当前位置:文档之家› 400MW火力发电厂热力设计

400MW火力发电厂热力设计

400MW火力发电厂热力设计
400MW火力发电厂热力设计

前言

本设计通过对原则性热力系统的拟定和计算以及全面性热力系统的拟定,初步设计出2×200MW的火力发电厂的热力部分,包括汽轮机、锅炉、主要的辅助设备和制粉系统。

本篇设计论文运用语言分析、公式计算和绘图说明的方法详细系统清晰的表达出了设计者的设计构思和过程。

由于设计者的能力有限,设计中出现错误在所难免,请阅者给予指正和建议。

Foreword

Draw-up, first step that this design pass to draw-up principle thermodynamic energy system with compute and the comprehensive thermodynamic energy system design to out 2 × 200 MW thermal power plants thermodynamic energy part, include a machine, boiler, mainly lend support to the equipments with the system powder system. This design thesis application language analysis, formula calculation with paint elucidation of design that clear expression of detailed system of method out design conceive outline with process.

Because of the design of ability limited, design inside emergence mistake unavoidable, please the reader give to correct with suggestion.

目录

封面—————————————————————————·0·前言—————————————————————————·1·目录—————————————————————————·2·设计任务资料—————————————————————·4·设计任务———————————————————————·4·设计资料———————————————————————·4·汽轮机的初步设计———————————————————·6·原则性热力系统的拟定和计算——————————————·8·原则性热力系统的初步拟定———————————————·8·蒸汽流量的估算————————————————————·9·回热系统热平衡计算——————————————————·10·加热器相关数据的计算—————————————————·11·锅炉排污利用系数的计算————————————————·13·抽汽做功不足系数的计算————————————————·14·汽轮机汽耗量的计算——————————————————·14·汽轮机功率的校核———————————————————·15·原则性热力系统简析——————————————————·16·锅炉的拟定选择————————————————————·18·燃用煤的分析—————————————————————·18·热平衡计算——————————————————————·19·

主要辅助设备的选取——————————————————·20·给水泵的选取—————————————————————·20·除氧器的选取—————————————————————·22·制粉系统的确定————————————————————·24·全面性热力系统————————————————————·26·小结—————————————————————————·28·参考资料———————————————————————·29·附图—————————————————————————·30·原则性热力过程线———————————————————·30·原则性热力系统图———————————————————·31·全面性热力系统图———————————————————·32·

设计任务资料

设计任务

1、发电厂汽轮机组型式、容量、台数的选择。

2、拟定机组的原则性热力系统,画出原则性热力系统图,并进

行机组的原则性热力系统得热力计算。

3、选择锅炉的型号、容量、台数。

4、热力系统辅助设备的选择。

5、制粉系统的拟定和选择。

6、全面热力系统得拟定,并画出全面性热力系统图。

设计资料

1、厂址及发电厂任务

厂址靠近煤矿区并距工业城市不远,该厂投产后和2400MW的电网联网,并担任系统基本符合,发电厂近期承担系统基本符合400MW,八年后进行第二期工程仍未400MW,该厂附近有国家铁路干线通过,距离该厂5公里处有一河流,流量为20立方米水质较好。

2、燃料资料

本厂燃用矿区贫煤,储量丰富足够本厂长期使用,煤质分析:

C ar=52.6 H ar=2.8 Q ar=3.2

N ar=0.9 W ar=10.0 S ar=3.2

Aa r=27.3 V daf=17.0 W ad=0.97

K km=1.5 Q netar=20500kj/kg

灰的熔点:

t1=1250 ℃ t2=1375℃ t3>1400℃;

原煤堆积密度870kg/m3

原煤已经煤矿筛选出来大于30mm的只占0.44%可不用粉碎。

3、气象资料

历年平均温度 14.9℃

最高气温 42℃

最低气温 -15.7℃

冬季平均气温 2.1℃

平均气压 758.3mmHg

汽轮机的初步设计

本次设计的是凝汽式汽轮机,承担基本负荷,投产后与2400MW 的电网联网。凝汽式发电厂应选择凝汽式机组,其单位容量应根据系统规划容量、负荷增长速度和电网结构因素进行选择。

该厂投产后和2400MW的电网联网,并承担系统的基本符合,发电厂近期承担系统基本符合400MW八年后第二期工程仍为400MW,则因此设计2×200MW,两台汽轮机型号为HG670/16.72-2,它的型号为超高压、单轴三缸三排汽,一次中间再热凝汽式机组,凝汽式汽轮机。

初参数:P0=12.75MPa, T0=535℃, Pc=0.004MPa.

高压参数汽轮机采用中间再热。可增大单机容量又可提高循环的热效率。同时又可大大降低湿蒸汽区的湿度。这不但可提高机组的内效率又可减少叶轮的冲蚀,但是采用中间再热后,必然会使电厂管道复杂建厂费用大大提高,同时运行业较复杂,故只由大容量高参数的机组采用中间再热,一般涌一次再热。中间再热参数对机组的热效率影响较大,因此必须选择一个合理的再热压力P r=(18~26)%P0,具体数值还应考虑最高一级回热抽气压力,高中压缸的功率分配及轴向推理的平衡问题。

再热后的温度T r,多选用中缸材料能允许的最高温度一般取T r 与初温相同。

所以再热参数如下:冷段参数:P r=2.5MPa,T r=313℃,

热段参数:P r=2.26MPa,T r=535℃。

冷却水温度的确定:冷却水温度应由地区气候条件来确定,应当取机组工作地区冷却水源的历年平均温度。

汽轮机的背压除受冷却水温决定外还要受冷却方式及冷却设备的容量所影响。冷却方式目前采用的有两种方式:一种是以江河水库为水源的供水方式,这种方式冷却水温比较低,但受地区条件限制,另一种是冷却塔或冷却水池,这种方式不受地区的限制,但冷却水温稍高些。

由于该厂历年的平均气温为14.9℃,附近有一河流,流量为20立方米,而且水质较好,所以就采用第一种冷却方式,取冷却水温为153℃,背压为0.004MPa。

原则性热力系统的拟定和计算

热力发电厂原则性热力系统在实质上表明了循环的特性、工质的能量转换及其热量的利用程度和技术完善程度。

发电厂原则性热力系统主要由锅炉、汽轮机和一些各局部热力系统组成:一、二次蒸汽系统、给水回热加热和除氧器补水引入系统、制粉磨煤系统。

原则性热力系统的拟定

原则性热力系统的拟定一般可参照同类型机组取定,亦可按等焓分配方法确定回热系统的热级数每级温升取〈30±5〉℃。

高压段级: Z1=〈t fw-t cy〉/30±5

低压段级: Z2=〈t cy-t cg〉/30±5

式中t fw ----给水温度(末级加热器出口温度)

t cy----除氧器出口温度(选定除氧器压力下的饱和温度)

t cg ----首级加热器入口温度

所以高压段Z1=(243-158)/30±5=3

Z2=(158-33)/30±5=5

选取回热级数n=8,选用高压除氧器p=0.588Mp,t cy=158℃,高压段Z1 =3,低压段,Z2=5对于中型机组加热器端差为△t=4℃.

为了使再热循环起到最佳效果,要合理的选择再热参数,由于受金属材料耐高温性能的限制,再热温度一般取得和蒸汽初温一样或者与其略有偏差,所以再热参数的选择关键在于再热压力,一般再热前

的高压缸中有回热抽汽使(Pr)op=(18%--20%)P0。若高压缸无回热抽气时,即高压缸的排气压力就是给水回热的最高抽气压力,则(Pr)op=(22%--26%)P0.

回热系统图

流量的初步估算η

在设计计算中,汽轮机的蒸汽流量是一个必须知道的蒸汽参数,由于汽轮机的详细计算尚未进行,无法知道设计工况下的蒸汽流量,为此先估算一个蒸汽流量。

D0 =(3600NeLc/Htηjηaxηg )×m+△D

NeLc——设计功率;

ηj —————汽轮机的相对效率(0.91);

ηax——————机械效率(0.995);

H t------汽轮机的理想焓降(1455);

由以上数据和流量公式得出 D0=626t/h;

回热系统热平衡计算

热平衡计算的目的是为了确定汽轮机内各级的流量。它是对各加热器的热平衡,求出各段抽气流量,来确定的。

进行热平衡计算时,可采用由高加至低加的计算方法,如遇到未知量可参照同类型机组先估取,当计算结果与估取值相符合时,说明估取值正确,否则,可采取逐级近似法中心计算,直至结果满意。

表2—1 热平衡计算表

加热器相关数据的计算

1、计算加热器相关的已知参数:

2、高低加热器抽汽系数的计算:

锅炉排污利用系数计算:

锅炉汽包压力P=13.72MPa,排污扩容器内压力P k=0.686MPa扩容器蒸汽干度Χk=98%。

扩容器产生的扩容蒸汽份额αk

根据热平衡公式和物质平衡式:

αpw h′pwηk=αk h k+αk+α′pw h"p w

αpw=αk+α′pw

联立上述两公式可得:αk=0.00415

流出扩容器排污水额: α′pw=αpw-αk=0.00621

化学补充水份额: αbs=αqs+αpw′=0.02692

计算排污冷却器取化学补充水t bs=15℃; h bs′=62.94kj/kg;

排污水冷却端差δt=8℃;h

δt′=33.6kj/kg;则t bs′+t bs"=t pw"-8; 热平衡方程式αpw′ (h pw"-h pw"′)ηir=αbs(h bs"-h bs′)

=αbs(h pw"′-33.6-62.94)

h pw"′=(αpw′h"pwηir+96.54αbs)/(αpw′+αbs)

=207.44kj/kg.

h"bs=h pw"′-33.6kj/kg=173.84kj/kg;

查蒸汽表得:t"=48℃, t bs=48-8=40℃

抽汽作功不足系数的计算:

已知条件:hc=2315kj/kg; qrh=505kj/kg.

汽轮机汽耗量的计算:

由各段的抽汽系数和抽汽作功不足系数可得到计算数据如下:

α1Y1=0.05141 α2Y2=0.03953

α3Y3=0.03119 α4Y4=0.01695

α5Y5=0.01921 α6Y6=0.01394

α7Y7=0.00840 α8Y8=0.00367

所以可得:Σαz y z=0.1843;

以知条件:αgs=1.04607;αrh=0.1293

因此汽轮机的汽耗量为:

D0=3600P e/[(h0-h c+q rh)ηmηg]×1/(1-Σαz y z) =562.93t/h

D rh=αrh D0=71.316t/h

αc=αn4-α5-α6-α7-α8-αbs-αzfz-αz

=0.63285

各段的抽汽量:

D1=α1D0=46.07t/h D2=α2D0=39.65t/h

D3=α3D0=36.20t/h D4=α4D0=22.44t/h

D5=α5D0=32.28t/h D6=α6D0=30.61t/h

D7=α7D0=27.20t/h D8=α8D0=25.40t/h

功率校核:

D n=αn D=436.7t/h

N1=D1(h0-h1)ηjd/3600=3762.4kw

N2=D2(h0-h2)ηjd/3600=4393kw

N3=D3(h0-h3)ηjd/3600=5213kw

N4=D4(h0-h4)ηjd/3600=3817.9kw

N5=D5(h0-h5)ηjd/3600=6757.5kw

N6=D6(h0-h6)ηjd/3600=7457.8kw

N7=D7(h0-h7)ηjd/3600=7604.4kw

N8=D8(h0-h8)ηjd/3600=8124.5kw

N n=D n(h0-h n)ηjd/3600=155137.7kw

N实际=N1+N2+N3+N4+N5+N6+N7+N8+N n=201.57MW

N设计=200MW

(N实际-N设计)/N设计=(201.57-200)/200=0.00785<1%

误差在允许的范围内,计算结果负荷要求。

汽轮机机组热耗量Q h:

Q h=D0(h0-h gs′)+D k(h k-h gs′)-D bs(h gs′-h bs")+D rh q rh

=1668.198×106kj/h

汽轮机组热耗率q n:

q n=Q h/N实际=8247.46kj/kw.h

原则性热力系统简析:

系统中采用八段不调节抽汽:三台高压加热器、四台低压加热器和一台除氧器。三台高压加热器和4#低压加热器加内设有内置式过热段。1#、2#高压加热器之间设有外置式疏水冷却器一台。高压加热器疏水经疏水冷却器逐级自流入除氧器。低压加热器疏水先逐级自流

至2#低压加热器,再用疏水泵送入该加热器后的主凝结水管道中。1#低压加热器疏水直接自流入凝汽器。

系统中设有两台轴封加热器,分别位于1#低压加热器的前后,低压缸和高压缸的汽封来汽相应送到各轴封加热器中,其疏水自流入凝汽器。锅炉设有单级连续排污利用系统,扩容器的蒸汽送入除氧器,浓缩后的排污水经排污水冷却器由化学补充水冷却后排入地沟。

锅炉的拟定选择

由原则性热力系统计算结果选取HG670/140-9型号。选炉的原则式一炉配一机,不设备用。计算对象HG-670/140-9型锅炉烟气侧从前向后依次布置有:炉膛上方的前屏过热器、炉膛出口处的后屏过热器、折焰角上面的高温对流过热器(这段过热器分为2段,即烟道两侧的冷段和烟道中间的热段)、前凝渣管、水平烟道中的高温再热器、后凝渣管、转向室、下行烟道的低温再热器、两级布置的省煤器和空气预热器。这种锅炉的附加受热面包括顶棚和包墙管过热器,包墙管过热器布置在水平烟道侧墙和直到低温再热器的包墙。

锅炉的蒸汽系统为:从泡包出来的饱和蒸汽经过顶棚和包墙管过热器进入前屏过热器,经过一级喷水减温器减温后再进入后屏过热器,出来的全部蒸汽进入汽-汽热交换器,出来后进入高温过热器冷段,经过二级喷水减温器减温后,再进入高温过热器热段,从高温过热器出来的蒸汽进入锅炉主蒸汽管道,送往汽轮机。汽轮机高压缸排汽先进入低温再热器,出来后一部分再热蒸汽进入汽-汽热交换器加热,另一部分再热蒸汽不经过汽-汽热交换器,两部分蒸汽混合后进入高温再热器,之后送往汽轮机。

煤种的判断:

由燃料的特性知V daf=17.0可知此煤为贫煤,不易点燃,燃烧时火焰短,但稍胜于无烟煤,焦碳无焦结性。

热平衡计算:

锅炉热负荷Q gl:

Q gl=D gl(h gr-h gs′)+D pw(h pw′-h gs′)+D rh q rh=1423.034772×106机组热效率:ηh t=3600/q h=0.5319;

全厂热效率:ηndl h=ηh tηglηgd=0.4688;

标准煤耗率:b d=0.123/ηndl h=0.2624kg标准煤/kw.h;

汽耗率: d=D0/Pe=2.7377kg/kw.h;

辅助设备的选择

给水泵的选取

此厂给水泵的选取是根据水泵性能表来选择水泵的。根据初步确定的泵的类型。

在选择给水泵时必须满足工作中需要的最大负荷,其正常工作点应尽可能靠近设计工况点,使泵能长期在高效区运行;选择泵的性能曲线形状合适,保证在正常工作区不发生汽蚀及其他不稳定现象;合理确定流量及扬程裕量,裕量取的过大会使工作点偏离高效率区,裕量取的过小会满足不了工作需要。一般取裕量为(5%-8%)Q max比转速大取小值,扬程裕量为(10%-15%)H max ,比转速大取大值;选择泵应力图结构简单,体积小、重量轻、设备投资少。以上是选取电厂水泵的基本原则,根据此原则来确定泵的型号。

本厂一组机组配备3台给水泵,其中2台50%容量(即半容量)定速给水泵,1台100%容量(即全容量)液力调速给水泵。为了充分发挥3台泵的优势,达到节能降耗的目的,有必要对给水泵的不同运行方式进行经济性比较和分析,以便对其进行优化。

给水流量与机组负荷的关系给水流量随机组负荷随时变化,并受真空、高压加热器投入与否等多种因素的影响。根据相同机组现实中的水泵运行状况可以得出1台全容量定速泵的经济性优于2台半容量定速泵,负荷在150MW以上时经济性更明显。为了便于给水的调节在设计该厂给水泵是采用了一台全容量和两台半容量的给水泵。

热力发电厂课程设计说明书(国产600MW凝汽式机组全厂原则性热力系统设计计算)

国产600MW 凝汽式机组全厂原则性热力系统设计计算 1 课程设计的目的及意义: 电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据。 2 课程设计的题目及任务: 设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算。 计算任务: ㈠ 根据给定的热力系统数据,在h - s 图上绘出蒸汽的汽态膨胀线 ㈡ 计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D ㈢ 计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、 绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率) ㈣ 按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图 3 已知数据: 汽轮机型式及参数

锅炉型式及参数 锅炉型式英国三井2027-17.3/541/541 额定蒸发量Db:2027t/h 额定过热蒸汽压力P b17.3MPa 额定再热蒸汽压力 3.734MPa 额定过热蒸汽温度541℃ 额定再热蒸汽温度541℃ 汽包压力:P du18.44MP 锅炉热效率92.5% 汽轮机进汽节流损失4% 中压缸进汽节流损失2% 轴封加热器压力P T98kPa 疏水比焓415kJ/kg 汽轮机机械效率98.5% 发电机效率99% 补充水温度20℃ 厂用电率0.07 4 计算过程汇总: ㈠原始资料整理:

热力管网施工组织设计

热力管网施工组织设计

————————————————————————————————作者:————————————————————————————————日期:

襄垣县泰瑞达供热有限公司 热电联产二线集中供热管网土建工程(城外供热管网)六标施工组织设计 嘉泰建设发展有限公司

目录第一章编制说明: 第二章工程概述: 第三章工程特点及难点: 第四章主要施工方案: 第五章施工质量保证措施: 第六章安全施工保证措施: 第七章文明施工保证措施: 第八章施工进度保证措施: 第九章环境保护、降低成本措施: 第十章附件: 第十一章附表: (一)拟投入本标段的主要施工设备表(二)拟配备本标段的试验和检测仪器设备表(三)劳动力计划表 (四)计划开、竣工日期和施工进度网络图(五)施工总平面图 (六)临时用地表

施工组织设计 第一章编制说明 第一节编制说明: 为能保质保量、安全、按期完成此项工程任务,确保运行使用时的安全性、可靠性,借鉴我公司以往工程的施工管理经验和人力及机械资源配备情况,进行编制。 第二节编制依据: 一、招标文件 《城市热电网设计规范》(CJJ34-2002) 《建筑地基基础设计规范》(GB50007-2002) 《砌体结构设计规范》(GB50003-2001) 《工程测量规范》GBJ50026-93; 《城镇直埋供热管道工程技术规程》(CJJ/T81-98) 《城镇供热管管网工程施工及验收规范》(CJJ28-2004) 《工业设备及管道防腐蚀工程施工及验收规范》(HGJ229-91) 《建筑防腐蚀工程质量检验评定标准》(GB50224-95) 《涂装前钢材表面锈蚀等级和除锈等级》(GB8923-88) 《施工现场临时用电安全技术规范》(JGJ46-2005) 现行《建筑安装工程施工质量验收统一标准》 《公司常用吊车性能表》; 第二章工程概况

热力站工艺设计

张家口市桥东区集中供热工程 党校换热站设计 第一节 换热器的选择与计算 根据设计原则及该换热站的情况 ,选择板式换热器。 计算热负荷: ∑=Q Q 1.1)-(1.05j α?=∑∑F Q 其中 j Q —计算热负荷,W ; ∑Q —累计热负荷,W ; ∑F —采暖建筑面积,2 m ; α—面积热指标,2/m W 。 党校区换热站供热范围内建筑均为非节能建筑,根据采暖通风空调设计手册,面积热指标党校办公楼按802/m W 计算,面积为12000m 2,其他均为民用建筑,面积热指标按602/m W 计算。 12000807785460 5.63 W Q M ∑=?+?= 调查可知该站伦比小区以地暖形式供暖,面积为28400m 2 ,其余均以散热器形式供暖。 散热器计算热负荷为 14945460960000 3.93 W Q M ∑=?+= 地暖计算热负荷为 22840060 1.70 W Q M ∑=?= (散热器)纯逆流情况对数平均温差: C 27.23607085 130ln ) 6070()85130(ln 0min max min max =-----=???-?= '?t t t t t m 根据管壳式换热器进行修正: 00.8823.2720.48C m m t t ?'?=?=?= (地暖)纯逆流情况对数平均温差: C 76.39507060 130ln ) 5070()60130(ln 0min max min max =-----=???-?= '?t t t t t m

根据管壳式换热器进行修正: C 99.3476.3988.00=?='?=?m m t t φ 该换热站散热器所需板式换热器换热面积: 6 2Q 3.9310F 1.4 1.479.02K 340020.48m m t ?===?? 地暖换热器面积为: 26 2099 .343400107.14.1K Q 1.4F m t m =??=?= 可选用四台换热器,两套换热机组,每组两台,互备互用。 散热器区备用换热器面积为: 2 1F 79.020.755.31m =?= 地暖区备用换热器面积为: 2147.020F m =?= 选用BBR 板式换热器四台。 第二节 水泵的选择与计算 1、循环水泵总流量 h g j t t Q G -? =8604.1 式中 G — 循环水泵的总流量 ,h t / j Q — 负担建筑物的总供热量,MW g t — 回水温度,C 0 h t — 供水温度,C 0 散热器区循环水量为: 1860 3.93 G 1.4189.3/8560 t h ?=? =- 互用互备: h t t t Q G h g j /5.1327.060 8593 .38604.18604.1=?-?? =-? = 地暖区循环水量为: 2860 1.7 G 1.4204.7/6050 t h ?=? =- 互用互备h t G /3.1437.07.204=?=

直埋供热管道设计

热水直埋供热管网的设计 天津市热电设计院 李春庆 1 概述: 国内外直埋技术的发展已有60余年的历史,由于直埋管道具有不影响环境美化、施工简便、工期短、维修工作量少的特点,因此特别是近三十年来热水供热管道直埋敷设发展迅速,相应形成了一整套直埋敷设的设计原理和计算方法。80年代初,我国首次在一些城市的热网工程中采用从北欧国家引进的直埋保温管进行直埋敷设,经历了二十年的发展,无论在预制保温管的生产和安装技术上,还是在直埋供热管网的设计理论和方法上,我国的供热管道直埋技术都得到了飞速发展,直埋敷设现已成为我国城市热网的主要敷设方式。 早在70年代,北京煤气热力设计研究院就将当时已应用于火力发电厂汽水管道上的应力分类法推广到直埋供热管网上,其最显著的特点是对温度应力采用安定性分析,这样,直管段通常可采用既不预热也不补偿的无补偿冷安装方式。然而,在80年代中,我国很多的直埋供热管网使用的都是从北欧引进的预制保温管,这样,很多设计单位也相应地采用了北欧的弹性分析法进行直埋管网设计。采用弹性分析时,为保证管道始终处于弹性状态,直管段通常要采用设置补偿装置、预热或设置一次性补偿器的安装方式。进入90年代,多年的直埋热网运行经验,让我国大多数设计人员认识到,在直管段对温度应力采用弹性分析的确过于保守,越来越多的设计人员开始应力分类法进行直埋管道的强度设计。此时,北欧也已意识到这一点,1993年版的《ABB供热手册》中介绍了一种管道应力已超过弹性范围的冷安装方式,接着在1996年版的欧洲标准《区域供热整体式预制保温管的设计、计算和安装》和1997年为解释该标准而出版的《集中供热手册》中则明确地提出应力分类法。 1999年,在唐山市热力公司、北京市煤气热力设计研究院、哈尔滨建筑大学和沈阳市热力设计研究院等单位的努力下,历经六年的国家行业标准《城镇直埋供热管道工程技术规程》(CJJ/T81-98)颁布实施,标准明确规定了采用应力分类法进行直埋热力管道的强度设计,标准的颁布也标志着我国直埋管道设计理论进入了国际先进水平。但目前国内《规程》中所给定的管道受力等计算图表中数据均限制管径在DN500以下。然而随着我国供热事业的飞速发展,规程适用范围已不能满足实际热网的需要,城市热网

火力发电厂设计各阶段及其主要内容

火力发电厂设计各阶段 及其主要内容 摘要:发电厂设计是一项庞大而繁杂的工程,从最初建设项目的提出到电力勘测选址,从可行性研究到初步设计,从施工图的设计到施工建设,层层环节都要贯彻国家的基本建设方针,体现国家的经济政策和技术政策,符合相应的法律法规和标准要求,保证发电厂的安全可靠、经济适用,符合国情和满足可持续发展要求,以合理的投资获得最佳的经济效益和社会效益。 关键词:发电厂;设计;可行性分析;施工图 引言: 发电厂设计是电力工程建设项目流程中的重要环节,也是一项庞大而繁杂的工程,本文将对发电厂设计的原则与要求、发电厂的设计流程,各设计阶段的工作内容进行阐述,使我们能源与动力工程专业的同学对发电厂设计方面的知识有一个比较全面、系统的了解。 1发电厂设计的原则与基本要求 1.1设计原则 (1).设计的基本原则是执行DL5000-2000《火力发电厂设计技术规程》的规定,此外还应符合其他一些现行的有关国家标准和行业标准的规定,如设计中要采取切实有效的措施,减轻发电厂排放的废气、废水、灰渣、噪声和排水等对环境造成的影响;使各项有害物的排放符合环境保护的要求以及劳动安全与工业卫生的有关规定。 (2).发电厂的规划和设计应树立全局观念,满足市场需求,依靠技术进步,认真勘测,精心设计。设计中积极慎重地推广国内外先进技术,因地制宜地采用成熟的新材料、新设备、新工艺、新布置、新结构,努力提高机械化、自动化水平。同时还应考虑未来全国电力系统联网,全国范围内的资源优化配置和厂网分开、竞价上网的电力市场要求。 (3).发电厂的设计必须按国家规定的基本建设程序进行,设计文件应按规定的内容和深度完成批准手续。 (4).在发电厂设计中,应积极采用最新的参考设计、典型设计,以及先进的设计方法和手段,以提高设计质量、缩短工期和控制工程造价,并结合工程特点不断有所创新。 (5).发电厂的厂址选择、容量规划、建设规模和建设期限、选用的机组容量、联网方式、燃料来源和品种、投资控制指标等,均应以经过批准的可行性研究报告书作为依据。在设计过程中,当因具体条件发生变化,必须改变原有规定时,应及时报请原审批单位重新审定。

热力发电厂课程设计

学校机械工程系课程设计说明书热力发电厂课程设计 专业班级: 学生姓名: 指导教师: 完成日期:

学校机械工程系 课程设计评定意见 设计题目:国产660MW凝汽式机组全厂原则性热力系统计算 学生姓名:专业班级 评定意见: 评定成绩: 指导教师(签名): 2010年 12 月9日 评定意见参考提纲: 1.学生完成的工作量与内容是否符合任务书的要求。 2.学生的勤勉态度。 3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

《热力发电厂》课程设计任务书 一、课程设计的目的(综合训练) 1、综合运用热能动力专业基础课及其它先修课程的理论和生产实际知识进行某660MW凝气式机组的全厂原则性热力系统的设计计算,使理论和生产实际知识密切的结合起来,从而使《热力发电厂》课堂上所学知识得到进一步巩固、加深和扩展。 2、学习和掌握热力系统各汽水流量、机组的全厂热经济指标的计算,以及汽轮机热力过程线的计算与绘制方法,培养学生工程设计能力和分析问题、解决问题的能力。 3、《热力发电厂》是热能动力设备及应用专业学生对专业基础课、专业课的综合学习与运用,亲自参与设计计算为学生今后进行毕业设计工作奠定基础,是热能动力设备及应用专业技术人员必要的专业训练。 二、课程设计的要求 1、明确学习目的,端正学习态度 2、在教师的指导下,由学生独立完成 3、正确理解全厂原则性热力系统图 4、正确运用物质平衡与能量守恒原理 5、合理准确的列表格,分析处理数据 三、课程设计内容 1. 设计题目 国产660MW凝汽式机组全厂原则性热力系统计算(设计计算) 2. 设计任务 (1)根据给定的热力系统原始数据,计算汽轮机热力过程线上各计算点的参数,并在h-s图上绘出热力过程线; (2)计算额定功率下的汽轮机进汽量Do,热力系统各汽水流量Dj、Gj; (3)计算机组和全厂的热经济性指标; (4)绘出全厂原则性热力系统图,并将所计算的全部汽水参数详细标在图中(要求计算机绘图)。 3. 计算类型 定功率计算 4. 热力系统简介 某火力发电厂二期工程准备上两套660MW燃煤气轮发电机组,采用一炉一机的单元制配置。其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;汽轮机为Geg公司的亚临界压力、一次中间再热660MW凝汽式汽轮机。 全厂的原则性热力系统如图1-1所示。该系统共有八级不调节抽汽。其中第一、第二、第三级抽汽分别供高压加热器,第五、六、七、八级抽汽分别供低压加热器,第四级抽汽作为0.9161Mpa压力除氧器的加热汽源。 第一、二、三级高压加热器均安装了留置式蒸汽冷却器,上端差分别为-1.7oC、0oC、-1.7oC。第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为5.5oC。

热力管道工程施工组织设计方案

济南市武家庄旧村改造工程(一期室外综合管线) 热力工程施工方案 编制单位:中国新兴建设开发总公司 济南武家庄旧村改工程项目部 编制日期:二0一二年九月二十二日

热力工程施工方案 一、工程概况 1、工程简介 武家庄旧村安置小区工程位于济南市高新技术开发区孙村片区西北部。规划面积43.2公顷,为新建小区。 本工程为武家庄旧村安置一期室外综合管线工程,包括给水系统、排水系统、热力系统及毛石挡土墙工程。 2、主要工程量 热力系统供回水温度80/60℃,采暖系统分为高、低两个区。热力管道采用直埋敷设,直埋管道为高密度聚乙烯外护管聚氨酯泡沫塑料预制直埋保温管,弯头、三通管件使用加强型。管径有DN70、DN80、DN100、DN125、DN150、DN200、DN250、DN300。总长约5389m,放气井4座,排气井8座,检查井8座。 二、施工部署 1、施工阶段划分 施工阶段原则上划分施工准备阶段、施工阶段、竣工验收阶段。 ⑴、施工准备阶段 从接到中标通知书后至开工前进行,编制施工准备计划,按计划进行各种施工前准备。 ⑵、施工阶段

在这期间需合理组织、精心施工,完成工程各项指标。 ⑶、竣工验收阶段 在工程完工后进行,期间需进行大量资料准备工作,整理各项原始数据,按业主要求提供项目竣工验收各项资料,配合业主进行项目各种检测和评定。 2、施工区域划分 根据现场情况,施工区域分为5个区,一区为西南部,主要有3-3#、3-4#、3-5#、3-6#、3-11#;二区为东南部,主要有3-14#、3-15#、3-16#、3-17#、3-18#;三区为东北部,主要有3-19#、3-20#、3-21#、3-22#、3-23#、3-24#;四区为西北部,主要有2-14#、2-16#高层;五区为主路部分。 三、施工准备 1、现场调查: ⑴、开工前根据设计图纸和招标文件资料进行沿线踏勘和调查,将现场情况和问题逐一列出,集中研究处理方案。 ⑵、确定水准点标高、位置,以便施工放样时设置临时标志。对于施工范围内的测量标志,必须采取措施妥善保护,以免施工时由于不慎而受损。 ⑶、提前做好石灰、砂、石、水泥等材料供货单位的落实和砼配合比的试验及确定,确保工程的顺利实施。 ⑷、做好进场设备的维护保养,力争做到相应配套、性能完好,应用方便、器具齐全。 2、交底: 计划在开工前组织任务交底和技术交代,由工地技术负责人根据施工组织设计的要求,将工期安排、质量标准、安全要求、节约指标、文明施工、技术措

热力站设计的常见问题及改进对策

热力站设计的常见问题及改进对策 目前在热力站设计工作中,仍然存在一些问题与不足,主要体现在排水沟、不凝性气体、凝结水回收管道、补水箱液位测量等方面。为应对这些问题,今后应该有针对性的采取改进对策,提高排水沟、不凝性气体、凝结水回收管道、补水箱液位测量的设计水平,并增强设计人员综合素质、严格遵循相关技术规范要求。 标签:热力站;设计;排水沟;不凝性气体;凝结水回收管道 引言 热力站在城市供热,满足人们采暖需要等方面具有重要作用。为促进其作用的充分发挥,首先就得做好设计工作,对各项设施进行科学合理规划,提高设计水平和设计质量。但一些设计单位的技术水平较低,设计人员责任心不强,导致在设计过程中难以有效提高设计水平,对热力站以后的运行产生不利影响。因此,结合热力站设计实际情况,探讨分析常见问题,并提出改进和完善对策无疑具有重要现实意义。下面将以汽-水热力站为例,探讨设计中存在的不足,并有针对性的提出改进措施,希望能够为实际工作提供启示和借鉴。 1 热力站设计的常见问题 尽管很多设计单位和设计人员认识到设计工作在推动热力站施工建设,促进热力站更好运行和工作方面的重要作用,但由于一些设计人员的技术水平较低,相关管理制度不完善,导致设计中仍然存在一些问题与不足。具体来说,这些问题主要体现在以下几个方面。 1.1 排水沟存在的问题 热力站换热机组多数实现自动化控制,工作人员在监控室开展各项操作时,监控室与换热机组通过通信电缆传输控制信号。但由于施工质量不到位,监理工作被忽视,或者后期出现工后沉降现象,导致排水沟内积水向电缆沟内渗流。当积水过多或湿度过大时,对热力站各项设备的安全运行产生负面影响,并且一旦出现渗流现象,进行处理是十分困难的工作。 1.2 不凝性气体排除存在的问题 供回水管道最高处都设置自动排气阀,一般设置一个就能排除管内不凝性气体,但在供暖初期或中途检修后,管道最高处聚集大量不凝性气体,并且在回水管道最高处积聚最多。在这种情况下,一个自动排气阀难以及时排除不凝性气体,容易导致管网压力和电动机电流急剧波动,影响管道和电气设备安全运行。 1.3 凝结水回收管道存在的问题

火力发电厂项目设计知识

火力发电厂项目设计知识 火力发电厂设计(fossil一fired power plant engineering and design)建设火力发电厂必须进行的前期工作,包括可行性研究、初步设计(或概念设计)和工程建设实施阶级的施工图设计。设计工作是电厂建设中的重要一环,对工程质量、进度和投资控制,对工程的经济效益和社会效 益起着关键的作用。设计租序中国现行大、中型火电厂的基本建设程序是: 主管机关先委托有资格的设计机构进行厂址选择、编制初步可行性研究报告,经主管机关会同有关专业部门审查批准后由主管机关上报项目建议书,向国家计划部门申请立项。然后设计部门 受代行业主职能的单位委托,编制可行性研究报告,待审查批准后,由项目法人按规定通过主 管机关上报可行性研究报告书,具体阐明电厂厂址的条件,工程规模,机组容量,燃煤供应、 运输方式,环境保护等主要原则,以及资金来源、投资额、上网电价等要点,由国家发展计划委员会或国务院审查批准。与此同时,环境影响报告书需经国家环保局批准。 设计部门根据上述批准的文件开展初步设计,并决定工程项目的各项具体技术方案,经项目法 人(或其委托单位)批准后,再进行施工图设计。 国际上对火电厂建设程序及阶段的划分,各国规定不尽相同,大体与上述内容相近,分为可行性研究、初步设计(有的是概念设计或基本设计)、施工图设计等三个阶段。 设计机构火电厂的设计机构,一般有三种形式,即: ?由独立的电力工程咨询公司负责设计; ?由制造厂附设的电力设计机构负责设计; ?由业主设置的电力设计机构自行负责设计。 一般由项目法人通过招投标方式择优选择设计机构。发达国家多采用独立的工程咨询公司的形式,由业主委托这方面有经验的公司负责设计。实力较强的工程咨询公司,还可承担设备采购、施工管理、调试投产的工程建设全过程工作。具备成套供应火电设备和工程设计能力的制造厂,可以投标承担设计、施工、调试、投产任务,以“交钥匙”的方式负责整个电厂的设计、建设; 承包工程时一般由业主事先委托工程咨询公司完成可行性研究,并提供厂址的自然条件和社会 条件。 大型电力企业,有时也拥有本公司的火电设计部门,如法国电力公司(Eleetrieite de Franee,EDF)旧本东京电力公司(Tokyo Eleetrie Powe:eompany, TEPCO)等,由于公司规模庞大,建设 任务多,火电设计机构可根据公司的需要和建设标准,进行电厂的概念设计,并审定和汇总各 专业制造厂提供的施工图。 中国的火电厂设计,在1997年以前由国家电力部电力规划设计总院下属六个大区电力设计院, 及省、市电力局的电力设计院负责。从1998年起,随着电力部的撤销,电力设计院改属国家电力公司和省、市电力公司,成为企业单位。电力设计院今后将向独立的工程咨询公司发展,强 调“客观、公正、科学、可靠”和为业主服务,同时也为国家和行业管理部门服务。它的业务范围,也将发展到与发达国家的工程咨询公司相同。设计阶段和内容深度设计内容按设计阶段划分,主要包括可行性研究、初步设计和施工图。 可行性研究一般分为初步可行性研究和可行性研究两个阶段。

热力发电厂课程设计报告dc系统

东南大学 热力发电厂课程设计报告 题目:日立250MW机组原则性热力系统设计、计算和改进 能源与环境学院热能与动力工程专业 学号 姓名 指导教师 起讫日期 2015年3月2日~3月13日 设计地点中山院501 2015年3月2日

目录 1 本课程设计任务 (1) 2 ******原则性热力系统的拟定 (2) 3 原则性热力系统原始参数的整理 (2) 4 原则性热力系统的计算 (3) 5 局部热力系统的改进及其计算 (6) 6 小结 (8) 致谢 (9) 参考文献 (9) 附件:原则性热力系统图

一本课程设计任务 1.1 设计题目 日立250MW凝汽机组热力系统及疏水热量(DC系统)利用效果分析。 1.2 计算任务 1、整理机组的参数和假设条件,并拟定出原则性热力系统图。 2、根据给定热力系统数据,计算气态膨胀线上各计算点的参数, 并在h-s 图上绘出蒸汽的气态膨胀线。 3、对原始热力系统计算其机组内效率,并校核。 4、确定原则性热力系统的改进方案,并对改进后的原则性热力系 统计算其机组内效率。 5、将改进后和改进前的系统进行对比分析,并作出结论。 1.3设计任务说明 对日立MW凝汽机组热力系统及疏水热量(DC系统)利用效果分析,我的任务是先在有DC系统情况下通过对抽汽放热量,疏水放热量,给水吸热量等的计算,求出抽汽份额,从而用热量法计算出此情况下的汽机绝对内效率(分别从正平衡和反平衡计算对比,分析误差)。然后再在去除DC系统的情况下再通过以上参量计算出汽轮机绝对内效率(也是正平衡计算,反平衡校核对比)。最后就是对两种情况下的绝对内效率进行对比,看去除DC系统后对效率有无下降,下降多少。

室外供热管网施工组织方案

2014年保障性住房建设项目室外供热 配套设施工程 (****供热管网建设) 施 工 组 织 设 计 编制人: 审核人:

审批人: 编制单位: 目录 一、工程概况 1、工程内容 2、工程地点 二、施工方案 1、施工前的准备 2、组建项目部 3、施工流向 4、施工阶段划分关键控制点 5、本工程管道安装的基本要求 三、土建安装工程技术措施 1、土建施工的内容 2、定位放线 3、管沟人工开挖 4、管沟回填 四、管道安装工程技术措施

1、管道安装的准备工作 2、管件的预制 3、运输、布管与下管 4、管道的防腐 5、管道的焊接 6、压力管道的吊装 7、管道支架、吊架的安装 8、管道焊接外观检验 9、阀门闸阀安装 10、管道压力试验 11、法兰安装 12、管道工安全技术措施 五、质量目标及保证措施 六、安全生产技术组织措施 七、文明施工及扬尘治理技术组织措施 八、劳动力配备计划及主要施工机具设备计划

一、工程概况 (一)工程内容 本工程位于***,*****保障性住房,对该段进行管沟开挖、夯实、回填,管沟内铺细沙;砌筑检查井,聚乙烯聚氨酯发泡直埋螺旋管安装敷设,接头保温;安装中压闸阀、三通、弯头、热计量表;安装固定支墩支架,浇筑固定支墩;安装波纹补偿器,管道做强度严密性试验。 (二)工程地点 ******* 二、施工方案 (一)施工前的准备工作 1、熟悉图纸:组织图纸内审,组织现场技术人员熟悉施工图纸,深刻领会设计意图及要求,会同建设单位、设计单位做好图纸会审工作,把图纸上存在的问题在施工前解决。 2、技术交底:项目部经理组织项目部专业技术人员对工程的关键部位、关键工序、特殊过程施工编制专门的施工方案,对采用的新工艺、新材料应编制施工作业指导书,并及时做好各进场班组的技术、质量、

浅谈工厂电气设计要点

浅谈工厂电气设计要点 的建设数量也开始逐渐增多。电气设计作为工厂厂房设计中重要的一环,在确保工业生产能够进行,工厂经营能够有效开展方面,有着重要的作用。本文就主要对工厂的电气设计进行简单的探讨。 关键词:工厂电气设计厂房设计防雷接地 供电质量的好坏,对于工厂能够持续稳定的运行有着重要的影响。如果没有合理的供电设计,则无法确保供电的顺利和通畅,进而影响工厂持续稳定的运行。工厂的产区和车间两个部分是用电量最大的区域,因此,在工厂电气设计中,厂区和车间的供电是需要着重加强的两个方面。 1、厂区供电 根据负荷计算及对二三期负荷的预测,全厂的变压器安装容量约8000kV-A左右;鉴于附近电力部门的10kV系统已经没有容量及备用的回路,且当地的市政线路以35kV为主;故经甲方与供电局协商,在厂区内建一个35kV降压站,内设两台容量为4500kV A/35kV/10kV的主变压器。《供配电设计规范》(GB50052-95)第4.0.4条明确规定:正常情况下,用电设备端子处电压偏差允许值(以额定电压的百分数表示)宜符合下列要求:(1)电动机为5%;(2)照明:在一般工作场所为5%,对于远离变电所的小面积一般工作场所,难以满足上述要求时,可为+5%,-10%,应急照明、道路照明和警卫照明等为+5%,-10%;(3)其它用电设备当无特殊规定时为5%。《10kV及以下变电所设计规范》

(GB50053-94)第2.0.1条明确规定:变电所位置的选择,应根据下列要求经技术、经济比较确定,即:接近负荷中心;进出线方便。 2、车间照明及配电设计 2.1车间照明分类及供电方式 鉴于《机械工厂电力设计规范》(JBJ6-96)规定,我们在进行车间的照明设计时,一般采用以下几种供电方式:(1)当厂房内只设一台变压器且采用变压器干线式配电系统而又无低压联络线时,照明电源宜接自低压侧总开关进线端;当有联络线时,照明电源宜接自低压侧总开关出线端。应急照明电源应与正常照明的供电干线自变电所低压屏(或母线上)。 (2)当车间变电所低压侧采用放射式(或放射式与干线式相结合的方式,即较常用的配电方式)时,车间的照明电源宜接自低压配电屏的照明回路上;应急照明(值班照明)电源宜接自低压配电屏的应急照明回路上。 (3)当厂房内无变压器,电源从附近引来时,动力配电回路宜与照明回路分开;在建筑物电源进线处,应急照明电源与正常照明回路分开,且接在正常照明回路总开关上口。 2.2车间照明的控制及电能计量 根据《机械工厂电力设计规范》我们在对该工厂进行车间内照明设计时,首先按跨及工段进行分区供电,在变电所低压出线屏内装设电度表,对每路照明及应急照明进行计量。其次,在车间内便于操作的距离范内,安装照明及应急照明配电箱,出线采用一灯一控方案。这样,看起来虽然配电箱多一些,配电箱中的开关也多一些,但从长远来看,可以节约大量的电能;同时,每个配电箱控制的范围不大,便于操作。

直埋热力管道的强度设计计算

直埋热力管道的强度设计计算 【摘要】本论文以管道直埋技能的概述为分析对象,并对直埋供热管道的效果及应力特色进行了阐述,结合该实际情况,对直埋热力管道的强度设计计算进行了探讨。 【关键词】直埋,热力管道,强度设计 一、前言 随着当今施工水平的不断提高,生产和生活中对施工过程以及施工质量的要求也日益渐高。因此,积极采用科学的方法,不断完善直埋热力管道的强度设计计算就成为管道施工中十分紧迫的问题。 二、管道直埋技能的概述 管道直埋技能通常优于有沟埋敷,当前已运用于供热、输油等工程范畴。关于这类疑问,经过数值办法处置,过于杂乱。实践运用中假定保温层外表面温度均匀散布,这样就简化为单层域复连通疑问,该疑问已有解析解。事实上,保温层外表面温度是不均匀散布的。这些年在研讨保温层准静态热力损害以及管道强度和安稳性,剖析埋设区土壤的冻融状况和土壤的热物性改变等许多技能疑问都需求对直埋管道保温层及其土壤邻域的温度场和热流密度进行较精确的剖析,前述简化办法必定致使温度场核算欠精确,以致不能满意后继演算的需求。 三、直埋供热管道的效果及应力特色 所有使管道发生内力及应力的要素都称为效果(又称荷载)。不一样类型的效果,使管道发生不一样性质的应力,进一步能够致使不一样办法的损坏。温度和压力是热力管道上最主要的两种效果。关于直埋管道,还有轴向位移发生的土壤轴向摩擦力和侧向位移发生的土壤侧向紧缩反力。别的,在管道有些布局不连续处会发生应力会集,对应的应力称为峰值应力。峰值应力不会致使明显的变形.但循环改变的峰值应力,也会构成钢管内部布局的损害,致使管道疲惫损坏。因为土壤的均匀支撑,管道的自重没有发生自重弯曲应力,故通常忽略不计。可是关于热网中常用的管道,其公称壁厚要远远大于该压力所需的规划壁厚,内压发生的实践应力也就远远小于管材的屈服应力。相反,因为管道中热胀变形不能彻底开释,使管道发生了较大的轴向压力和压应力,其间轴向压应力能够与屈服应力处于同一数量级上。因而,在直埋敷设热力管道中,内压的影响较小,管道发生爆裂的能够性很小,而温度的影响则较大,管道强度规划中应主要思考温度改变发生的循环塑性变形和疲惫损坏。 四、直埋热力管道的强度设计计算 1、直埋供热管道热力核算

热力发电厂课程设计计算书详解

热力发电厂课程设计

指导老师:连佳 姓名:陈阔 班级:12-1 600MW 凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2,C1 1.整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%, 则 )(MPa 232.232.24)04.01('p 0=?-=; p ’4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃, 可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

1.1绘制汽轮机的汽态线,如图2所示。

1.3计算给水泵焓升: 1.假设给水泵加压过程为等熵过程; 2.给水泵入口处水的温度和密度与除氧器的出 口水的温度和密度相等; 3.给水泵入口压力为除氧器出口压力与高度差产生的静压之和。 2.全厂物质平衡计算 已知全厂汽水损失:D l =0.015D b (锅炉蒸发量),锅炉为直流锅炉,无汽包排污。 则计算结果如下表:(表5) 3.计算汽轮机各级回热 抽汽量 假设加热器的效率η=1

(1)高压加热器组的计算 由H1,H2,H3的热平衡求α1,α2,α3 063788.0) 3.11068.3051()10791.1203(111fw 1=--?==ητααq 09067.06 .9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h -212fw 221=--?--?=-=q d w d w )(αηταα154458 .009067.0063788.0212=+=+=αααs 045924 .02.7825.3375) 2.7826.904(154458.0/1)1.7411.879(h h -332s23fw 3=--?--=-=q d d w w )(αηταα200382 .0154458.0045924.02s 33=+=+=αααs (2)除氧器H4的计算 进除氧器的份额为α4’;176 404.0587.43187.6) 587.4782.2(200382.0/1)587.4741.3(h h -453s34fw 4=--?--=-=q w w d )(’αηταα 进小汽机的份额为αt 根据水泵的能量平衡计算小汽机的用汽份额αt

城镇热力管网改造施工组织设计概述(50页)

目录 第一章综合说明 (2) 第二章施工部署 (4) 第三章施工进度计划 (12) 第四章施工准备与资源配置计划 (24) 第五章施工方案及方法 (29) 第六章施工现场平面布置 (52) 第七章质量管理体系与措施 (53) 第八章安全管理体系与措施 (60) 第九章文明施工保证措施 (67) 第十章环保管理体系与措施 (71)

第一章综合说明 1.编制说明 本投标文件技术标部分,是在详细阅读招标方的《包头市石拐区喜桂图新区热力管网工程二期工程施工三标段石2017SG023施工招标》文件,根据国家及行业现行规范与标准、招标人提供的所有图纸和招标文件各个组成部分对工程的描述以及充分理解设计要求的基础上,对施工方案、图纸深化设计及措施、施工总进度计划及措施、施工安全方案等方面进行的组织设计和部署,来编制本招标工程的施工组织设计。以满足业主的各项需求,确保工程各项管理目标的实现。 在编制过程中,我们遵循以下原则: 1)优质、低耗、高效地完成包头市石拐区喜桂图新区热力管网工程二期工程施工,是本工程施工组织设计的基本原则。 2)组织合理、技术先进、措施可靠、保障有力,确保各项目标满足招标文件、设计图纸及施工规范要求,充分展示技术优势,体现方案科学、先进的特点。 3)施工方案的选择,按照“安全可靠、经济合理,方便施工、技术先进”的原则进行;同时充分考虑周边条件、环境保护和文明施工的要求。 4)本工程的施工组织总体上本着“技术可行,措施可靠,突出重点,均衡施工”的原则进行,同时保证施工期间不降低周边交通通行能力。 5)确保工程质量。我们将严格按照施工图纸、国家验收规范、包头市有关规定和业主的要求组织施工,严格执行“强制性条文”达到国家和部颁施工技术标准、规范要求,确保本工程质量一次性验收合格并有创新提高。 6)降低成本管理。想业主所想,把业主的事当成自己的事来做,尽量节约成本,提出合理化建议。 7)确保工期进度,进度实行专业软件控制计划,统筹安排、滚动实施,保证关键部位和控制点的完成。坚持质量第一、安全第一,进度服从质量,质量是进度的保证,有条不紊的程序化施工,确保工期进度。 8)确保安全施工。安全施工是工程建设中的一件头等大事,安全第一,一切服从安全严格遵守施工生产安全操作规程规定,针对工程工期紧,任务重的特点制订切实可行的安全保证措施,杜绝因违章操作而造成生命、财产损失的恶性事故发生。 9)落实文明施工,严格执行公司环境管理规定。文明施工是反映企业管理水平的一个重要标志。针对本工程制订专门的文明施工措施。 2.工程概况

直埋供热管道设计浅析

直埋供热管道设计浅析 发表时间:2018-02-11T14:33:29.480Z 来源:《建筑学研究前沿》2017年第28期作者:刘欣 [导读] 随着《城镇直埋供热管道工程技术规程》(以下简称为规程)的发布,技术已经很成熟,实际运用也越来越广泛。鹤壁市淇滨热力有限公司河南鹤壁 458030 摘要:直埋供热管道的设计要按照《城镇直埋供热管道工程技术规程》的条文规定来执行。本文简要的分析了直埋供热管道的设计、施工,以供参考。 关键词:直埋;供热管道;设计 1设备安装、材料说明 近年来,在供热外网工程中普遍采用直埋供热管道,直埋敷设方法同传统的地沟敷设方法相比具有占地少、施工周期短、维护量小、寿命长等诸多优点,近些年来预制保温管施工技术也有了很大的发展,已颁布的《城镇直埋供热管道工程技术规程》标志着直埋技术在我国已经趋于成熟,因此,在供热管道的施工中,直埋敷设越来越多地被采用。 (1)供热管线采用钢管,外管道连接均采用焊管;阀门与管材采用法兰连接。材料供应方式:主材及配件均由业主供应,施工单位只负责安装。 (2)材料进场:进场的所有材料均分类堆放整齐。钢管、水泥,底部均设垫木,砂石料底部进行平整后铺垫红砖,配件及零星材料均堆放在库房的架了上,对场地精心布局、合理使用,材料现场应保持清洁,归类整齐,并有排水设施,为保持现场环境清洁,所有拉运材料的车辆均加以覆盖,避免在置办期间管道内进入杂物,造成施工完毕后清扫不便,也避免了抛撒和爆灰,影响当地居民的正常生活。2材料设备验收 管材、管件及设备运至现场后,必须由材料员(质检员配合)逐根、逐件的检查外保温层、防腐层及管口椭圆度、壁厚等质量指标并做好标记记录,检验记录包括验收项目,标准、结果、检验人和检验日期,不合格品不准使用。管材管件设备进场后,应备有合格证、材质单无产品合格证的不能接收。 3管材的运输与储存 供热管材管件均有规格、生产厂的厂名和执行的标准号,在管件上有明显的商标和规格,并符合 GB/T29047-2012 标准的规定,管材管件具体要求指标如下:管材应水平堆放在平整的地面上,不得不规则堆放。当用支垫物支垫时,支垫宽度不得小于75mm,其间距不得大于 1m,外悬的端部不宜大于500mm。管材储存时,摆放应平整,撂放高度不超过2米。管材在运输时及装卸过程中,禁止剧烈撞击抛掷。管材运输时,管与管之间需留有一定的间隙,层与层之间用垫木隔开,并且高度不超过2米。在管材运输过程中,保证管壁不受损伤前提下不同直径的管材允许套装。管材与管件在运输、装卸和搬运时应采用不小于50mm的吊装带轻放,不得抛、摔、拖。4《城镇直埋供热管道工程技术规程》规程适用条件 《城镇直埋供热管道工程技术规程》适用于供热介质温度≤150℃、公称直径≤DN500的钢制内管、保温层、保护外壳结合为一体的预制保温直埋热水管道。这里对适用条件提出了两个界限,即温度界限和管径界限。在规程总则的条文说明中给出了详细的解释,温度条件是设计热网经济性和安全性的重要参数,针对的是预制保温管的保温材料耐温能力、使用寿命,另外根据现有理论在强度方面这个温度也是安全的;采用管径界限是因为规程中在强度计算、管道热伸长计算中对荷载做了简化,对小管径误差不大,对大管径而言计算结果会有较大偏差,是不安全的。在使用本规程时必须满足其适用条件。 5直埋敷设方式 直埋敷设分有补偿敷设和无补偿敷设两种。无补偿敷设具有投资省、工期短和施工简便的优点;有补偿敷设相对于无补偿敷设来说,投资较大、占地较多、工期较长、施工较复杂。因此在满足管网安全的前提下,要优先采用无补偿敷设方式,近几年来在工程实践中应用的越来越多。 6管网的布置与敷设 在确定了各单体建筑的入口之后,结合管网综合图来布置管线,满足热力管道与其他管线的间距要求。管网的其他要求如管道覆土深度、排气泄水、分支管三通弯头的保护、阀门附件的要求等详见规程中的具体要求。 规程中明确提出,应力验算采用目前国内外先进的应力分类法。应力分类法是将管道上的应力分为一次应力、二次应力和峰值应力三类,并采用相应的应力验算条件。 一次应力:是由管道内压及持续外载产生的应力(力作用)。当应力达到甚至超过屈服极限时,管道将产生较大变形甚至破坏。这种应力是非自限性的,应力验算采用弹性分析或极限分析。 二次应力:是由于管道热胀冷缩等变形受约束而产生的应力(位移作用)。当部分材料超过屈服极限时,由于产生小量的塑性变形,变形协调得到满足,变形就不再继续发展。它具有自限的特点,采用安定性分析。 峰值应力:指管道或附件(如三通等)由于局部结构不连续或局部热应力效应而产生的应力增量。它的特点是不引起显著的变形,是一种导致疲劳裂纹或脆性破坏的可能原因,必须根据管道整个使用期限所受的循环荷载进行疲劳分析。但对低循环次数的供热管道,对在管道上出现峰值应力的三通、弯头等局部应力集中处,可采用简化公式,计入应力加强系数进行应力计算。在计算中,直埋供热管道的一次应力的当量应力不应大于钢材在计算温度下的基本许用应力;二次应力及一次应力的当量应力变化范围不应大于钢材在计算温度下基本许用应力的三倍;管道局部应力集中部位的一次应力、二次应力和峰值应力的当量应力变化幅度不应大于钢材在计算温度下基本许用应力的三倍。 根据安定性理论,当直管段的当量应力变化范围满足下列表达式的要求时,管系中允许有锚固段存在:бj=(1-v)бt-αE(t2-t1)≤3[б] 式中бj——内压、热胀应力的当量应力变化范围,MPa; v——钢材的泊松系数;

热力发电厂课程设计

1000 MW凝汽式发电机组全厂原则性热力系统的设计 学院:交通学院 专业:热能与动力工程 姓名:高广胜 学号: 1214010004 指导教师:李生山 2015年 12月

1000MW 热力发电厂课程设计任务书 1.2设计原始资料 1.2.1汽轮机形式及参数 机组型式:N1000-26.25/600/600(TC4F ) 超超临界、一次中间再热、四缸四排气、单轴凝汽式、双背压 额定功率:P e =1000MW 主蒸汽参数:P 0=26.25MPa ,t 0=600℃ 高压缸排气:P rh 。i =6.393MPa ,t rh 。I =377.8℃ 再热器及管道阻力损失为高压缸排气压力的8%左右。 MPa 5114.0MPa 393.608.0p rh =?=? 中压缸进气参数:p rh =5.746MPa ,t rh =600℃ 汽轮机排气压力:P c =0.0049MPa 给水温度:t fw =252℃ 给水泵为汽动式,小汽轮机汽源采用第四段抽汽,排气进入主凝汽器;补充水经软化处理后引入主凝汽器。 1.2.2锅炉型式及参数 锅炉型式:HG2953/27.46YM1型变压运行直流燃煤锅炉 过热蒸汽参数:p b =27.56MPa ,t b =605℃ 汽包压力:P drum =15.69MPa 额定蒸发量:D b =2909.03t/h 再热蒸汽出口温度:603t 0 .rh b =℃ 锅炉效率:%8.93b =η 1.2.3回热系统 本热力系统共有八级抽汽,其中第一、二、三级抽汽分别供给三台高压加热器,第五、六、七、八级分别供给四台低压加热器,第四级抽汽作为高压除氧器的气源。七级回热加热器均设置了疏水冷却器,以充分利用本机疏水热量来加热本级主凝结水。三级高压加热器和低压加热器H5分别都设置内置式蒸汽冷却器,为保证安全性三台高压加热器的疏水均采用逐级自流至除氧器,四台低压加热器是疏水逐级自流至凝汽器。 汽轮机的主凝结水经凝结水泵送出,依次流过轴封加热器、四台低压加热器、除氧器,然后由汽动给水泵升压,在经过三级加热器加热,最终给水温度为252℃。 1.2.4其它小汽水流量参数 高压轴封漏气量:0.01D 0,送到除氧器; 中压轴封漏气量:0.003D 0,送到第七级加热器; 低压轴封漏气量:0.0014D 0,送到轴封加热器; 锅炉连续排污量:0.005D b 。 其它数据参考教材或其它同等级汽轮机参数选取。 1.3设计说明书中所包括的内容 1.原则性热力系统的拟定及热力计算; 2.全面性热力系统设计过程中局部热力系统的设计图及其说明; 3.全面性热力系统过程中管道的压力、工质的压力、温度、管道的大小、壁厚的计算; 4.全面性热力系统的总体说明。

相关主题
文本预览
相关文档 最新文档