当前位置:文档之家› 铁酸镁在2,3,6-三甲基苯酚羟基化反应中的催化性能

铁酸镁在2,3,6-三甲基苯酚羟基化反应中的催化性能

铁酸镁在2,3,6-三甲基苯酚羟基化反应中的催化性能
铁酸镁在2,3,6-三甲基苯酚羟基化反应中的催化性能

收稿日期:2002212216. 第一作者:朱 虹,女,1973年生,博士.

联系人:陈诵英.Tel :(0571)88273272;E 2mail :songyingchen @https://www.doczj.com/doc/153065131.html,.

文章编号:025329837(2003)0820635204

研究论文:635~638

铁酸镁在2,3,62三甲基苯酚羟基化反应中的催化性能

朱 虹, 陈诵英

(浙江大学催化研究所,浙江杭州310028)

摘要:采用共沉淀法与柠檬酸法合成了铁酸镁,并用X 射线衍射和红外光谱等对不同样品进行了表征.以三甲基苯酚为原

料,以铁酸镁为催化剂,以双氧水为氧化剂,实现了一步羟化为三甲基对苯二酚(维生素E 重要中间体)的目的.详细考察了催化剂、温度、溶剂和双氧水等因素对该反应体系的影响.结果表明,铁酸镁对该反应体系具有很好的催化效果,较常用的羟化催化剂TS 21分子筛等的催化性能好得多.该过程可以进一步研究发展成为一个环境友好催化过程.关键词:铁酸镁,三甲基苯酚,羟基化,过氧化氢,三甲基对苯二酚中图分类号:O643 文献标识码:A

C atalytic Perform ance of Magnesium Ferrite for

H ydroxylation of 2,3,62T rimethylphenol

ZHU Hong ,CHEN Songying

3

(Institute of Catalysis ,Zhejiang U niversity (XiXi Cam pus ),Hangz hou 310028,Zhejiang ,China )

Abstract :A new method for synthesis of trimethylhydroquinone (TMHQ )which is one of main compounds for synthesis of vitamin E is reported.All commercial processes for synthesis of TMHQ are via 2,3,62trimethylphenol (TMP )and have disadvantages in their multi 2steps and production of pollutants.In order to de 2crease the pollution and synthesis steps ,it is desirable to develop a single 2step process for synthesis of TMHQ ,i 1e 1direct hydroxylation of TMP to TMHQ.In this paper ,the catalyst MgFe 2O 4,for hydroxylation of TMP with H 2O 2as an oxidant ,was synthesized via coprecipitation method from an aqueous solution containing Fe (NO 3)3?9H 2O ,Mg (NO 3)2?6H 2O and NaOH.The XRD peaks of the catalyst showed that the as 2prepared sam 2ple has the crystal phase with spinel structure ,confirmed also by its IR spectrum.The hydroxylation of TMP with H 2O 2over the catalyst and some factors affecting on the reaction ,such as catalyst samples ,reaction tem 2perature ,solvents ,and H 2O 2concentration and addition modes ,were studied.The results showed that the cata 2lyst MgFe 2O 4is of high activity for TMP hydroxylation and high selectivity for TMHQ formation.Under the same reaction conditions ,the TMHQ selectivity over MgFe 2O 4is higher than that over TS 21and Ti 2MCM 241,furthermore ,the reaction time is shortened greatly.

K ey w ords :magnesium ferrite ,trimethylphenol ,hydroxylation ,hydrogen peroxide ,trimethylhydroquinone

三甲基对苯二酚也叫三甲基氢醌(TMHQ ),是合成维生素E (V E )的重要中间体.维生素E 又名生育酚,是一种脂溶性维生素,广泛存在于绿色植物中,动物体内仅含微量.V E 缺乏时会引起肌肉萎缩、不育和流产等症,临床应用广泛.V E 也大量用作营养素、抗氧化剂以及药物和饲料的添加剂,其用

量在飞速增长.由于自然存在的V E 非常有限,故

对人工合成V E 的需求日益增加,V E 已成为目前产销量最大的维生素品种.图1是几种常见的合成TMHQ 的方法[1~7].这些过程不但步骤繁多,而且

产生许多污染物和副产物.目前,工业化生产TMHQ 是将2,3,62三甲基苯酚(TMP )的对位磺化,

第24卷第8期

 Vol.24No.8 

催 化 学 报

Chinese Journal of Catalysis

 

2003年8月 

August 2003

(a ) 

Me

Me

Me

Me Me X Y Me

Me Y

X Y ′Me

Me

Y

X O Me

Me

O

Me

OH

Me

Me

OH

(b ) 

Me

OH

Me

X

Me OH

Me Me

O

Me O

Me Me

OH

Me

OH

Me

TMP

TMBQ TMHQ

图1 合成TMHQ 的传统方法

Fig 1 Conventional methods for synthesis of trimethylhydroquinone (TMHQ )

(X =SO 3H ,Cl ,Br ,i 2Pr ;Y =NO 2,Cl ;Y ′=NH 2)

随后用MnO 2氧化为三甲基苯醌(TMBQ ),再经还

原后制得.由此可知,工业化合成TMHQ 的步骤繁多,且为均相催化过程.因此,迫切需要寻找一种新型催化剂,使该过程成为方便、经济的环境友好催化过程.随着钛硅分子筛TS 21的发现,以及绿色化学的迅速发展,人们对于研究环境友好的催化过程投入了极大的热情.TS 21催化苯酚的羟化反应已成为工业化的环境友好催化过程.然而,TS 21的孔道结构限制了它在有机大分子选择性氧化反应中的应用.铁酸镁催化剂曾用于丁烯选择性氧化脱氢生产丁二烯,它在苯酚羟基化反应中也显示出很好的催化性能[8,9].以铁酸镁为催化剂,以双氧水为氧化剂,以水为溶剂,直接羟化三甲基苯酚

TMP TMHQ +TMBQ

是一个环境友好催化过程.本文考察了铁酸镁直接羟化TMP 的性能.结果表明,铁酸镁对大分子有机物的催化活性比钛硅分子筛高,但转化率仍较低,离工业化还有一定的距离.

1 实验部分

1.1 催化剂的制备

采用共沉淀法合成铁酸镁.把一定量Mg 2

(NO 3)2?6H 2O 和Fe (NO 3)3?9H 2O 的溶液(n (Mg )/n (Fe )=015)在烧杯中混合均匀,加热到70℃.然后,将预热的NaOH 溶液(6mol/L )滴加到混合溶液中,控制p H =8~9.所得沉淀物经过滤,用蒸馏水洗涤,120℃下干燥,再在350℃下焙烧,即制得铁酸镁(CP ). 用柠檬酸络合法制备铁酸镁.先把一定量Mg 2(NO 3)2?6H 2O 和Fe (NO 3)3?9H 2O 的溶液(n (Mg )/n (Fe )=015)混合均匀,转入蒸发皿中,再加入柠檬

酸,搅拌使柠檬酸完全溶解.用氨水调节溶液的p H

值至7左右,然后把混合溶液加热蒸发.溶液变成凝胶状态,再在600℃下焙烧,即制得铁酸镁(CA ).1.2 催化剂的表征 样品的XRD 测试在日本Rigaku D/max 2ⅢB 型X 射线衍射仪上进行,以Cu K α为射线源,记录范围20°~70°.红外测试在Nicolet 2560型傅里叶红外光谱仪上进行,扫描范围1300~400cm -1,K Br 压片.样品的形貌及颗粒大小用Hitachi S 2570型扫描电镜观测.样品的B ET 比表面积和孔体积测试在Coulter 2100CX 型自动吸附仪上进行,N 2为吸附质.1.3 催化剂的活性评价

TMP 的羟化反应在50ml 玻璃反应器中进行.以30%H 2O 2为氧化剂,用所制得的铁酸镁作催化剂.反应器中加入713mmol 的TMP ,215ml 溶剂和0105g 催化剂,在磁力搅拌下加热到所需的反应温度,缓慢滴加过氧化氢(n (TMP )/n (H 2O 2)=3).反应产物在GC 29790型气相色谱仪上进行分析,SE 230色谱柱,柱温从130℃升到180℃.检测室温度为260℃,进样室温度为280℃.

2 结果与讨论

2.1 催化剂的物相和孔结构

图2为不同样品的XRD 谱.可以看出,铁酸镁样品具有尖晶石结构,在2θ=3012°,3514°,3710°,4310°,5315°,5618°和6215°处出现尖锐的特征峰.这与α2Fe 2O 3及MgO 的XRD 谱明显不同.但是,铁酸镁样品在2θ=2413°,3314°,4110°,4915°和6413°处出现了极弱的衍射峰,表明其中有极少量的α2Fe 2O 3相生成.由于MgO 具有和尖晶石结构相同的对称群,且晶胞参数恰好是其一半[10],故在

?636? 催 化 学 报

第24卷

图2 不同样品的XR D 谱

Fig 2 XRD patterns of different samples (1)MgFe 2O 4,(2)α2Fe 2O 3,(3)MgO

MgFe 2O 4尖晶石结构中,无法检测到MgO 独立相

的存在.

由图3可以看出,铁酸镁在557cm -1处出现尖晶石结构的Fe 2O 吸收峰[11],而α2Fe 2O 3的Fe 2O 键红外吸收峰出现在537cm

-1

.

图3 不同样品的IR 光谱

Fig 3 IR spectra of different samples

(1)MgFe 2O 4,(2)α2Fe 2O 3

表1 不同样品的孔结构及晶粒大小

Table 1 Pore structure and crystal size of different samples

Sample

A /(m 2

/g )

V /(ml/g )d /nm

α2Fe 2O 3

2.70.00489MgFe 2O 4(CP )20.70.104102MgFe 2O 4(CA )75.3

0.137

49

CP prepared by coprecipitation method CA

prepared by citric acid method

表1是不同催化剂样品的物性数据.

2.2 铁酸镁的催化性能

表2列出了不同样品的催化性能.可以看出,

MgO 上不发生反应,TS 21的催化活性很低,α2Fe 2O 3的催化活性也较低;由不同方法制得的铁酸镁的催化活性相差较大.柠檬酸络合法制得的催化剂具有较大的比表面积和较小的颗粒度,因而具有较高的催化活性.在具有尖晶石结构的铁酸镁催化剂上,TMP 转化率及TMHQ 选择性比α2Fe 2O 3上的高得多.这说明形成具有尖晶石结构的复合氧化物,对提高其催化活性有很大的益处.

表2 不同样品上2,3,62三甲基苯酚的羟化反应Table 2 2,3,62trimethylphenol (TMP )hydroxylation

over different samples

Sample

m (TMP )m (cat )

t

h X (TMP )

%E (H 2O 2)

%S/%TMHQ TMBQ α2Fe 2O 3

204 5.829 79.820.1MgO 2040

000TS 21

104 3.659.467.532.4MgFe 2O 4(CP )20217.885.367.232.8MgFe 2O 4(CA )

20

2

22.3

84.9

80.7

19.3

Reaction conditions :n (TMP )/n (H 2O 2)=3,solvent H 2O ,θ=80

℃.The same below.

E (H 2O 2)

Efficiency conversion of H 2O 2

2.3 H 2O 2添加方式和浓度的影响

表3列出H 2O 2的添加方式对TMP 羟化反应

性能的影响.可以看出,在室温下一次性加入时,H 2O 2的分解率为16%;在反应温度下一次性加入

时,H 2O 2的分解率为10%;在反应温度下逐滴加入时,H 2O 2的分解率为514%.H 2O 2的分解率是指收集到的氧气与H 2O 2完全分解所得氧气的体积比,它表征的是H 2O 2的无效转化.反应结果表明,在反应温度下将H 2O 2逐滴加入到反应器中效果最好.

表3 不同H 2O 2添加方式对TMP 羟化反应性能的影响

Table 3 Effect of H 2O 22addition modes on TMP

hydroxylation over MgFe 2O 4

H 2O 22addition mode

X (TMP )

%r (H 2O 2)

%S /%

TMHQ TMBQ One lot at RT 11.816.063.536.5One lot at 80℃19.410.069.330.8Drop by drop at 80℃

28.7

5.4

78.1

21.9

r (H 2O 2)

Decomposition rate of H 2O 2

表4列出H 2O 2浓度对TMP 羟化反应性能的

影响.有两种方式改变H 2O 2的浓度:(1)改变溶剂的用量,(2)改变H 2O 2的用量.由表4可以看出,随着溶剂用量的增加,TMP 转化率逐渐降低,而

?

736?第8期朱 虹等:铁酸镁在2,3,62三甲基苯酚羟基化反应中的催化性能

表4 H2O2浓度对TMP羟化反应性能的影响Table4 Effect of H2O2concentration on TMP hydroxylation over MgFe2O4

V(H2O)

ml n(TMP)

n(H2O2)

X(TMP)

%

S/%

TMHQ TMBQ

2.5322.380.719.3

5.0322.283.718.3

7.5315.684.915.0

10.0312.589.011.0

2.5228.047.652.4

2.5422.184.016.0

TMHQ选择性逐渐升高.综合转化率和选择性结果,TMP和H2O2的摩尔比为3时最合适.

2.4 溶剂对反应性能的影响

表5列出不同溶剂对TMP羟化反应性能的影响.可以看出,丙酮、甲醇、水和乙腈四种溶剂都可用于TMP的羟化反应.其中,乙腈的效果最好, TMP转化率和TMHQ选择性都最高.以水为溶剂时,TMP转化率可达1718%,TMHQ选择性可达6712%.

表5 溶剂对TMP羟化反应性能的影响Table5 Effect of solvents on TMP hydroxylation over MgFe2O4

Solvent X(TMP)

%

S/%

TMHQ TMBQ Others

MeCOMe 3.370.120.79.2

MeOH20.821.621.157.3

H2O17.867.232.8

MeCN30.482.18.79.1

2.5 温度对反应性能的影响

表6列出不同温度对TMP羟化反应性能的影响.随着反应温度的升高,TMP转化率呈现先升高后降低,在80℃时最高;TMHQ选择性在80℃时仅稍有降低,85℃时大幅度降低.这是由于温度

表6 温度对TMP羟化反应性能的影响

Table6 Effect of reaction temperature on TMP

hydroxylation over MgFe2O4

θ/℃X(TMP)/%

S/%

TMHQ TMBQ Others

70 3.582.110.77.2

758.681.510.18.4

8022.380.79.69.7

8516.252.420.726.8

V(MeCN)=215ml,t=2h

进一步升高时,TMHQ易氧化为TMBQ,从而导致TMHQ选择性降低,TMBQ选择性升高.

参考文献

1 Kholdeeva O A,G olovin A V,Maksimovskaya R I, K ozhevnikov I V.J Mol Catal,1992,75(3):235

2 K ozhevnikov I V,Sinnema A,van Bekkum H.J Chem Res,S ynop,1996,(5):238

3 Oberrauch E,Eberson L.J A ppl Elect rochem,1986,16

(4):575

4 Allen C P H et https://www.doczj.com/doc/153065131.html, Synth,1972,52:83

5 Shimizu M,Watanabe Y,Orita H,Hayakawa T,Takehira K.B ull Chem Soc J pn,1992,65(6):1522

6 Bartlett P N,Pletcher D,Zeng J.J Elect rochem Soc, 1999,146(3):1088

7 Lissel M,Jansen in de Wal H,Neumann R.Tet rahedron L ett,1992,33(13):1795

8 Qiu F Y,Weng L T,Sham E,Ruiz P,Delmon B.A ppl Catal,1989,51(2):235

9 Xiong C R,Chen Q L,Lu W R,G ao H X,Lu W K,G ao Z.Catal L ett,2000,69(3/4):231

10 Reddy J S,Sivasanker S.Catal L ett,1991,11(2):241 11 Camblor M A,Corma A,Martinez A,Perez2Pariente J.J Chem Soc,Chem Com m un,1992,(8):589

(Ed W GZh)

?

8

3

6

? 催 化 学 报第24卷

铝金属腐蚀报告

研究报告 教学院:化工与材料工程学院 班级: 姓名: 学号:

铝合金研究报告 摘要 铝合金的现今生活中有很大的用途,给我们带来了很多方便,此文通过对铝合金的基本性质(化学性质和物理性质)、铝合金的分类、铝合金的用途以及铝合金的防护等方面知识的介绍,系统的概括了铝合金的在我国工业产业中的重要地位。 关键字:铝合金、铝合金分类、铝合金用途、铝合金防护

铝合金定义 铝合金艺术栏杆 以铝为基的合金总称。主要合金元素有铜、硅、镁、锌、锰,次要合金元素有镍、铁、钛、铬、锂等。 铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 纯铝的密度小(ρ=2.7g/cm3),大约是铁的 1/3,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态σb 值约为8kgf/mm2,故不宜作结构材料。通过长期的生产实践和科学实验,人们逐渐以加入合金元素及运用热处理等方法来强化铝,这就得到了一系列的铝合金。添加一定元素形成的合金在保持纯铝质轻等优点的同时还能具有较高的强度,σb 值分别可达 24~60kgf/mm2。这样使得其“比强度”(强度与比重的比值σb/ρ)胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。 铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。铝

过氧化氢的催化分解

过氧化氢分解氧气 成员:罗玉洁、何瑾、徐丽、胡艳、骆磊、申林 一、 实验目的 1、掌握实验室用双氧水制备氧气的原理、装置和操作。 2、了解影响双氧水制备氧气反应速率的因素。 3、能认识催化剂在化学反应中的作用及化学反应前后质量的变化。 二、 实验原理 过氧化氢不稳定,在常温下就能缓慢分解放出氧气。但速度较慢,不易察觉。在过氧化氢溶液中加入适量二氧化锰后,能立即有氧气迅速放出。在此反应中,二氧化锰是催化剂,能加速该反应的发生。 过氧化氢 水+氧气→ 二氧化锰 ↑+??→?2222O O H O H 2MnO 三、 实验药品与仪器 实验药品:5%、30%的双氧水、二氧化锰、氧化铜。 仪 器:注射器(20ml )、锥形瓶、导管、软木塞、恒温水浴锅、 集气瓶、橡皮管、钥匙。 四、 实验步骤 1、实验室制备氧气 ①连接仪器,检查装置的气密性; ②在锥形瓶中加入少量二氧化锰粉末,旋紧软木塞,用注射器在双氧水瓶里吸取10ml 5%双氧水,将注水器里的双氧水按需要的量缓慢注入加入装有少量二氧化锰粉末的锥形瓶中; ③等气泡连续均匀冒出时,开始收集; ④等集气瓶中液面下降至瓶口,瓶外有气泡产生时,实验结束。并用带火星的木条进行检验。实验装置如下:

改进装置原因: (1)因锥形瓶中的二氧化锰不易收集。所以将锥形瓶换成试管,便于收集二氧化锰,好做称量,证明二氧化锰作为一种催化 剂时,在反应前后质量不变。 (2)用分液漏斗来控制反应的速率,收集装置采用向下排水法。 (3)通过改变浓度、温度、催化剂来探究对双氧水催化分解氧气速率的影响。 2、探究影响双氧水分解速率的因素 (1)浓度对反应的影响 分别将10ml 5%双氧水溶液与10ml 30%双氧水溶液与等量的MnO2混合于试管中,分别观察实验现象。 (2)温度对反应的影响 分别观察:室温下10ml 30%双氧水溶液,发生装置浸入80℃的水浴加热的10ml 30%双氧水的现象。 (3)催化剂对反应的影响 10mL5%双氧水溶液加入少许氧化铜作为催化剂,10 ml 5%双氧水溶液加入少许二氧化锰作为催化剂。且氧化铜与二氧化锰等量,分别观察实验现象。 五、注意事项 1、在做实验之前,必须检查装置的气密性。气密性检查:用止水夹 关闭,打开分液漏斗活塞,向漏斗中加入水,水面不持续下降,就说明气密性良好。 2、双氧水的浓度不能过大,并且不适宜加多过氧化锰,容易造成反 应太剧烈。 3、刚开始出现气泡时,混有空气,此时不易收集氧气,待气泡增多 时,再进行收集。 六、思考题 1、实验中分液漏斗的作用? 2、二氧化锰在实验中的作用? 3、与高锰酸钾相比,双氧水分解制取氧气有哪些优点? 答:1、分液漏斗可以控制反应物的量,从而控制反应的速率。 2、二氧化锰在该反应中做催化剂,能改变反应的速率,而本身 在反应前后质量和化学性质不变,对于生成物的量是没有影响 的。 3、双氧水分解不需要加热,操作简单方便,且可以通过分液漏 斗控制反应物的量,从而控制反应的速率。

1铝的物理性质和用途

1铝的物理性质和用途 铝是银白色的轻金属,较软,密度2.7g/cm3,熔点660.4℃,沸点2467℃,铝和铝的合金具有许多优良的物理性质,得到了非常广泛的应用。 1铝对光的反射性能良好,反射紫外线比银还强,铝越纯,它的反射能力越好,常用真空镀铝膜的方法来制得高质量的反射镜。真空镀铝膜和多晶硅薄膜结合,就成为便宜轻巧的太阳能电池材料。铝粉能保持银白色的光泽,常用来制作涂料,俗称银粉。 2纯铝的导电性很好,仅次于银、铜,在电力工业上它可以代替部分铜作导线和电缆。铝是热的良导体,在工业上可用铝制造各种热交换器、散热材料和民用炊具等。 3铝有良好的延展性,能够抽成细丝,轧制成各种铝制品,还可制成薄于0.01mm 的铝箔,广泛地用于包装香烟、糖果等。 4铝合金具有某些比纯铝更优良的性能,从而大大拓宽了铝的应用范围。例如,纯铝较软,当铝中加入一定量的铜、镁、锰等金属,强度可以大大提高,几乎相当于钢材,且密度较小,不易锈蚀,广泛用于飞机、汽车、火车、船舶、人造卫星、火箭的制造。当温度降到-196℃时,有的钢脆如玻璃,而有些铝合金的强度和韧性反而有所提高,所以是便宜而轻巧的低温材料,可用来贮存火箭燃料液氧和液氢。 2铝对人体的危害 铝不是人体的必需元素,人体缺乏铝时,不会给人体带来什么损害,反之,铝盐能致人体中毒。 1.摄入过量的铝对骨骼有害。铝能直接损害成骨细胞的活性,从而抑制骨的基质合成。 2.摄入过量的铝,能够对大脑造成损伤。研究证实,脑组织对铝元素有亲和性,铝一旦进入人体,首先沉积在大脑内脑组织中的铝沉积过多,可使人记忆力减退、智力低下、行动迟钝、催人衰老。如果随时间推移,铝在脑中逐渐积累,就会杀死神经原,使人的记忆力丧失。近年来又发现老年痴呆症的出现也与平时过多摄入铝元素有关。 3.铝元素吸收多了,会积聚在肝、脾、肾等部位,当积聚量超过5~6倍时,就会对消化道吸收磷发生抑制作用,还会抑制胃蛋白酶的活性,妨碍人体的消化吸收功能。因此,摄入过量的铝还会使人食欲不振和消化不良,影响肠道对磷、锶、铁、钙等元素的吸收。 3铝对动植物的危害 1可溶性铝化合物对大多数植物都是有毒的。酸性土壤的水分里溶解的铝化合物,使一般作物难以正常生长。通常当溶解的铝达到10-20PPM以上时,植物

第七章缩聚反应与逐步加聚反应

陕西国防工业职业技术学院 课时授课计划 课程名称:高聚物生产技术任课教师:杨博授课顺序:第讲 教研室主任签名年月日

陕西国防工业职业技术学院教案专用稿纸 第二节缩聚反应与逐步加聚反应的工业实施聚酯是制造聚酯纤维、涂料、薄膜及工程塑料的原料,是由饱和的二元酸和二元醇通过缩聚反应制得的一类线型高分子缩聚物。这类缩聚物大分子中各个链接都是以酯基(-COO-)相连的,所以称为聚酯。以聚酯为基础制得的纤维称为涤纶(的确良),是三大合成纤维之一,是最主要的纤维。 一、聚酯的生产 聚对苯二甲酸乙二醇酯(PET)的生产工艺 (一)主要原料 (二)聚酯的生产工艺 1.聚酯的合成工艺路线 2.聚对苯二甲酸乙二醇酯的生产工艺 3.聚酯的纺丝:熔融纺丝 (三)聚酯的结构、性能和用途 二、聚酰胺-66,聚酰胺-1010的生产 聚酰胺纤维是以聚酰胺为基础制得的纤维,商品名是锦纶、尼龙,简称PA。它是三大合成纤维之一,也是制造薄膜及工程塑料的原料,是由饱和的二元酸与二元胺通过缩聚反应制得的一类线性高分子缩聚物。常见的聚酰胺有PA-6、PA-11、PA-12、PA-66、PA-610、PA-612、PA-1010等,其中PA-6和PA-66的产量最大,约占聚酰胺产量的90%。 聚酰胺的共同特点:大分子中的各链节间都是以酰胺基相连。 (一)聚酰胺-66的生产 聚酰胺-66是己二酸与己二胺的缩聚物是最早实现工业化生产的聚酰胺品种,也是产量最大的聚酰胺。 1.主要原料 (1)己二酸(2)己二胺 2.生产原理 3.生产工艺 4.聚酰胺的纺丝 5.聚酰胺-66的结构、性能及用途

聚酰胺的纺丝采用直接熔融纺丝和间接熔融纺丝。 熔融纺丝主要包括纺丝和纤维的后加工两个基本操作过程 (二)聚酰胺-1010的生产 聚酰胺-1010学名聚癸二酰癸二胺,俗称尼龙1010,简称PA-1010,是我国利用蓖麻油为主要原料的独特尼龙品种。结构式:H-[-NH(CH2)10NHCO(CH2)8CO-]n-OH 1.主要原料 (1)癸二酸(2)癸二胺 2.生产原理 方程式? 3.生产工艺 4.聚酰胺-1010的结构、性能与用途 酚醛树脂是酚类化合物与醛类化合物在酸性或碱性条件下,经缩聚反应而制得的一类聚合物的统称。其中以苯酚和甲醛为单体缩聚的酚醛树脂最为常用,简称为PF,是第一个工业化生产的树脂品种。以酚醛树脂为主要成分并添加大量其他助剂而制得的制品称为酚醛塑料。 三、酚醛树脂的生产 1.主要原料 (1)苯酚俗称石炭酸(2)甲醛 2.酚醛树脂的生产原理 3.酚醛树脂生产工艺 4.酚醛树脂结构、性能和用途 四、聚氨酯的生产 聚氨酯为大分子链中含有氨酯型重复结构单元的一类聚合物,全称为聚氨基甲酸酯,简称PU或PUR。它是由多异氰酸酯与聚醚型或聚酯型多羟基化合物在一定比例下反应的产物。一般分为热塑性和热固性两大类;或分为弹性体和泡沫塑料两大类。 1.主要原料 (1)异氰酸酯 (2)多氰基化合物 2.聚氨酯泡沫塑料的生产工艺 3.聚氨酯的结构、性能及用途

过氧化氢的催化分解

过氧化氢的催化分解 一、实验目的 1、了解不同催化剂对过氧化氢(H2O2)催化分解速率的影响。 2、认知能催化分解H2O2的不同催化剂。 二、实验原理 过氧化氢催化分解是一级反应:H2O2→H2O+1/2O2.。(凡是反应速度只与反应浓度的一次方成正比的反应称为一级反应。)实验证明,过氧化氢的反应机理为一级反应.化学反应速度取决于反应物的浓度、温度、反应压力、催化剂、搅拌速度等许多因素。许多催化剂如Pt、Ag、Cr、MnO2、FeCl3、CuO、血液、铁丝、炭粉、土豆丝等都能加速H2O2分解。用土豆丝来催化分解H2O2溶液,说明生物体内不断产生的过氧化氢酶,可促使H2O2迅速分解,这种酶广泛存在于动植物组织中。 三、实验仪器与药品 仪器:试管(2个)、具支试管(1个)、锈铁丝、气球、土豆丝、 药品:H2O2溶液, 四、实验步骤 1,过氧化氢溶液的制备 用移液管吸取30℅H2O2溶液5ml,置于50ml容量瓶中,稀释至刻度线,摇匀定容,即得实验用的H2O2溶液。 2,酶催化作用的验证实验 取两只试管,在一支试管中放入切成细条状的土豆丝。分别向两支试管中注入3%的H2O2 5ml,注意观察现象(放入土豆丝的试管中迅速产生大量的气泡,泡沫很快充满试管;用玻璃棒桶开泡沫,)插入带火星的木条,则木条立即复燃,而另一支试管中无明显现象。 3,用抽动法做“催化剂对H2O2分解速度的影响”的实验 ①取一支具支试管,在具支试管中加入10ml浓度30%H2O2溶液,在支管上装上小气球,通过橡皮塞插入一根已生锈的绕成螺旋状的粗铁丝。 ②将螺旋状的锈铁丝向下插入H2O2溶液中是,注意观察现象的变化。(H2O2迅速分解,锈铁丝表面上,有大量气泡产生。气球鼓起;把铁丝向上拉,离开H2O2溶液,则反应不明显。) ③取下塞子,用带火星木条放在试管口,注意观察现象变化。(则木条立即复燃,说明有O2生成。) 五、注意事项 1、实验过程中注意安全 2、玻璃仪器轻拿轻放 六、思考题 1,催化剂对反应速度有何影响? 2,常用催化剂有哪些?

金属及其性质

T-常见的金属材料 一.温故知新 1. 金属共同的物理性质, a. 大多数金属:①都具有光泽,不透明; ②常温下除了外,大多数金属都是固体。 ③具有良好的性和______性; ④有良好的______(可以展成薄片,可以拉成细丝); ⑤密度_____ ,熔点_____ 。 b .金属的物理性质差异(特性)

不同金属在金属导电性、导热性、密度、熔点、硬度等方面差异较大。 例题:1. 根据上表,以及学过知识完成下列问题: 地壳中含量最多的金属元素是____ 人体中含量最多的金属元素是 ____ 导电性最好的金属是________,常见导线的材料主要是_______和________。 熔点最低的金属是________,熔点最高的金属是____________(常温下为液体)。 2. 填一填 C . 相关补充: 铅(Pb):有毒性,硬度1.5,质地柔软。 银(Ag):银在地壳中的含量很少,是导电性和导热性最好的金属。 钨(W):是一种银白色金属,外形似钢,钨的熔点高,化学性质很稳定。 锡(Sn):银白色,质软,易弯曲,熔点231.89℃,富延展性。 铬(Cr):银白色,质硬,有很高的耐腐蚀性,铬镀在金属上可以防锈,坚固美观。 金(Au):很柔软,容易加工,化学性质非常稳定;熔点较高,任凭火烧;也不会锈蚀。 2 .合金 a.定义:在一种________中加热融合其他________或________而形成的具有金属特性的物质。生活中大量使用的是____________(选填“纯金属”或“合金”),合金属于_______物。 例如,不锈钢中包含______,_______和_______。

过氧化氢催化分解反应速率常数的测定

过氧化氢催化分解反应速率常数的测定 分类:药学资料 标签: 化学 实验报告 过氧化氢 反应速率常数 教育 一、实验目的 (1)了解过氧化氢催化分解反应速率常数的测定方法。 (2)熟悉一级反应的特点,了解催化剂对反映速率的影响。 (3)掌握用图解计算法求反应速率常数。 二、实验用品 1、仪器 玻璃反应容器1个、水准瓶1个、50mL量气管1个、超级恒温槽1套、三通活塞1个、秒表1块、10mL量筒1个、5mL吸量管2支、胶管3m。 2、药品 质量分数为2%的H2O2溶液(新鲜配制)、0.1mol·L-1KI溶液。 三、实验原理与技术

过氧化氢很不稳定,在常温下的分解反应式为: H2O2→H2O+1/2O2(Ⅰ) 在KI作用下的分解反应机理为: H2O2+KI→KIO+ H2O (慢)(Ⅱ) KIO→KI+1/2O2 (快)(Ⅲ) (Ⅱ)式是H2O2分解的速控步骤,H2O2分解反应的反应速率方程为: -dc H2O2/d t=k′c H2O2·c KI (Ⅳ) 因为c KI近似不变,(Ⅳ)式可简化为: -dc H2O2/d t=k c H2O2 (Ⅴ) (其中k=k′c KI)。 H2O2的催化分解反应为一级反应,对(Ⅴ)式积分可得:ln(c/ c0)=-kt (Ⅵ) (其中c0为H2O2的初始浓度;c为反应至t时刻H2O2的浓度;k为H2O2的催化分解反应的速率常数)。 反应的半衰期为: t1/2= ln2/k=0.693/k (Ⅶ) 在等温等压条件下,在H2O2的分解反应中,氧气体积增长速率反映了H2O2的分解速率,本实验就是通过测定不同时刻放出的氧气的体积,间接地求出H2O2在相应时刻的浓度,这种方法称为物理法。 令ⅴ∞表示H2O2全部分解放出的O2的体积;ⅴt表示反应至t时刻放出的O2的体积;则由(Ⅰ)式可看出:

钠、铝、铁的化学性质

金属单质的通性 1、能氧气(氧化剂)反应 所有金属单质都具备的性质。 2、与酸发生反应 活波金属(活动性顺序表H之前)与酸发生反应。 3、与盐发生反应(置换) (1)Na之前的金属,若与盐溶液反应,则先与H2O反应生成碱,再与盐反应。若与熔融状态的盐反应,则置换出盐中活泼性较弱的金属。 (2)Na之后的金属,无论是与盐溶液还是熔融状态的盐,均可置换盐中活泼性较弱的金属。 4、和水发生反应 (1)Na之前的金属,反应剧烈,现象明显。 (2)Na之后的金属,通常情况下,反应不明显,可视为不反应。但满足相应条件时仍可发生反应, 如Al在强碱溶液中。 碱性氧化物的通性 1、与酸性氧化物反应,生成盐和水。[超活波金属碱性氧化物] 2、与酸反应,生成且只生成盐和水。 3、一般不与正盐(Na2CO3)、碱式盐(Cu2(OH)2CO3)反应,但可以跟酸式盐(NaHCO3)反应。 4、比较活波的金属氧化物能与水反应生成碱。[超活波金属碱性氧化物] 碱的通性 1、使酸碱指示剂变色。[超活波金属碱] 2、碱与酸性氧化物反应生成盐和水。[超活波金属碱] 3、碱与酸发生中和反应生成盐和水。 4、碱与某些盐发生复分解反应生成新盐和新碱。[超活波金属碱] 盐的通性 1、某些盐与较活波的金属反应生成新的盐和金属(置换)。 = 金属单质通性3 2、某些盐能与某些酸反应生成新的盐和新的酸(复分解)。 3、某些盐能与某些碱反应生成新的盐和新的碱(复分解)。 =碱的通性4 4、有些不同的盐之间能反应生成两种新的盐。 钠 一、钠Na 1、与非金属单质反应

与O2反应:常温:4Na+O2=2Na2O 点燃:2Na+O2=Na2O2 与Cl2反应: 2Na+Cl2=2NaCl 与 S 反应 : 2Na+S=Na2S 2、与H2O(l)反应 实验现象:“浮、熔、游、响、红” 2Na+2H2O=2NaOH+H2↑可看做是Na置换出H2O中的H+ (额外知识)Na在空气中的反应:先与氧气反应: 4Na+O2=2Na2O 在与气态水反应: Na2O+H2O(g)=2NaOH 最后与二氧化碳反应: 2NaOH+CO2=Na2CO3+H2O 3、与某些盐的反应 (1)与盐溶液反应 与硫酸铜溶液反应: 2Na+2H2O+CuSO4=Cu(OH)2↓+Na2SO4+H2↑ 2Na+2H2O=2NaOH+H2↑第一步:Na先与H2O反应得到NaOH 反应实质 2NaOH+CuSO4=Cu(OH)2↓+Na2SO4 第二步:NaOH与CuSO4↓反应 (2)与熔融状态的盐反应 Na+TiCl4(熔融)=4NaCl+Ti 直接置换 4、与酸的反应 与HCl反应: 2Na+2HCl=2NaCl2+H2↑ 与H2SO4反应: 2Na+H2SO4=Na2SO4+H2↑ 离子反应: 2Na+2H+=2Na++ H2↑ 二、钠的氧化物(NaO和Na2O2) 三、钠的氢氧化物NaOH 1、使酸碱指示剂变色 2、与盐的复分解反应 与硫酸铜反应:2NaOH +CuSO4=Cu(OH)2↓+Na2SO4 与氯化铁反应:3NaOH+FeCl3=Fe(OH)3↓+3NaCl 3、与酸性氧化物反应(生成盐和水) CO2(少量)+2NaOH=Na2CO3+H2O CO2(少量)+2NaOH=Na2CO3+H2O 第一步

铝合金防护

一.引言 1.1 金属防腐蚀的重要意义 金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。 但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的 发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。使得腐蚀科学在国民经济中所处的地位越来越重要。据统计,人们每年冶炼出来的金属约有1/10 被腐蚀破坏, 相当于每年约有1/10 的冶炼厂因腐蚀的存在而做了无用功;而1/10 被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。据美国国家标准局(NBS)调查, 1975 年美国因腐蚀造成的损失高达700 亿美元,即当年国民经济总产值(GNP)的4.2%;《光明日报》1999 年 1 月20 日报道,1997 年因腐蚀给我国国民经济带来的损失高达2800 亿人民币。 以上所说仅就经济损失而言,在有些领域,尤其在化学工业、石油化工、原子能等工业中,由于金属材料腐蚀造成的跑、冒、滴、漏,不仅造成大量的、宝贵而有限的资源与能源的严重浪费, 还能使许多有害物质甚至放射性物质泄漏而污染环境,危害人民的健康,有的甚至会长期造成严重的后果;而由于金属腐蚀所造成的灾难性事故严重地威胁着人们的生命安全;

许多局部腐蚀引起的事故,如氧脆和应力腐蚀断裂这一类的失效事故,往往会引起爆炸、火灾等灾难性恶果,在一定程度上威胁着人类的生存与发展,所以对于金属腐蚀问题的研究显得尤为 重要。 1.2 铝合金及其腐蚀机理 铝合金是近代发展起来的一类重要的金属材料。铝合金具有强度高、密度小、导电导热性强、力学性能优异、可加工性好等优点而广泛应用于化学工业、航空 航天工业、汽车制造业、食品工业、电子、仪器仪表业以及海洋船舶工业等领域。但是铝合金与其他金属一样,也面临着严重的腐蚀问题。虽然在自然条件下,铝合金表面容易形成一层厚约 4 nm 的自然氧化膜,但是这层膜多孔、不均匀且抗蚀性差,难以抵抗恶劣环境的腐蚀的。为了解决上述问题,有必要对铝合金的腐蚀机理有所了解。一般而言,金属在满足以下 5 个基本条件下 就会受到腐蚀:(1)阳极;(2)阴极;(3)阴一阳之间存在着连续接触;(4)电解质溶液;(5)阴极反应物(如氧气、水或氢气)。铝合金的腐蚀电化学反应为:Al A l3++ 3e( 1) O2 + 2H20 + 4 e 4 0H (中性/碱性) (2) + 2H + 2 e H 2(g)(酸性) (3) 由于原电池作用加速了铝腐蚀,有机或无机阻隔层和钝化剂可避免合金与电解质接触而发生阴极反应,与此同时也抑制腐蚀电子向金属界面的 传导;另外钝化剂(如铬酸盐)形成的不溶性氧化物沉积在受腐点,使活性腐蚀点(如晶界、晶族、凹坑、沉淀析出处)减少,从而阻挡水、

过氧化氢的催化分解

过氧化氢的催化分解 一、实验原理 过氧化氢水溶液在室温下,没有催化剂存在时,分解反应进行得很慢,但在含有催化剂I –的中性溶液中,其分解速率大大加快,反应式为:2H 2O 2 == 2H 2O + O 2(g) 反应机理为: H 2O 2 + I – → H 2O + IO – k 1 (慢) (1) H 2O 2 + IO – → H 2O + O 2(g) + I – k 2 (快) (2) 整个分解反应的速率由慢反应(1)决定,速率方程为: 22 -22H O 1H O I dc k c c dt -= 因反应(2)进行得很快且很完全,I –的浓度始终保持不变,故上式可写成: 22 22H O H O dc kc dt -= 式中,-1I k k c =,k 为表观反应速率常数。将上式积分得 0ln c kt c = 此式表明,反应速率与H 2O 2浓度的一次方成正比,故称为一级反应。将上式积分得: 01ln ln c t k c t +-= 式中c 0、c t 分别为反应物过氧化氢在起始时刻和t 时刻的浓度。 反应半衰期为: 1 12/1693.02ln k k t == 设H 2O 2完全分解时放出O 2的体积为V ∞,反应t 时放出O 2的体积为V , 则c 0∝V ∞,c ∝(V ∞ – V ),故 ln V kt V V ∞∞=- ln -V V kt V ∞∞-= ln -+ln V V kt V ∞∞-=() 以ln(V ∞ – V )对t 作图应得一直线,从直线斜率(– k )即可求得H 2O 2分解反应的速率常数。故实验需测定反应不同时刻O 2的体积V 及H 2O 2完全分解时O 2的体积V ∞。V ∞可用下法之一求出。 (a) 加热法 在测定若干个V 数据后,将H 2O 2溶液加热至50~60 ℃ 约15 min ,可以认为H 2O 2已分解完全,待冷却至室温后,记下量气管的读数,即为V ∞。

高中必修一化学镁铝铁知识归纳

高中化学镁铝铁知识归纳【知识网络】 一、镁及其化合物 相关化学方程式 2Mg+O2=2MgO 3Mg+N2Mg3N2 Mg+Cl2MgCl2 Mg+2H+=Mg2++H2↑ Mg+2H2O Mg(OH)2+H2↑ 2Mg+CO22MgO+C MgO+H2O=Mg(OH)2 MgO+2HCl=MgCl2+H2O MgCl2(熔融) Mg+Cl2↑

Mg2++CO32-=MgCO3↓ MgCO3+2H+=Mg2++CO2↑+H2O MgCO3+CO2+H2O=Mg(HCO3)2 MgCO3+H2O Mg(OH)2+CO2↑ Mg(OH)2MgO+H2O Mg3N2+6H2O=3Mg(OH)2↓+2NH3↑二、铝及其化合物 相关化学方程式 4Al+3O2=2Al2O3 3S+2Al Al2S3 2Al+3Cl22AlCl3 2Al+6HCl=2AlCl3+3H2↑ 2Al+6H2O 2Al(OH)3+3H2↑

2Al+Fe2O3Al2O3+2Fe 2Al+2NaOH+2H2O=2NaAlO2+3H2↑Al2O3+6HCl=2AlCl3+3H2O Al2O3+2NaOH=2NaAlO2+2H2O Al3++3H2O=Al(OH)3+3H+ Al3++3NH3·H2O=Al(OH)3↓+3NH4+ Al3++3OH-=Al(OH)3↓ Al3++4OH-=AlO2-+2H2O Al2S3+6H2O=2Al(OH)3↓+3H2S↑Al(OH)3+3H+=Al3++3H2O Al(OH)3+OH-=AlO2-+2H2O AlO2-+CO2+2H2O=Al(OH)3↓+HCO3-AlO2-+H++H2O=Al(OH)3↓ AlO2-+4H+=Al3++2H2O 3AlO2-+Al3++6H2O=4Al(OH)3↓三、铁及其化合物

铝合金的腐蚀与防护

一.引言 1.1金属防腐蚀的重要意义 金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。 金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。使得腐蚀科学在国民经济中所处的地位越来越重要。据统计,人们每年冶炼出来的金属约有1/10被腐蚀破坏,相当于每年约有1/10 的冶炼厂因腐蚀的存在而做了无用功;而1/10 被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。据美国国家标准局(NBS)调查,1975年美国因腐蚀造成的损失高达700亿美元,即当年国民经济总产值(GNP)的4.2%;《光明日报》1999年1月20日报道,1997年因腐蚀给我国国民经济带来的损失高达2800亿人民币。 以上所说仅就经济损失而言,在有些领域,尤其在化学工业、石油化工、原子能等工业中,由于金属材料腐蚀造成的跑、冒、滴、漏,不仅造成大量的、宝贵而有限的资源与能源的严重浪费,还能使许多有害物质甚至放射性物质泄漏而污染环境,危害人民的健康,有的甚至会长期造成严重的后果;而由于金属腐蚀所造成的灾难性事故严重地威胁着人们的生命安全;许多局部腐蚀引起的事故,如氧脆和应力腐蚀断裂这一类的失效事故,往往会引起爆炸、火灾等灾难性恶果,在一定程度上威胁着人类的生存与发展,所以对于金属腐蚀问题的研究显得尤为重要。 1.2铝合金及其腐蚀机理 铝合金是近代发展起来的一类重要的金属材料。铝合金具有强度高、密度小、导电导热性强、力学性能优异、可加工性好等优点而广泛应用于化学工业、航空航天工业、汽车制造业、食品工业、电子、仪器仪表业以及海洋船舶工业等领域。但是铝合金与其他金属一样,也面临着严重的腐蚀问题。虽然在自然条件下,铝合金表面容易形成一层厚约4 nm 的自然氧化膜,但是这层膜多孔、不均匀且抗蚀性差,难以抵抗恶劣环境的腐蚀的。 为了解决上述问题,有必要对铝合金的腐蚀机理有所了解。一般而言,金属在满足以下5个基本条件下就会受到腐蚀:(1)阳极;(2)阴极;(3)阴一阳之间存在着连续接触;(4)电解质溶液;(5)阴极反应物(如氧气、水或氢气)。 铝合金的腐蚀电化学反应为: Al 3++ 3e-( 1) O2 + 2H20 + 4 e - -(中性/碱性) (2) 2H ++ 2 e-H 2(g)(酸性) (3) 由于原电池作用加速了铝腐蚀,有机或无机阻隔层和钝化剂可避免合金与电解质接触而发生阴极反应,与此同时也抑制腐蚀电子向金属界面的传导;另外钝化剂(如铬酸盐)形成的不溶性氧化物沉积在受腐点,使活性腐蚀点(如晶界、晶族、凹坑、沉淀析出处)减少,从而阻挡水、氧或电解质的进一步渗透,降低腐蚀速率。

认识加聚反应和缩聚反应

怎样认识加聚反应和缩聚反应 加聚反应是加成聚合反应的简称,是指以不饱和烃或含不饱和键的物质为单体,通过不饱和键的加成,聚合成高聚物的反应。例如,乙烯加聚成聚乙烯,是在适当的温度、压强和催化剂存在的条件下,乙烯分子中的双键会断裂其中的一个键,发生加成反应,使乙烯分子里的碳原子结合成为很长的键。 CH2=CH2+CH2=CH2+CH2=CH2+……→ —CH2—CH2—CH2—CH2—CH2…… 这个反应可以用方程式表示为: 反应的产物是聚乙烯,它是一种相对分子质量很大的化合物,其分子组成可以表示为(C2H4)n。 加聚反应根据参加反应的单体种类,又分为均聚反应和共聚反应。仅由一种单体发生的加聚反应叫做均聚反应,合成聚乙烯的反应就是均聚反应。由两种以上单体共同参加的聚合反应叫共聚反应。例如,合成丁苯橡胶的反应即为共聚反应。这个反应可用下式表示: 加聚反应的特点是: (1)单体必须是含有双键等不饱和键的化合物。例如,氯乙烯、丙烯腈等含不饱和键的物质,在一定条件下,都可以发生加聚反应。 (2)加聚反应发生在不饱和键上。 (3)发生加聚反应的过程中,没有副产物产生,得高聚物的化学组成跟 (4)加聚反应生成的高聚物相对分子质量为单体整数倍。 缩聚反应是缩合聚合反应的简称,是指单体之间相互作用生成高分子,同时还生成小分子(如水、氨、卤化氢等)的聚合反应。例如合成酚醛树脂的反应就是缩聚反应。合成酚醛树脂通常是以苯酚和甲醛为原料,在催化剂作用下,经缩聚反应而得到。 缩聚反应根据参加反应的单体种数又分为共缩聚和均缩聚,由不同种单体参加的缩聚反应称为共缩聚。如酚醛树脂的合成反应就是共缩聚,它是由苯酚和甲醛两种物质为单体的。由同种单体进行的缩聚反应称为均缩聚。如氨基酸聚合成多肽的缩聚反应就属均缩聚。 缩聚反应的特点是:(1)单体不一定含有不饱和键,但必须含有两个或两个以上的反应基团(如—OH、—COOH、—NH2、—X等) (2)缩聚反应的结果,不仅生成高聚物,而且还有副产物分子生成。 (3)所得高分子化合物的化学组成跟单体的化学组成不同。由上可见,加聚反应和缩聚反应的单体结构、反应机理、产物的化学组成都是截然不同的。

合成高分子化合物的基本方法,加聚反应,缩聚反应

合成高分子化合物的基本方法(一) 班级:____________,姓名:_________________。 1.导电薄膜属高分子材料,其结构片断为…CH=CH―CH=CH―CH=CH―CH=CH…由此判断合成导电薄膜的单体为(A ) A.乙炔 B.乙烷 C.乙烯 D.1,3-丁二烯 2.某同学在所收到的信封上发现有收藏价值的邮票,便将邮票剪下来浸入水中,以去掉邮票背面的黏合剂。根据“相似相溶”原理,该黏合剂的成分可能是() A.B.C.D. 【详解】 根据选项中物质的结构可以知道,四种物质中只有中含有亲水基团羟基(—OH),与 水相溶,故B符合题意。 综上所述,答案为B。 3.结构为的高分子化合物的单体是( A ) A.B. C.D. 4.某高分子化合物含有如下结构片断:,对其结构的 分析正确的是() A.它是缩聚反应的产物 B.合成它的小分子是CH3OH C.合成它的小分子是CH2=CH2和HCOOCH3 D.合成它的小分子是CH2=CHCOOCH3 【详解】 链节中主链上只有碳原子,为加聚反应生成的高聚物,而不是缩聚反应的产物;该高聚物的链节为,所以该高聚物的单体为CH2=CHCOOCH3,即合成它的小分子为CH2=CHCOOCH3, 故ABC从错误,D正确; 综上所述,本题选D。 5.以乙烯和丙烯的混合物为单体,发生加聚反应,不可能得到的是() A. B. C.

D. 【详解】 乙烯和丙烯中都含有双键,发生加聚反应时,可以是乙烯和乙烯之间发生加聚反应,可以是丙烯和丙烯之间发生加聚反应,也可以是乙烯和丙烯之间发生加聚反应;如果是乙烯和乙烯之间发生加聚反应生成聚乙烯,结构简式为,即为A结构,如果是丙烯和丙烯之间发生加 聚反应是聚丙烯,结构简式为,如果是乙烯和丙烯之间发生加聚反应,由于碳原子之间的连接顺序可以有和两种结构简式,分别为C,D结构;故答案为B。 6.某ABS合成树脂的结构为,则关于合成该树脂 的反应类型与单体种类的判断,正确的是() A.加聚反应,1种 B.缩聚反应,2种 C.加聚反应,3种 D.缩聚反应,3种 【详解】 根据高分子化合物的结构简式可知,该物质是加聚反应的产物。根据单键变双键、双键变单键可知,其单体是苯乙烯、1,3-丁二烯、CH2=CHCN,单体种类为3种。 答案选C。 7.由CH3CH2CH3制备聚合物过程中依次发生的化学反应是() ①取代反应②消去反应③加聚反应④醋化反应⑤还原反应⑥水解反应 A.②④⑤ B.①②③ C.②③⑥ D.①②④ 【详解】 由CH3CH2CH3制备聚合物过程为: CH3CH2CH3→CH3CH2CH2Cl→CH3CH=CH2→,故依次经历的反应类型为:取代 反应、消去反应和加聚反应。 答案为B。 8.关于下列三种常见高分子材料的说法正确的是() 酚醛树脂涤纶顺丁橡胶 A.顺丁橡胶、涤纶和酚醛树脂都属于天然高分子材料 B.顺丁橡胶的单体与2-丁烯互为同分异构体 C.涤纶是对苯二甲酸和乙二醇通过缩聚反应得到的

过氧化氢的分解

实验 过氧化氢的分解 一、 实验目的 1.测定H 2O 2分解反应的速率系数和半衰期。 2.熟悉一级反应的特点,了解温度和催化剂等因素对一级反应的影响。 3.学会用图解法求一级反应的速率系数。 二、 实验原理 过氧化氢是很不稳定的化合物,在没有催化剂作用时也能分解,但分解速度很慢。但加入催化剂时能促使H 2O 2较快分解,分解反应按下式进行: H 2O 2→H 2O+ 2 1O 2 (1) 在催化剂KI 作用下,H 2O 2分解反应的机理为: H 2O 2+KI →KIO+ H 2O (慢) (2) KIO →KI+ 2 1O 2 (快) (3) KI 与H 2O 2生成了中间产物KIO ,改变了反应的机理,使反应的活化能降低,反应加快。反应(2)较(3)慢得多,成为H 2O 2分解的控制步骤。 H 2O 2分解反应速率表示为: r = dt dc ) O H (22 反应速率方程为: dt dc ) O H (22=k ’c(H 2O 2)c(KI) (4) KI 在反应中不断再生,其浓度近似不变,这样(4)式可简化为: dt dc ) O H (22=kc(H 2O 2) (5) 其中,k=k ’c (KI),k 与催化剂浓度成正比。 由(5)式看出H 2O 2催化分解为一级反应,积分(5)式得:ln 0 c c = - kt (6) 式中:c 0——H 2O 2的初始浓度;c ——t 时刻H 2O 2的浓度。 一级反应半衰期t 2 1为: t 2 1= k 2ln = k 693.0 (7) 可见一级反应的半衰期与起始浓度无关,与反应速率系数成反比。本实验通过测定H 2O 2 分解时放出O 2的体积来求反应速率系数k 。从H 2O 2=== H 2O+ 2 1O 2中可看出在一定温度、一定 压力下反应所产生O 2的体积V 与消耗掉的H 2O 2浓度成正比,完全分解时放出O 2的体积V ∞与H 2O 2溶液初始浓度c 0成正比,其比例常数为定值,则c 0∝V ∞、c 0∝(V ∞-V)

铁和铝的物理化学性质

学习基础知识与技能 金属键和金属晶体 1.金属键:金属阳离子和自由电子之间所形成的强作用力就是金属键。 2.金属晶体:通过金属键所形成的晶体叫金属晶体。 (1)构成微粒:金属阳离子和自由电子 (2)元素种类:金属 (3)微粒子作用力:金属键 (4)熔沸点:一般较高 (5)典型实例:Cu 、Fe 等金属以及合金 3.金属的物理通性 (1)金属表面一般都有光泽,黄金、白银、铂金等饰品就是利用了这一性质 (2)金属具有导电性。在外加电场条件下,金属晶体中的自由电子发生定向移动,形成电流。利用此性质制成铜、铝等电线、电缆,为我们的生活带来了方便。 (3)金属具有导热性。 (4)金属具有良好的延展性。 铁单质的物理性质及化学性质 1.物理性质 纯净的铁是银白色金属,密度7.86g/cm 3,熔点1535℃,沸点2750℃,具有良好的导电、传热、延展性;有杂质的铁易生锈。 2.化学性质 1) 铁在一定条件下能跟非金属反应 43223O Fe O Fe ??→?+点燃;42232Cl Fe Cl Fe ??→?+点燃 FeS S Fe ?→?+? (铁与弱氧化性物质反应生成低价铁的化合物) 2) 与盐酸、稀硫酸的置换反应 Fe+2HCl →FeCl 2+H 2↑ Fe+H 2SO 4 (稀)→Fe SO 4+H 2↑ 3) 与强氧化性酸反应 ① 铁的钝化:铁在冷的浓H 2SO 4 、浓HNO 3中,表面会形成一层致密的氧化膜,发生钝化现象。 ② Fe 与稀HNO 3的反应: ()()O H NO NO Fe HNO Fe 233324+↑+?→?+稀 ()()O H NO NO Fe HNO Fe 223342383+↑+?→?+稀 ③ Fe 与浓H 2SO 4 、浓HNO 3在加热下的反应的反应 ()()()O H SO SO Fe SO H Fe 22342426362+↑+?→?+? 浓少量 ()()O H SO FeSO SO H Fe 2244222+↑+?→?+? 浓过量

加聚反应

加聚反应 写出下列反应的化学方程式 乙烯、丙烯、1.3- 丁二烯、甲醛、苯乙烯、丙烯酸甲酯、异戊二烯 、1,3-丁二烯与丙烯腈、乙烯和丙烯按1:1的加聚反应方程式 由许多小分子通过加成反应变成一个有机高分子化合物,既属于加成反应又属于聚合反应,叫做加成聚合反应,简称加聚反应。 乙烯这类能够进行聚合反应形成高分子化合物的低分子化合物称为单体;高分子 化合物中化学组成相同、可重复的最小结构单元称为链节,也称重复结构单元; 链节的数目称为聚合度,用n 表示; 1、单体必须是含有双键、参键等不饱和键的化合物。如:烯、二烯、炔、醛等含不饱和键的化合物。 2、发生加聚反应的过程中,没有副产物产生。 3、聚合物链节的化学组成跟单体的化学组成相同,聚合物相对分子质量为单体相对分子质量的整数倍。 分析上述的加聚反应,有几种情况? 加聚反应的分类: 1、均聚反应:仅由一种单体发生的加聚反应 (1)单C=C 加聚 (2)含共轭双键的加聚 2、共聚反应:由两种或两种以上单体发生的加聚反应 学 与 问:下面几种个聚合物由何种单体聚合而成 归纳出判断加聚产物的单体的方法吗? 判断加聚聚合物单体的方法 1、若链节中全是C —C ,则两个碳原子一节断开,C —C 变C=C 即可。 2、若链节中含C=C ,则四个碳原子一节断开,链节中的C —C 变C=C 、C=C 变C —C 即可。

如聚合物:的单体是: 。 练习 1、人造象牙中,主要成分的结构是,它是通过加聚反应制得的, 则合成人造象牙的单体是 A、(CH3)2O B、HCHO C、CH3CHO D、CH3OCH3 2、聚四氟乙烯可以作为不粘锅的内衬,其链节是 3、乙烯与丙烯按1:1(物质的量)聚合时,生成聚合物的结构可能是 4、人造羊毛在许多方面比天然羊毛更,其分子式中存在如下结构的有机物: 则合成它的单体是。 5、某种ABS工程树脂,由丙烯腈(CH2=CHCN,符号A)、1,3-丁二烯(CH2=CH-CH=CH2,符号B)和苯乙烯(C6H5-CH=CH2,符号S)按一定配比共聚而得。 (1)A、B和S三种单体中,碳氢比(C:H)值最小的单体是。 (2)经元素分析可知该ABS样品的组成为CaHbNc(a、b、c为正整数),则原料中A和B的物质的量之比是(用a、b、c表示)。

提高和稳定铸造铝合金耐腐蚀性的几点意见

提高和稳定铸造铝合金耐腐蚀性的几点意见 (l)掌握金属元素的性质和作用以及适宜的加人量、使用方法,在铝合金中加人有益于提高耐腐蚀性的元素,如Si、Mg、Mn等是获取耐腐蚀合金的一条重要途径。比如,Al一Mg、Al一Si、Al一Si一Cu一Mn一Mg等系合金均具有较好的耐腐蚀性。这方面已有许多成熟的方法,此不再赘述。 (2)微量元素和杂质对合金耐腐蚀性的影响,严控有害元素或杂质的进入或抑制其作用,充分发挥有益元素或杂质提高合金耐腐蚀性。为满足适宜的使用性能和铸造性能,在熔炼铝合金时除添加一定的主要金属元素外,还需添加一些微量元素如Re、Na、Sr、P、Mn、Ca、Ni、Ti、Cr、Zn等。原辅材料及合金熔炼过程中不可避免地带人某些微量元素和杂质,给铸造铝合金的耐腐蚀性带来不可忽视的影响。如图la、图lb,两个试样同属ZL104,在同样的条件下,腐蚀同样时间,图1a未经过精炼、净化,杂质含量高(4一5级),图lb已经精炼、净化,杂质含量低(1级)。 图1a 图1b 由图看出,前者受腐蚀程度较后者严重得多。一是因为其进人合金的途径随机性大;二是含量低,即使用原子吸收光谱也不易测定。如图2为同炉样件做Na变质衰退实验,无锡、上海两地原子光谱分析结果相差较大,而S:的分析结果较相近,符合实际。正因此,合金材料标准中也没有其技术参数。但它们残留在合金中,有的成为杂质直接降低合金的耐腐蚀性,如Pb、Sn、Bi等;有的损害有益元素或杂质强化合金耐腐蚀性或其它使用性能,如P对Sr、Ca对Sr、CL对Na等均有反作用等。因此,如何控制这些微量元素或杂质,尽量去除或抑制其有害于合金耐腐蚀性的一面,又充分发挥其有益一面,是我们铸造工作者需要认真对待的课题。 图2a 图2b 铸造铝合金耐蚀性直接影响其开发应用 (l)在铝合金中加人适量的有利于提高耐蚀性的元素如Si、Mg、Mn等,是获得耐蚀铸造铝合金的一条重要途径。 (2)熔炼工艺规范化。在熔炼铸造铝合金过程中,适时、适量加人某些有益于提高合金耐蚀性的微量元素或杂质对其进行适宜的精炼、净化、变质、细化处理,以获得优质合金液,可提高铸造铝合金耐蚀性。 (3)铸件表面的清净及其适宜的处理仍是提高其耐蚀性的有效措施。

一级反应 过氧化氢分解反应速率测定

过氧化氢催化分解反应速率常数的测定 一、实验目的 (1)了解过氧化氢催化分解反应速率常数的测定方法。 (2)熟悉一级反应的特点,了解催化剂对反映速率的影响。 (3)掌握用图解计算法求反应速率常数。 二、实验用品 1、仪器 玻璃反应容器1个、水准瓶1个、50mL量气管1个、超级恒温槽1套、三通活塞1个、秒表1块、10mL量筒1个、5mL吸量管2支、胶管3m。 2、药品 质量分数为2%的H2O2溶液(新鲜配制)、0.1mol·L-1KI溶液。 三、实验原理与技术 过氧化氢很不稳定,在常温下的分解反应式为: H2O2→H2O+1/2O2(Ⅰ) 在KI作用下的分解反应机理为: H2O2+KI→KIO+ H2O (慢)(Ⅱ) KIO→KI+1/2O2(快)(Ⅲ) (Ⅱ)式是H2O2分解的速控步骤,H2O2分解反应的反应速率方程为: -dcH2O2/d t=k′cH2O2·cKI(Ⅳ) 因为cKI近似不变,(Ⅳ)式可简化为: -dcH2O2/d t=k cH2O2 (Ⅴ) (其中k=k′cKI)。

H2O2的催化分解反应为一级反应,对(Ⅴ)式积分可得:ln(c/ c0)=-kt (Ⅵ) (其中c0为H2O2的初始浓度;c为反应至t时刻H2O2的浓度;k为H2O2的催化分解反应的速率常数)。 反应的半衰期为: t1/2= ln2/k=0.693/k (Ⅶ) 在等温等压条件下,在H2O2的分解反应中,氧气体积增长速率反映了H2O2的分解速率,本实验就是通过测定不同时刻放出的氧气的体积,间接地求出H2O2在相应时刻的浓度,这种方法称为物理法。 令ⅴ∞表示H2O2全部分解放出的O2的体积;ⅴt表示反应至t时刻放出的O2的体积;则由(Ⅰ)式可看出: 定温定压下反应产生的O2的体积ⅴt与被消耗的H2O2的浓度成正比,而 ⅴ∞则与H2O2的初始浓度成正比,且两者比例系数为定值,则:c。∝ⅴ∞;c∝(ⅴ∞-ⅴt)。 代入(Ⅵ)式可得:ln[(ⅴ∞-ⅴt)/ⅴ∞]=-kt (Ⅷ) →ln(ⅴ∞-ⅴt)=-kt+lnⅴ∞(Ⅸ) (其中ⅴ∞可以通过外推法或加热法求得)。 四、实验步骤 (1)组装仪器(实验室工作人员已经装好)。 (2)先用量筒量10mL蒸馏水和用吸量管吸取5mL 0.1mol·L-1KI溶液注入反应器的一室;再用另一支吸量管吸取5mL质量分数为2%的H2O2溶液于另一室。(注:此过程中各室的溶液都不能滴漏于另一边)。接着,盖好瓶塞,查漏。方法如下: 水准瓶装入一定量蒸馏水,旋转三同活塞,使体系与外界相通;高举水准瓶,使量气管的水平面达到0.00mL(即ⅴ0)刻度处,然后再旋转三通活塞,使体系与外界隔绝,水准瓶放回实验台面。2min内保持不变,则表示不漏气;否则,要找出原因,排除它。 (3)倾斜反应器,使KI溶液流入H2O2溶液中,立即开启秒表,混合溶液两室中反复转移3-4次,最后全部停留在一室,平稳且力度适中地摇匀。(注:反应器必须与量气管相通)

相关主题
文本预览
相关文档 最新文档