设计了PD-HAT局部放电检测仪,专门用于检测开关柜局部放电的状况,直观分析局部放电的严重程度,衡量设备内部绝缘的劣化程度,使维护人员在变电设备出现绝缘劣化时能够及时发现,采取相应措施,避免设备出现短路等严重故障。 PD-HAT局部放电检测仪采用目前流行的暂态地电压(TEV)和超声波(AE)检测局部放电的方法,通过外置的TEV天线接收开关柜内部局部放电辐射和产生的暂态地电压和超声波信号。PD-HAT在使用上以暂态地电压为主要检测方法,超声波为辅助检测手段,还集成了HFCT检测方式,可以对开关柜局部放电进行全方位的检测。 PD-HAT具有如下特点: 单通道设计,可以选择接入暂态地电压传感器、超声波传感器或HFCT传感器。 ②便携式设计,维护人员能随身携带,并且一个人就能实施局部放电的检测过程。 ③操作过程简单,通过仪器上的快捷按键就能轻松完成整个检测,方便现场人员使用。 ④在检测过程中自动实时进行局部放电智能化诊断,并且将判断结论显示在 仪器界面上,帮助现场工作人员分析设备局部放电的状态与危险等级。 ⑤具备连续检测和存储数据的能力,数据能通过外插U盘的方式导出。

局部放电的在线监测

局部放电的在线监测 一、绝缘内部局部放电在线监测的基本方法 局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。因此针对这些现象,局部放电监测的基本方法有脉冲电流测量、超声波测量、光测量、化学测量、超高频测量以及特高频测量等方法。其中脉冲电流法放电电流脉冲信息含量丰富,可通过电流脉冲的统计特征和实测波形来判定放电的严重程度,进而运用现代分析手段了解绝缘劣化的状况及其发展趋势,对于突变信号反应也较灵敏,易于准确及时地发现故障,且易于定量,因此,脉冲电流法得到广泛应用。目前,国内不少单位研制的局部放电监测装置普遍采用这种方法来提取放电信号。该方法通过监测阻抗、接地线以及绕组中由于局部放电引起的脉冲电流,获得视在放电量。它是研究最早、应用最广泛的一种监测方法,也是国际上唯一有标准(IEC60270)的局放监测方法,所测得的信息具有可比性。图4-4为比较典型的局部放电在线监测(以变压器为例,图中CT表示电流互感器)原理框图。 图4-4 脉冲电流法监测变压器局部放电原理框图 随着技术的发展,针对不同的监测对象,近年来发展了多种局部放电在线监测方法。如光测量、超高频测量以及特高频测量法等。利用光电监测技术,通过光电探测器接收的来自放电源的光脉冲信号,然后转为电信号,再放大处理。不同类型放电产生的光波波长不同,小电晕光波长≤400nm呈紫色,大部为紫外线;强火花放电光波长自<400nm扩展至>700nm,呈桔红色,大部为可见光,固体、介质表面放电光谱与放电区域的气体组成、固体材料的性质、表面状态及电极材料等有关。这样就可以实现局部放电的在线监测。同样,由于脉冲放电是一种较高频率的重复放电,这种放电将产生辐射电磁波,根据这一原理,可以采用超高频或特高频测量法监测辐射电磁波来实现局部放电在线监测。 日本H.KAwada等人较早实现了对电力变压器PD的声电联合监测(见图4-5)。由于被测信号很弱而变电所现场又具有多种的电磁干扰源,使用同轴电缆传递信号会接受多种干扰,其中之一是电缆的接地屏蔽层会受到复杂的地中电流的干扰,因此传递各路信号用的是光纤。通过电容式高压套管末屏的接地线、变压器中性点接地线和外壳接地线上所套装的带铁氧体(高频磁)磁心的罗戈夫斯基线圈供给PD脉冲电流信号。通过装置在变压器外壳不同位置的超声压力传感器,接受由PD源产生的压力信号,并由此转变成电信号。在自动监测器中设置光信号发生器,并向图中所示的CD及各个MC发出光信号。最常用的是,用PD 所产生的脉冲电流来触发监测器,在监测器被触发之后,才能监测到各超声传感器的超声压力波信号。后由其中的光信号接收器接收各个声、电信号。 综合分析各个传感器信号的幅值和时延,可以初步判断变压器内部PD源的位置。如果

变压器局部放电的原因分析

变压器局部放电的原因分析 其一,由于变压器中的绝缘体、金属体等常会带有一些尖角、毛刺,致使电荷在电场强度的作用下,会集中于尖角或毛刺的位置上,从而导致变压器局部放电;其二,变压器绝缘体中一般情况下都存在空气间隙,变压器油中也有微量气泡,通常气泡的介电系数要比绝缘体低很多,从而导致了绝缘体中气泡所承受的电场强度要远远高于和其相邻的绝缘材料,很容易达到被击穿的程度,使气泡先发生放电;其三,如果导电体相互之间电气连接不良也容易产生放电情况,该种情况在金属悬浮电位中最为严重。 局部放电的危害及主要放电形式 2.1 局部放电的危害 局部放电对绝缘设备的破坏要经过长期、缓慢的发展过程才能显现。通常情况下局部放电是不会造成绝缘体穿透性击穿的,但是却有可能使机电介质的局部发生损坏。如果局部放电存在的时间过长,在特定的情况下会导致绝缘装置的电气强度下降,对于高压电气设备来讲是一种隐患。 2.2 局部放电的表现形式 局部放电的表现形式可分为三类:第一类是火花放电,属于脉冲型放电,主要包括似流注火花放电和汤逊型火花放电;第二类是辉光放电,属于非脉冲型放电;第三类为亚辉光放电,具有离散脉冲,但幅度比较微小,属于前两类的过渡形式。 3 变压器局部放电检测方法 变压器局部放电的检测方法主要是以局部放电时所产生的各种现象为依据,产生局部放电的过程中经常会出现电脉冲、超声波、电磁辐射、气体生成物、光和热能等,根据上述的这些现象也相应的出现了多种检测方法,下面介绍几种目前比较常见的局部放电检测方法。 3.1 脉冲电流检测法 这种方法是目前国内使用较为广泛的变压器局部放电检测方法,其主要是通过电流传感器检测变压器各接地线以及绕组中产生局部放电时引起的脉冲电流,并以此获得视在放电量。电流传感器一般由罗氏线圈制成。主要优点是检测灵敏度较高、抗电磁干扰能力强、脉冲分辨率高等;缺点是测试频率较低、信息量少。 3.2 化学检测法 化学检测法又被称为气相色谱法。变压器出现局部放电时,会导致绝缘材料被分解破坏,在这一过程中会出现新的生成物,通过对这些生成物的成分和浓度进行检测,能够有效的判断出局部放电的状态。这种方法的优点是抗电磁干扰较强,基本上能够达到不受电磁干扰的程度,也比较经济便捷,还具有自动识别功能;但该检测方法也存在一些缺点:由于生成物的产生过程时间较长,故此延长了检测周期,只能发现早期故障,无法检测突发故障,并且该

【CN110161383A】一种开关柜局部放电检测装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910363724.5 (22)申请日 2019.04.30 (71)申请人 云南电网有限责任公司电力科学研 究院 地址 650217 云南省昆明市经济技术开发 区云大西路105号 (72)发明人 唐伟超 刘红文 王科  (74)专利代理机构 北京弘权知识产权代理事务 所(普通合伙) 11363 代理人 逯长明 许伟群 (51)Int.Cl. G01R 31/12(2006.01) (54)发明名称一种开关柜局部放电检测装置(57)摘要本申请公开一种开关柜局部放电检测装置,包括第一陶瓷电容、局放信号提取装置、带电指示装置和局放信号检测装置;局放信号提取装置包括第二陶瓷电容和局放信号提取电阻,第一陶瓷电容、第二陶瓷电容和局放信号提取电阻依次串联,局放信号检测装置与第二陶瓷电容并联;带电指示装置与局放信号提取装置并联,带电指示装置包括依次串联的电感、分压电阻和带电指示灯;预先对陶瓷电容元件进行频响特性检测,确定陶瓷电容元件的工作带宽范围为f 1-f 2,并根据所述工作带宽范围,确定出检测高频局部放电信号所需的第一陶瓷电容、第二陶瓷电容和局放信号提取电阻的取值。本申请能在带电指示灯正常工作时,防止带电指示灯对局放信号的分流, 局放检测精度高。权利要求书1页 说明书4页 附图1页CN 110161383 A 2019.08.23 C N 110161383 A

1.一种开关柜局部放电检测装置,其特征在于,包括第一陶瓷电容(1)、局放信号提取装置(2)、带电指示装置(3)和局放信号检测装置(4);局放信号提取装置(2)包括第二陶瓷电容(21)和局放信号提取电阻(22),第一陶瓷电容(1)、第二陶瓷电容(21)和局放信号提取电阻(22)依次串联,局放信号检测装置(4)与局放信号提取电阻(22)并联;带电指示装置 (3)与局放信号提取装置(2)并联,带电指示装置(3)包括依次串联的电感(31)、分压电阻 (32)和带电指示灯(33);预先对陶瓷电容元件进行频响特性检测,确定陶瓷电容元件的工作带宽范围为f 1-f 2,并根据所述工作带宽范围,确定出检测高频局部放电信号所需的第一陶瓷电容(1)、第二陶瓷电容(21)和局放信号提取电阻(22)的取值。 2.根据权利要求1所述的开关柜局部放电检测装置,其特征在于,带电指示装置(3)的阻抗为Z LR ,局放信号提取装置(2)的阻抗为Z CR ,则Z LR ﹥100Z CR ,其中, Z LR =2πf 1L+R 2+R L 式中,f 1为陶瓷电容元件工作带宽的最小值;L为电感(31)的电感值;R 2为分压电阻(32)的电阻值;R L 为带电指示灯(33)的电阻值;C 2为第二陶瓷电容(21)的电容值;R 1为局放信号提取电阻(22)的电阻值。 3.根据权利要求1所述的开关柜局部放电检测装置,其特征在于,第一陶瓷电容(1)的输入端与开关柜单相电源线(5)连接,第一陶瓷电容(1)的输出端与第二陶瓷电容(21)的输入端之间设置有第一电连接点(6),电感(31)的输入端与第一电连接点(6)连接,带电指示灯(33)的输出端接地。 4.根据权利要求1所述的开关柜局部放电检测装置,其特征在于,第二陶瓷电容(21)的输出端与局放信号提取电阻(22)的输入端之间设有第二电连接点(7),局放信号提取电阻 (22)的输出端接地;局放信号检测装置(4)的输入端与第二电连接点(7)连接,局放信号检测装置(4)的输出端接地。 5.根据权利要求2所述的开关柜局部放电检测装置,其特征在于,第一陶瓷电容(1)的电容取值范围为1nf -10nf;第二陶瓷电容(21)的电容取值范围为10pf -100pf;局放信号提取电阻(22)的电阻值取值范围为0.16Ω-32Ω。 6.根据权利要求5所述的开关柜局部放电检测装置,其特征在于,电感(31)的取值范围为2mH -100mH,用于测量带宽为1MHz -10MHz局部放电信号。 7.根据权利要求1或4所述的开关柜局部放电检测装置,其特征在于,局放信号检测装置(4)与局放信号提取装置(2)之间为可拆卸连接,局放信号检测装置(4)与电能供应装置 (8)连接,电能供应装置(8)包括220V电源线或蓄电池。 权 利 要 求 书1/1页2CN 110161383 A

局部放电检测仪

PDV5局部放电检测仪

目录 PDV 5 (1) 1 产品概述 (3) 2 检测原理 (4) 3 仪器操作 (4) 4传感器操作 (5) 5仪器的功能 (6) 5.1 频谱扫描 (7) 5.2 启/停测量 (7) 5.3结果显示 (7) 5.4放电类型识别 (8) 5.5抗干扰 (8) 5.5.1 主要干扰类型 (9) 5.5.2 仪器对干扰的抑制 (9) 5.6 数据回读浏览 (9) 5.7 自动更新 (10) 5.8 数据导出 (10) 5.9 帮助 (10) 6使用条件 (10) 7性能指标 (10) 8现场测量方法与注意事项 (11) 附录A GIS 局部放电的典型图谱 (14) 附录B 干扰信号的典型图谱 (15) 附录C 检测数据的要求 (16) 附录D 术语和定义 (16)

1 产品概述 局部放电测量有助于发现以SF6气体作为绝缘介质的气体绝缘金属封闭开关设备(以下简称GIS,包括HGIS和罐式断路器等)内部的多种绝缘缺陷,是诊断GIS健康状态的重要手段。在GIS制造、安装、运行和检修的各个环节,凡是具备条件的,都应该进行局部放电检测。 为此,我们精心设计了PDV5局部放电检测仪,专门用于定量检测GIS等电力变电设备内部的局部放电的状况,直观分析局部放电的严重程度,衡量设备内部绝缘的劣化程度,使维护人员在变电设备出现绝缘劣化时能够及时发现,采取相应措施,避免设备出现短路等严重故障。 PDV5局部放电检测仪采用目前流行的超高频和超声波检测局部放电的方法,通过外置的UHF天线接收GIS内部局部放电辐射和产生的超高频和超声波信号,能有效检测到设备内部产生的微弱局部放电信号。PDV5在使用上以超高频为主要检测方法,超声波为辅助检测手段。 PDV5具有如下特点: ①单通道设计,可以选择接入超高频传感器或者超声波传感器。 ②便携式设计,维护人员能随身携带,并且一个人就能实施局部放电的检测过程。 ③操作过程简单,通过仪器上的快捷按键就能轻松完成整个检测,方便现场人员使用。 ④在检测过程中自动实时进行局部放电智能化诊断,并且将判断结论显示在仪器界面上,帮助现场工作人员分析局部放电类型。 ⑤具备连续检测和存储数据的能力,数据能通过外插U盘的方式导出。 ⑥在检测过程中实时显示放电幅度趋势图,Q-N-Φ图(PRPD), 特征棒图,有经验的现场分析人员可以清楚的观测到设备内部产生的局部放电的时域和相域的特征,从而判断局部放电严重程度和类型。

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

相关主题
文本预览
相关文档 最新文档