当前位置:文档之家› 汽轮机课程设计zhong

汽轮机课程设计zhong

汽轮机课程设计zhong
汽轮机课程设计zhong

汽轮机课程设计

第一部分:设计题目与任务

题目:汽轮机热力计算与设计

根据给定的汽轮机原始参数来进行汽轮机热力计算与设计:

1、分析与确定汽轮机热力设计的基本参数,这些参数包括汽轮机的容量、进汽参数、转速、排汽压力或冷却水温度、回热加热级数及给水温度、供热汽轮机的供热蒸汽压力等;

2、分析并选择汽轮机的型式、配汽机构形式、通流部分形状及有关参数;

3、拟订汽轮机近似热力过程线和原则性回热系统,进行汽耗率及热经济性的初步计算;

4、根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的型式、比烩降、叶型及尺寸等:

5、根据通流部分形状和回热抽汽点要求,确定压力级即非调节级的级数和排汽口数,并进行各级比焙降分配;

6、对各级进行详细的热力计算,求出各级通流部分的几何尺寸、相对内效率和内功率,确定汽轮机实际的热力过程线;

7、根据各级热力计算的结果,修正各回热抽汽点压力以符合实际热力过程线的要求,并修正回热系统的热平衡计算;

8、根据需要修正汽轮机热力计算结果.

第二部分:设计要求

1)运行时具有较高的经济性;

2)不同工况下工作时均有高的可靠性;

3)在满足经济性和可靠性要求的同时,还应考虑汽轮机的结构紧凑、系统简单、布置合理、成本低廉、安装和维修方便及零部件通用化、系列标准化等因素。

第三部分:设计内容

一、汽轮机热力计算与设计原始参数

主蒸汽压力3.43Mpa,主蒸汽温度435℃;

冷却水温度20℃,给水温度160℃; 额定功率e P :23MW,调节级速比a x :0.24 二、汽轮机设计基本参数确定

1、汽轮机容量 额定功率e P :23MW

2、进气参数

汽轮机初压P 0=3.43Mpa 汽轮机初温t0=435℃ 3、汽轮机转速n=3000rad/min 4、排气压力

汽轮机排气压力Pc=0.005Mpa 冷却水温tc1= 20℃ 5、回热级数及给水温度

给水温度tfw=160℃ 回热级数Z=3级 三、选型、配汽及流通部分的设计计算

1、汽轮机型号

由排气压力和冷却水温可知汽轮机为:凝气式汽轮机。 型号:N23-3.43/435 2、配汽方式

汽轮机的配汽机构又称调节方式,与机组的运行要求密切相关。通常的喷嘴配汽、节流配汽、变压配汽以及旁通配汽四种方式。喷嘴配汽是国产汽轮机的主要配汽方式,由已知参数以及设计要求选用喷嘴配汽方式。 四、拟定汽轮机近似热力过程曲线和原则性热力系统,进行汽耗量、回热系统

热平衡及热经济性的初步计算 1、近似热力过程曲线的拟定

(1)进排汽机构及连接管道的各项损失

蒸汽流过各阀门及连接管道时,会产生节流损失和压力损失。下表列出这些

损失通常的取值范围。

表(1)汽轮机各阀门及连接管道中节流损失和压力估取范围

图(1)进排汽机构损失的热力过程曲线

(2)、汽轮机近似热力过程曲线的拟定

根据经验,对一般非中间再热凝汽式汽轮机可近似地按下图所示方法拟定近似热力过程曲线,计算过程如下:

由已知的新汽参数p

0、t

,可得汽轮机进汽状态点0,并查得

初比焓h

=3305KJ/kg。由前所得,设进汽机构的

节流损失ΔP

0=0.04P

=0.04*3.43=0.1372Mpa,

得调节级前压力P

0'= P

- ΔP

=3.43-0.1372=3.2928MPa,

并确定调节级前蒸汽状态点1。过1点作等比熵线向下交于P

x

线于

2点,查得h 2t =2129KJ/kg ,

整机的理想比焓降()

'

mac t h ?=3305–2129 = 1176KJ/kg 。 由上估计进汽量后得到的相对内效率ηri =85%,

有效比焓降Δh t mac =(Δh t mac )'

ηri =999.6KJ/kg ,

排汽比焓h z =h 0 –Δh t mac = 3305-999.6 = 2305.4 KJ/kg , 在h-s 图上得排汽点Z 。用直线连接1、Z 两点,在中间'3点处沿等压线下移21~25KJ/kg 得3点,用光滑连接1、3、Z 点,得该机设计工况下的近似热力过程曲线,如图(2)所示:

图(2) 23MW 凝汽式汽轮机近似热力过程曲线

2、汽轮机总进汽量的初步估算

一般凝汽式汽轮机的总蒸汽流量0D 可由下式估算:

()D m h P D m

g

ri

mac t

e

?+?=

η

ηη'06.3 (t/h )

式中:e P —汽轮机的设计功率,按额定功率计算,取23MW ; ()

'

mac t h ?—通流部分的理想比焓降,1176KJ/kg ; ri η —汽轮机通流部分相对内效率的初步估算值 0.85;

g η —机组的发电机效率 ;

m η —机组的机械效率 ;

?D —考虑阀杆漏气和前轴封漏汽及保证在处参数下降或背压升高时仍能发出设计功率的蒸汽余量,通常取=3%左右,t/h

m —考虑回热抽汽引起进汽量增大的系数,它与回热级数、给水温度、汽轮机容量及参数有关,通常取m=1.08~1.25, 取m=1.20 ΔD =2.30t/h m η=0.99 g η=0.98则

=+?????=

30.220.198

.099.085.0117623000

6.30D 104.75t/h

调节抽汽式汽轮机通流部分设计式,要考虑到调节抽汽工况及纯凝汽工况。一般高压部分的进汽量及几何尺寸以调节抽汽工况作为设计工况进行计算,低压部分的进汽量及几何下以纯凝汽工况作为设计工况进行计算。

3、回热系统的热平衡初步计算 (1)回热抽汽压力的确定 1)除氧器工作压力

除氧器的工作压力与除氧效果关系不大,一般根据技术经济比较和实用条件来确定。通常在中低参数机组中采用大气式除氧器。大气式除氧器的工作压力一般选择略高于大气压力,取0.118MP 。对应饱和水温度ted ’=104.25℃,供给除氧器的回热抽汽压力一般比除氧器的工作压力高0.2到0.3MPa 。 2)抽汽管中压力损失e p ?

在进行热力设计时,要求e p ?不超过抽汽压力的10%,通常取

e p ?=(0.04~0.08)e p ,级间抽汽时取较大值,高中压排汽时取较小值。

3)表面式加热器出口传热端差δt

由于金属表面的传热阻力,表面式加热器的给水出口水温2w t 与回热抽汽在加热器中凝结的饱和水温'e t 间存在温差δt='e t -2w t 称为加热器的出口端差,又称上端差,经济上合理的端差需通过综合的技术比较确定。一般无蒸汽冷却段的加热器取δt=3~6℃ 4)水温的确定

根据给水温度160℃,可得加热器H l 给水出口温度为160℃,且饱和水温度ted ’=104.25℃,根据等温升分配原则得出加热器H 2 的出口水温度为104.25+0.5*(160-104.25)=132.125℃,同理求得其他。 5)回热抽汽压力的确定

在确定了给水温度fw t 、回热抽汽级数fw z 、上端差δt 和抽汽管道压损e p ?等参数后,可以根据除氧器的工作压力,确定除氧器前的低压加热器数和除氧器后的高压加热器数,同时确定各级加热器的比焓升w h ?或温升w t ?。这样,各级加热器的给水出口水温2w t 也就确定了。根据上

端差δt 可确定各级加热器内的疏水温度'e t ,即'

e t =2w t +δt 。从水和水蒸

气热力性质图表中可查得'e t 所对应的饱和蒸汽压力-----个加热器的工

作压力'e p 。考虑回热抽汽管中的压力损失,可求出汽轮机得抽汽压力e p ,

即e p ='e p +e p ?。'e p =0.96e p 在汽轮机近似热力过程曲线中分别找出个抽汽点得比焓值e h 。所得近似回热加热曲线抽汽点如下图:

图(3)近似回热加热曲线抽汽点参数图表(2)23MW 凝汽式汽轮机加热器汽水参数

(2)、各级加热器回热抽汽量计算

1)1H 高压加热器

给水量:D fw =D 0-ΔD l +ΔD ej =104.75-1+0.5=104.25t/h 式中 ΔD l ——高压端轴封漏汽量, 取1t/h ; ΔD ej ——射汽漏汽器耗汽量, 取0.5t/h ;

加热器的热平衡方程:Δde1*(he1-he1’)*ηh=Dfw*(hw2-hw1) 式中:ηh ——加热器效率,一般取ηh=0.98(下同) 该级回热抽汽量为: 21'11()()fw w w el e e h

D h h D h h η-?=

-=104.25×(638.28-441.01)/(2785.76-653.91) ×0.98=

9.84t/h

2)d H (除氧器) 除氧器为混合式加热器

图(4)

分别列出除氧器的热平衡方程是与质量平衡式:

''11()ed ed el l e cw w fw ed

D h D D h D h D h ?+?+?+= 1cw l ed el fw D D D D D +?+?+?=

代入数据解得: 抽汽量ed D ?=16.46t/h 凝结水量Dcw=77.05t/h 3)H 2 低压加热器

凝汽器压力为0.0048MP a 时,对应的的凝结水饱和温度t c =32.1486℃。 凝结水流经抽汽冷却器的温升可根据冷却器的热平衡求得。

H 2低压加热器凝结水进口水温t w1=32.1486+3=35.148℃,对应的比焓值为134.661KJ/kg H 2的计算抽汽量为

Δ2e D = D cw (h w2 – h w1 )/0.98(h e2 -'e h )

=77.05×(290.73-134.661)/(2629.54-437.01)×0.98 =5.59t/h

4、流经汽轮机各级机组的蒸汽两级及其内功率计算

调节级: 024.367D = 104.75t/h

0020()24.367(33053050)

1726

3.6 3.6

i D h h P -?-=

==6279.18kw (调节级后压力为1.226MPa ,比焓值2h =3089.2kJ/kg 。待调节级型式选定及热力计算后求得,第一次估算时,可估取调节级理想比焓降及级效率后在h-s 图的近似热力过程曲线上查得)

第一级组:1024.367123.367l D D D =-?=-=104.75-1=103.75t/h

P i1=D 1(h l -h e1)/3.6=103.75×(3089.2-2785.76)/3.6=8744.97kw 第二级组:D 2=D 1-ΔD el =103.75-9.84=93.91t/h

P i2=D 2(h e1-h ed )/3.6=93.91×(2785.76-2653.63)/3.6=3446.76 kw 第三级组:D 3=D 2-ΔD ed =93.91-16.46=77.45t/h

P i3=D 3(h ed -h 2)/3.6=77.45×(2653.63-2629.54)/3.6 =518.27 kw 第四级组:D 4=D 3-ΔD e3=77.45-5.59=71.86 t/h

P i4=D 4(h 2-h z )/3.6=71.86×(2629.54-2305.4)/3.6=6470.19 kw

整机内功率:

Pi=ΣPi=6279.18+8744.97+3446.76+518.27+6470.19=25459.37kw 5、计算汽轮机装置的热经济性

机械损失 ΔP m =P i (1-ηm )= 25459.37×(1-0.99)=254.5937 kw 轴端功率 P a =P i -ΔP m =25459.37-509.1874=25204.7763kw 发电机功率 P e =P a ηg =25204.7763×0.98=24700.68 kw 符合设计工况P e =23000kw 的要求,原估计的蒸汽量D 0正确。

汽耗率:301094200

3.7425192.47e D d P ?===104750/24700.68=

4.24kg/(kw.h)

不抽汽时估计汽耗率:

30001024367

3.733

()24.367(33052312.8)

[

88.23]0.985[] 3.63.6

z m m D d D h h P η?'===-?--?-? 3.67 t/h 汽轮机装置汽耗率:

0()fw q d h h =- =4.24×(3305-632.28)=11332.33 KJ/(kw.h)

汽轮机装置的绝对电效率:36003600

0.3075211706.5

el q η=

==3600/11332.33=31.76% 汽轮机热平衡计算结果由下表计算出:

表(3)基本数据

表(4)热平衡计算数据

五、根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的

型式、比烩降、叶型及尺寸等

1、调节级选型

由于双列级能承担较大的理想比焓降,一般约为160~500KJ/kg;但它的级效率及整机效率较低,在工况变动时其级效率变化较单级小;采用双列级的汽轮机级数较少,结构紧凑,因为其调节级后的蒸汽压力与温度下降较多,所以除调节级汽室及喷嘴组等部件需较好的材料外,汽缸与转子的材料等级可适当降低,从而降低机组造价,提高机组运行的可靠性,故选用双列调节级。

图(5)双列组通道形式

本机调节级比焓降选310KJ/kg ,调节级速比a x =0.24. 反动度m b g b 'Ω=Ω+Ω+Ω 13~20%m Ω=

b Ω为第一列动叶反动度 =9~13%b Ω 取%77.14b =Ω

g Ω为导叶反动度 g 1~2%Ω= 取=1.794% g Ω b 'Ω为第二列动叶反动度 3~5%b 'Ω= 取 3.436%b 'Ω=

为提高调节级的级效率,一般调节级都带有一定的反动度。由于调节级为部分进汽级,为了减少漏汽损失反动度不适宜选的过大。双列调节级各列叶栅反动度之和m Ω不超过13%~20%。故选取m Ω=20%。

假设en A 是全部进气量在临界状态下通过调节级所需要德喷嘴当量面积,则:

()

23250.360(cm )5.036010m en A -=

=

==?

体积流量

321.19

0.0414

0.877(m /s )

o o G V =?=

进入喷嘴的蒸汽初速:()3/0.877/ 5.036010174.146(m /s)

o o o en

C G V A -==?=

2、调节级几何参数计算 (1) 调节级平均直径的选择

选择调节级平均直径是通常要考虑制造工艺调节级叶片的高度以及第一压力级的平均直径。一般在下列范围内选取:中低压汽轮机(套装叶轮)取

m d =1000~1200mm 。本机选取d m =1100mm 。

(2)各级平均直径确定

1)第一压力级平均直径的估取

0.2847m d X '= ()m ()3000/min n r = x a =0.24;

t h ?——级理想比焓将,假设t h ?=50 kj/kg

则 d m ′

=0.2847*0.24*50=0.48m

2)本机末级直径的估取

2

m d =

(m )

式中 c G ——通过末级的蒸汽流量,kg/s 2α——末级动叶出汽角,一般取2α090≈

ξ——末级余速损失系数,一般ξ0.015~0.025=,取ξ=0.020

2V ——末级动叶排气比容,3/m kg 查得227.414V = θ——末级径高比, 2.5~3θ> 本机取 2.5θ=

则 m 85.190

sin 6.99902.01405.2414.27266.31d m =?????=

3)确定压力级平均直径的变化

采用作图法确定压力级平均直径的变化规律,如图5所示,在横坐标上任取长度为20cm α=的线段BD ,用以表示第一压力级至末级动叶中心之轴向距离。在BD 两端分别按比例画出第一压力级与末级的平均直径值,如图5中的AB 与

(,)1010

m m d d AB CD ''

=

=。根据所选择的通道形状,用光滑曲线将A C 两点连接起来,

AC 曲线即为压力级各级直径的变化规律。

(3)级数的确定及比焓的分配 1)压力级平均直径m d

在图5上将BD 线段分为10等分,如图5中1-2……9点,从图中量出各段

长度,求出平均直径

()()()()

1122 (9910)

11

0.10070.10630.10990.11330.12000.12510.13260.14020.1503+0.16370.176310

11

1.308m m AB CD

d +--+-+=

?+++++++++=?= 2)压力级平均理想比焓降

2

12.227(kJ/kg)m

t a

d

t X ??

?=? ? ???

X a =0.24

kg KJ /674.8324.0308.1227.12t 2

t =??

?

???=?

3) 级数的确定

()1/p t t

Z h h α=?+? (取整)

式中p t h ?——压力级组理想比焓将;

α——重热系数,取0.06α=

()1119.1410.06/84.428=14.051

Z =?+

取14Z =级

校核:()

11419p t

a ri h Z K Z

αη?-''=-?

式中a K ——系数,取0.16a K =;

ri η''——压力级组的内效率,p

i ri p

t h h η?''=?,0.8163ri η''=

()1119.14141

0.1610.8163419140.0729

α-=?-?

?=

在误差范围内,α估取正确

4)比焓降的分配

将图5中线段BD 重新分为13份,在平均变化曲线AC 上求出各级的平均

直径,根据求出的各级平均直径,选取相应的速度比,根据式2

12.337m

t a

d h X ???=

? ???

求出各级的理想比焓降,将参数列成表3

表(6)比焓降分配辅助用表格

3、叶型和尺寸的选取 (1)叶型

图(7) 叶栅参数

T —叶栅节距;b —叶栅弦长;y y d ρ—喷嘴与动叶的安装角;B —叶栅宽度 本汽轮机喷嘴气流速度的马赫数在0.8~1.3之间,所以选用带b 的跨音速叶栅,具体选取如下:

表(7)汽轮机叶片选型

(2)叶片弦长的选择

弦长 ()sin sin n y y

B B

b mm d β=

= 式中 B —叶栅宽度,(mm )

y αy β—喷嘴与动叶安装角

则:喷嘴 0

30.2

47.98s i n 39n b =

= 第一列动叶 ()0

38

38.47sin81b b mm == 导叶 ()0

32

32.49sin80n b mm == 第二列动叶 ()0

38

38.71sin 79

b b mm =

= (3)相对节距n t 和叶片数Z 的确定

喷嘴或导叶的相对节距n

n n

t t b =

,在选定型叶片时估取,则 喷嘴或导叶的节距—()n n n t t b mm = 动叶的节距()n b n t t b mm =

则喷嘴取0.75n t = ()0.7547.9835.98n t m m =?= 第一列动叶,取0.68b t = ()

0.6838.4726.16b t m m =?= 导叶取0.60n t = ()0.6032.4919.49n t mm =?= 第二列动叶取0.55n t = ()0.5538.7121.29b t mm =?= 喷嘴数/n n n Z d e t π= (取整,偶数) 式中n d —平均直径,mm 取()1100n d mm =;

e ——部分进气度, 0.35~0.45e =,取0.40e =

则喷嘴叶片数 3.141611000.40/35.9838.42n Z =??= 取40n Z =

导叶及动叶片数/b b b Z d t π=

则:第一列动叶片数 3.14161100/26.16132.10b Z =?= 取134b Z =

导叶片数 3.14161100/19.49177.30b Z =?= 取178b Z =

第二列动叶片数 3.14161100/21.29162.32b Z =?= 取164b Z =

4、流通部分CAD 绘图另附

六、对各级进行详细的热力计算,求出各级通流部分的几何尺寸、相对内效率和内功率,确定汽轮机实际的热力过程线

已知:级流量G=21.19kg/s ,级前参数0 3.43P =MPa ,03305h =kJ/kg ,

300.0432/V m kg =,级后压力2 1.42P =MPa ,转速n=3000r/min,反动度

14.77%b Ω=, 1.794%g Ω=,' 3.436%b Ω=,0174.146C =m/s 。

由002,P P h 及在h-s 图上查得级理想焓降310t h ?=kJ/kg ,级总反动度: '0.14770.017940.034

3620%

m b g

b Ω=Ω+Ω+Ω=++= 喷嘴中理想比焓降(1)(10.20)310248n m t h h ?=-Ω?=-?=(kJ/kg ) 初速动能 0

220C 174.146

15.16320002000

c h ?===(kJ/kg ) 滞止理想比焓降 0h 24815.163263.163

n n c h h *?=?+?=+= kJ/kg 喷嘴出口汽流理想速度

144.=44.163

=725.461m /s t C =() 喷嘴速速系数?取0.95

喷嘴出口汽流实际速度 110.95725.461689.188m/s t C C ?==?=()

喷嘴后压力查得1 3.77P =,喷嘴压力比,=3.77/8.16=0.4620.546ε< 所以采用渐缩喷嘴,喷嘴出口面积即喷嘴喉部面积:

236.724cm n cr A A ==

=

=

喷嘴出口叶片高度 1

11.95sin n

n n n A l Z t α=

=mm

第一列动叶中理想比焓降0.147731045.787b b t h h ?=Ω?=?= kJ/kg 第一列动叶中理想进口汽流方向 1

11

111sin tan cos C C u

αβα-=-

调节级圆周速度 /60 3.14160.13000/60172.78n u d n π==??= m/s

则 0

1

010

689.188sin15tan 20689.188cos15172.78

β-==-

第一列动叶进口汽流速度 1110

1C sin 689.188sin15

524.61sin sin 20αωβ=

== m/s

第一列动叶进口速度动能 1221/2000524.61/2000137.60w h w ?=== kJ/kg 第一列动叶滞止比焓降 145.787137.60183.387

b b w h h h *?=?+?=+=kJ/kg 第一列动叶出口汽流理想速度

244.72605.60t ω===m/s

第一列动叶速度系数取0.9?=

第一列动叶出口汽流实际速度 220.9605.60545.04t ω?ω==?=m/s 第一列动叶出口绝对速度的方向和大小: 1

10

22222sin 545.04sin18tan tan 26cos 545.04cos18172.78

u ωβαωβ--?===-?-

2220

2sin 545.04sin18

384.52sin sin 26

C ωβα?=

== m/s 第一列动叶动能损失22(1)10.9)183.38734.84b b h h ξ?*?=-?=-?=(kJ/kg 第一列动叶余速损失2222/2000384.52/200073.92c h C ?===kJ/kg

导叶中理想比焓降 0.017943105g g t h h ?=Ω?=?

= kJ/kg 导叶进口汽流方向

1

1011111sin 689.188sin18

tan tan 24.41cos 689.188cos18172.78

C C u αβα--===--

导叶进口汽流速度 1110

1sin 689.188sin18

478.58sin sin 24.41

C αωβ?=

== m/s 导叶进口速度动能 1221/2000478.58/2000114.51h ωω?=== kJ/kg 导叶滞止比焓降 1 6.28114.40120.79g g w

h h h *?=?+?=+=kJ/kg 导叶出口理想速度

244.420.79491.49

t ω===m/s 导叶出口速度系数 0.92?=,则

汽轮机课程设计说明书..

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

汽轮机课程设计-闫煜.

银川能源学院电力学院 课程设计任务书 设计题目:300MW亚临界机组轴向推力的计算_ 年级专业:热动(本)1202 班 学生姓名:闫煜 学号: 1210240198 指导教师:于淼

电力学院《课程设计》任务书课程名称:汽轮机原理 说明:1、此表一式三份,院、学生各一份,报送实践部一份。 2、学生那份任务书要求装订到课程设计报告前面。

目录 一、引言 (1) 1、汽轮机课程设计目的 (1) 2、汽轮机课程设计内容与要求 (1) 3、汽轮机课程设计的一般原则 (1) 二、轴向推力的计算 (1) 1、轴向推力 (2) 1.1、冲动式汽轮机的轴向推力 (2) 三、推力轴承的安全系数 (4) 四、计算 (5) 1、求解第一级平均直径 (6) 2、轴向推力的计算 (6) 3、叶根反动度的计算 (7) 4、叶轮反动度 (7) 5、当量隔板漏气面积 (7) 6、叶根齿隙面积A5 (7) 7、平衡孔面积A4 (8) 8、α的计算 (8) 9、β的计算 (8) 10、轮盘面积的计算 (8) 五、汇总 (9) 六、参考文献 (9)

一、引言 汽轮机是以蒸汽为的旋转式热能动力机械,与其他原动机相比,它具有单机功率大、效率、运行平稳和使用寿命长等优点。汽轮机的主要用途是作为发电用的原动机。在使用化石燃料的现代常规火力发电厂、核电站及地热发电站中,都采用汽轮机为动力的汽轮发电机组。汽轮机的排汽或中间抽汽还可用来满足生产和生活上的供热需要。在生产过程中有余能、余热的工厂企业中,还可以应用各种类不同品位的热能得以合理有效地利用。由于汽轮机能设计为变速运行,所以还可用它直接驱动各种从动机械,如泵、风机、高炉风机、压气机和船舶的螺旋桨等。因此,汽轮机在国民经济中起着极其重要的作用。 蒸汽在汽轮机级内流动时,由于各段压力分布的不同,从而产生于轴线平行的轴向推力,气方向与气流在汽轮机内的流动方向相同,使转子产生由高压向移动的趋势。因此,为了保证汽轮机的安全运行,必须进行轴向推力的计算。 1、汽轮机课程设计目的 汽轮机课程设计是对在汽轮机课程中所学到的理论知识的系统总结、巩固和加深;要求掌握汽轮机热力计算及变工况下热力核算的原则、方法和步骤,还要综合各方面的实践经验和理论知识,结合结构强度、调节运行、辅助设备等有关基本知识来分析问题,才能较合理的选定汽轮机设计的基本方案。 2、汽轮机课程设计内容与要求 (1)确定轴向推力的组成 (2)以高压缸冲动级为计算依据,确定级数并分别计算各个级的轴向推力 (3)必须给出各个级的轴向推力的详细计算过程 (4)将数据以表格形式列出 (5) 数据来源:通过给定的机组类型,学生自己查阅资料所需基本数据及公式3、汽轮机课程设计的一般原则 (1)设计过程中要保证数据选择正确,计算正确,绘图清晰美观。 (2)设计成品要求效率高,结构合理,安全可靠,成本低廉。 二、轴向推力的计算

汽轮机课设心得总结

汽轮机课设心得总结 经过两个星期的汽轮机课设,对我们而言收获颇丰。整个过程我们都认真完成,其中不免遇到很多问题,经过大家的齐心协力共同克服了它们,不仅从中熟悉了汽轮机的工作原理及流程,而且还获得了许多心得体会。 汽轮机是将蒸汽的热能转换为机械能的回转式原动机,是火电和核电的主要设备之一,用于拖动发电机发电。在大型火电机组中还用于拖动锅炉给水泵。 就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。 除了凝汽式汽轮机,还有背压式汽轮机和抽汽式汽轮机,背压式汽轮机可以理解为没有低压缸和凝汽器的凝汽式汽轮机,它的出口压力较大,可以提供给供热系统或其它热交换系统。抽汽式汽轮机则是指在蒸汽流通过程中抽取一部分用于供热和或再热的汽轮机。 在设计刚进行时,我们也参考了从研究生那里借来的《设计宝典Xp》,但在使用过程中发现此软件只适用于单列级的计算而不适用于双列级,虽然如此,但我们在计算时也参考了其中的部分步骤。我们这次在设计之前又重新温习了《汽轮机原理》中所学的知识,因为汽轮机的热工转换是在各个级内进行的,所以研究级的工作原理是掌握整个汽轮机工作原理的基础,而级的定义是有一列喷嘴叶栅和紧邻其后的一列动叶栅构成的工作单元。在第一章第七节介绍了级的热力计算示例,书上是以国产N200-12.75/535/535型汽轮机某高压级为例,说明等截面直叶片级的热力计算程序,主要参考了喷嘴部分计算、动叶部分计算、级内损失计算和级效率与内功率的计算。为了保证汽轮机的高效率和增大汽轮机的单机功率就必须把汽轮机设计成多

汽轮机课程设计zhong

汽轮机课程设计 第一部分:设计题目与任务 题目:汽轮机热力计算与设计 根据给定的汽轮机原始参数来进行汽轮机热力计算与设计: 1、分析与确定汽轮机热力设计的基本参数,这些参数包括汽轮机的容量、进汽参数、转速、排汽压力或冷却水温度、回热加热级数及给水温度、供热汽轮机的供热蒸汽压力等; 2、分析并选择汽轮机的型式、配汽机构形式、通流部分形状及有关参数; 3、拟订汽轮机近似热力过程线和原则性回热系统,进行汽耗率及热经济性的初步计算; 4、根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的型式、比烩降、叶型及尺寸等: 5、根据通流部分形状和回热抽汽点要求,确定压力级即非调节级的级数和排汽口数,并进行各级比焙降分配; 6、对各级进行详细的热力计算,求出各级通流部分的几何尺寸、相对内效率和内功率,确定汽轮机实际的热力过程线; 7、根据各级热力计算的结果,修正各回热抽汽点压力以符合实际热力过程线的要求,并修正回热系统的热平衡计算; 8、根据需要修正汽轮机热力计算结果. 第二部分:设计要求 1)运行时具有较高的经济性; 2)不同工况下工作时均有高的可靠性; 3)在满足经济性和可靠性要求的同时,还应考虑汽轮机的结构紧凑、系统简单、布置合理、成本低廉、安装和维修方便及零部件通用化、系列标准化等因素。 第三部分:设计内容 一、汽轮机热力计算与设计原始参数 主蒸汽压力3.43Mpa,主蒸汽温度435℃;

冷却水温度20℃,给水温度160℃; 额定功率e P :23MW,调节级速比a x :0.24 二、汽轮机设计基本参数确定 1、汽轮机容量 额定功率e P :23MW 2、进气参数 汽轮机初压P 0=3.43Mpa 汽轮机初温t0=435℃ 3、汽轮机转速n=3000rad/min 4、排气压力 汽轮机排气压力Pc=0.005Mpa 冷却水温tc1= 20℃ 5、回热级数及给水温度 给水温度tfw=160℃ 回热级数Z=3级 三、选型、配汽及流通部分的设计计算 1、汽轮机型号 由排气压力和冷却水温可知汽轮机为:凝气式汽轮机。 型号:N23-3.43/435 2、配汽方式 汽轮机的配汽机构又称调节方式,与机组的运行要求密切相关。通常的喷嘴配汽、节流配汽、变压配汽以及旁通配汽四种方式。喷嘴配汽是国产汽轮机的主要配汽方式,由已知参数以及设计要求选用喷嘴配汽方式。 四、拟定汽轮机近似热力过程曲线和原则性热力系统,进行汽耗量、回热系统 热平衡及热经济性的初步计算 1、近似热力过程曲线的拟定 (1)进排汽机构及连接管道的各项损失 蒸汽流过各阀门及连接管道时,会产生节流损失和压力损失。下表列出这些 损失通常的取值范围。

汽轮机课程设计书

汽轮机课程设计 指导老师: 学生姓名: 学号: 所属院系: 专业: 班级: 日期:

课程设计任务书 1.课程设计的目的及要求 任务:N10-4.9/435 冷凝式汽轮机组热力设计 目的:①系统总结巩固已有知识 ②对汽轮机结构、通流部分、叶片等联系 ③对于设计资料的合理利用 要求:①掌握汽轮机原理的基本知识 ②了解装置间的相互联系 2. 设计题目 设计原则:⑴安全性:采用合理结构、安全材料、危险工况校核 ⑵经济性:设计工况效率高 ⑶可加工性:工艺、形状、材料有一定要求 ⑷新材料、新结构选用需进行全面试验 ⑸节省贵重材料的用量与消耗 3. 热力设计内容 ⑴调节级计算速比选用0.35-0.44 d m=1100 mm 双列级承担的比焓降 160-500 kj/kg 单列级承担的比焓降 70-125 kj/kg ⑵非调节级热降分配 ⑶压力级的热力计算 ⑷作h-s 热力过程线,速度三角形 ⑸整理说明书,计算结果以表格呈现 4. 主要参数 ⑴P0=4.9Mpa t0=435℃ ⑵额定功率P e=10000 kw ⑶转速 n=3000 rad/min ⑷背压P C=8kPa ⑸汽轮机相对内效率ηri(范围为:82%~88%) 选取某一ηri值,待各级详细计算后与所得ηri进行比较,直到符合要求为止。机械效率:这里取ηm= 94%~99% 发电效率:这里取ηg=92%~97%

设计参数的选择 1.基本数据:额定功率Pr=10000kW,设计功率P e=10000kW,新汽压力P0=4.9MPa,新汽温度t0=435℃,排汽压力P c=0.008MPa。 2.速比选用0.40 3.d m=1100 mm 4.转速 n=3000 rad/min 5.汽轮机相对内效率ηri=86% 6.机械效率ηm= 98% 7.发电效率ηg= 95% 详细设计内容 图1—多级汽轮机流程图 1.锅炉 2.高压回热加热器 3.给水泵 4.混合式除氧器 5.低压回热加热器 6.给水泵 7.凝汽器 8.汽轮机

热力发电厂课程设计计算书详解

热力发电厂课程设计

指导老师:连佳 姓名:陈阔 班级:12-1 600MW 凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2,C1 1.整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%, 则 )(MPa 232.232.24)04.01('p 0=?-=; p ’4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃, 可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

1.1绘制汽轮机的汽态线,如图2所示。

1.3计算给水泵焓升: 1.假设给水泵加压过程为等熵过程; 2.给水泵入口处水的温度和密度与除氧器的出 口水的温度和密度相等; 3.给水泵入口压力为除氧器出口压力与高度差产生的静压之和。 2.全厂物质平衡计算 已知全厂汽水损失:D l =0.015D b (锅炉蒸发量),锅炉为直流锅炉,无汽包排污。 则计算结果如下表:(表5) 3.计算汽轮机各级回热 抽汽量 假设加热器的效率η=1

(1)高压加热器组的计算 由H1,H2,H3的热平衡求α1,α2,α3 063788.0) 3.11068.3051()10791.1203(111fw 1=--?==ητααq 09067.06 .9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h -212fw 221=--?--?=-=q d w d w )(αηταα154458 .009067.0063788.0212=+=+=αααs 045924 .02.7825.3375) 2.7826.904(154458.0/1)1.7411.879(h h -332s23fw 3=--?--=-=q d d w w )(αηταα200382 .0154458.0045924.02s 33=+=+=αααs (2)除氧器H4的计算 进除氧器的份额为α4’;176 404.0587.43187.6) 587.4782.2(200382.0/1)587.4741.3(h h -453s34fw 4=--?--=-=q w w d )(’αηταα 进小汽机的份额为αt 根据水泵的能量平衡计算小汽机的用汽份额αt

汽轮机课程设计说明书——参考

课程设计说明书设计题目:N25-3.5/435汽轮机通流部分热力设计 学生姓名:xxx 学号:012004006xxx 专业班级:热能与动力工程xxx班 完成日期:2007年12月2日 指导教师(签字): 能源与动力工程学院 2007年12月

已知参数: 额定功率:p r =25MW , 设计功率:p e =20MW , 新蒸汽参数:p 0=3.5MP ,t 0=435℃, 排汽压力:p c =0.005MPa , 给水温度:t fw =160~170℃, 冷却水温度:t w1=20℃, 给水泵压头:p fp =6.3MPa , 凝结水泵压头:p cp =1.2MPa, 额定转速: n e =3000r/min , 射汽抽汽器用汽量: △D ej =500kg/h , 射汽抽汽器中凝结水温升: △t ej =3℃, 轴封漏汽量: △D 1=1000kg/h , 第二高压加热器中回收的轴封漏汽量: △D 1′=700kg/h 。 详细设计过程: 一、气轮机进气量D 0热力过程曲线的初步计算 1.由p 0=3.5MP ,t 0=435℃确定初始状态点“0”,0h =3304kJ/kg ,0v =0.090 m 3/kg 估计进汽机构压力损失⊿p 0=4%p 0=4%×3.5MPa =0.14MPa , 排汽管中压力损失c p ?=0.04c p =0.0002M P a ' 0.0052z c c c p p p p M Pa ==+?= p 0′=p 0-⊿p 0=3.5MPa -0.14MPa =3.36MPa ,从而确定“1”点。过“0”点做定熵线与Pc=0.0050MPa 的定压线交于“3’”点,在h-s 图上查得, 3'h =2122kJ/kg,整机理想焓降为:m ac t h ?=0h -3'h =1182kJ/kg 2.估计 汽轮机相对内效率ηri =0.830 , 发电机效率ηg =0.970 (全负荷), 机械效率ηax =0.99 得m ac i h ?=ηri m ac t h ?=981.06kJ/kg , 从而确定“3”点。排汽比焓为,3h =0h -m ac i h ?=2331.2kJ/kg 3.用直线连接“1”、“3”两点,求出中点“2′”,并在“2′”点沿等压线向下移25kJ/kg 得“2”点,过“1”、“2”、“3”点作光滑曲线即为汽轮机的近似热力过程曲线。 二、整机进汽量估计 0D ri g ax D ηηη+??e mac t 3600p m = h (kg/h ) 取m =1.20,⊿D =4%D 0,ηm =0.99,ηg =0.97, ηri =0.83 003600 1.15 D D t ?20?1006.335?0.97?0.987?0.97 ?= =88.599/h 三、调节级详细计算 1.调节级型式:复速级 理想焓降:⊿h t =250kJ/kg

汽轮机课程设计指导书-经典版

第一部分汽轮机课程设计指导书 一、课程设计的目的与要求 1.系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,重点掌握汽轮机热力设计的方法、步骤。 2.汽轮机热力设计的任务,一般是按照给定的设计条件,确定流通部分的几何参数,力求获得较高的相对内效率。就汽轮机课程设计而言其任务通常是指各级几何尺寸的确定及级效率和内功率的计算。 3.汽轮机设计的主要内容与设计程序大致包括: (1) 分析并确定汽轮机热力设计的基本参数,如汽轮机容量、进汽参数、转速、排汽压力或循环水温度、回热加热级数及给水温度、供热汽轮机的供汽压力等。 (2) 分析并选择汽轮机的型式、配汽机构型式、通流部分形状及有关参数。 (3) 拟定汽轮机近似热力过程线和原则性热力系统,进行汽耗量与热经济性的初步计算。 (4) 根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的型式、比焓降、叶型及尺寸等。 (5) 根据流通部分形状和回热抽汽压力要求,确定压力级的级数,并进行各级比焓降分配。 (6) 对各级进行详细的热力计算,求出各级流通部分的几何尺寸、相对内效率和内功率,确定汽轮机的实际热力过程线。 (7) 根据各级热力计算的结果,修正各回热抽汽点压力以符合实际热力过程线的要求。 (8) 根据需要修正热力计算结果。 (9) 绘制流通部分及纵剖面图。 4.通过设计对整个汽轮机的结构作进一步的了解,明确主要部件在整个机组中的作用、位置及相互关系。 5.通过设计了解并掌握我国当前的技术政策和国家标准、设计资料等。 6.所设计的汽轮机应满足以下要求: (1) 运行时具有较高的经济性。 (2) 不同工况下工作时均有高的可靠性。 (3) 在满足经济性和可靠性要求的同时,还应考虑到汽轮机的结构紧凑、系统简单、布局合理、成本低廉、安装与维修方便以及零部件通用化、系列标准化等因素。 7.由于课程设计的题目接近实际,与当前国民经济的要求相适应,因而要求设计者具有高度的责任感,严肃认真。应做到选择及计算数据精确、合理、绘图规范,清楚美观。 二、课程设计题目 以下为典型常规题目,也可以设计其他类型的机组。 机组型号: B25-8.83/0.981 机组型式:多级冲动式背压汽轮机 1

热力发电厂课程设计计算书

热 力 发 电 厂 课 程 设 计 指导老师:连佳 姓名:陈阔 班级:12-1

600MW 凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2,C1 1.整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%, 则 )(MPa 232.232.24)04.01('p 0=?-=; p ’4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃, 可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

1.1绘制汽轮机的汽态线,如图2所示。 1.假设给水泵加压过程为等熵过程; 2.给水泵入口处水的温度和密度与除氧器的出 口水的温度和密度相等; 3.给水泵入口压力为除氧器出口压力与高度差 产生的静压之和。 2.全厂物质平衡计算 已知全厂汽水损失:D l=0.015D b(锅炉蒸发量),锅炉为直流锅炉,无汽包排污。 则计算结果如下表:(表5)

3.计算汽轮机各级回热抽汽量 假设加热器的效率η=1 (1)高压加热器组的计算 由H1,H2,H3的热平衡求α1,α2,α3 063788.0) 3.11068.3051() 10791.1203(111fw 1=--?== ητααq 09067 .06 .9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h -2 12fw 22 1 =--?--?= -= q d w d w )(αηταα154458 .009067.0063788.0212=+=+=αααs 045924 .02 .7825.3375) 2.7826.904(154458.0/1)1.7411.879(h h -3 32s23fw 3=--?--= -= q d d w w )(αηταα200382.0154458.0045924.02s 33=+=+=αααs (2)除氧器H4的计算 进除氧器的份额为α4’; 176 404.0587.4 3187.6) 587.4782.2(200382.0/1)587.4741.3(h h -4 53s34fw 4=--?--= -= q w w d )(’αηταα 进小汽机的份额为 αt 根据水泵的能量平衡计算小汽机的用汽份额αt 1 .31)(4t =-pu mx t h h ηηα 即 056938 .09 .099.0)8.25716.3187(1 .31=??-=t α 0.1011140.0569380.044173t 44=+=+=ααα’ 根据除氧器的物质平衡,求αc4 αc4+α’4+αs3=αfw 则αc4=1-α’4-αs3=0.755442 表6 小汽机参数表

汽轮机课程设计报告

汽轮机课程设计报告 姓名: 学号: 班级: 学校:华北电力大学

汽轮机课程设计报告 一、课程设计的目的、任务与要求 通过设计加深巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握设计方法。并通过设计对汽轮机的结构进一步了解,明确主要零件的作用与位置。具体要求就是按给定的设计条件,选取有关参数,确定汽轮机通流部分尺寸,力求获得较高的汽轮机效率。 二、设计题目 机组型号:B25-8.83/0.981 机组型式:多级冲动式背压汽轮机 新汽压力:8.8300Mpa 新汽温度:535.0℃ 排汽压力:0.9810Mpa 额定功率:25000.00kW 转速:3000.00rpm 三、课程设计: (一)、设计工况下的热力计算 1.配汽方式:喷嘴配汽 2.调节级选型:单列级 3.选取参数: (1)设计功率=额定功率=经济功率 (2)汽轮机相对内效率ηri=80.5% (3)机械效率ηm=99.0% (4)发电机效率ηg=97.0% 4.近似热力过程线拟定 (1)进汽节流损失ΔPo=0.05*Po 调节级喷嘴前Po'=0.95*Po=8.3885Mpa (2)排汽管中的压力损失ΔP≈0 5.调节级总进汽量Do的初步估算 由Po、to查焓熵图得到Ho、So,再由So、Pc查Hc。 查得Ho=3474.9375kJ/kg,Hc=2864.9900kJ/kg 通流部分理想比焓降(ΔHt(mac))'=Ho-Hc=609.9475 kJ/kg Do=3.6*Pel/((ΔHt(mac))'*ηri*ηg*ηm)*m+ΔD Do=3.6*25000.00/(609.9475*0.805*0.970*0.990)*1.05+5.00=205.4179(kJ/kg) 6.调节级详细热力计算 (1)调节级进汽量Dg Dg=Do-Dv=204.2179t/h (2)确定速比Xa和理想比焓降Δht 取Xa=0.3535,dm=1100.0mm,并取dn=db=dm 由u=π*dm*n/60,Xa=u/Ca,Δht=Ca^2/2

热力发电厂课程设计样本

热力发电厂 课程设计计算书 题目: 600MW凝汽式机组全厂原则性热力系统计算 专业: 火电厂集控运行 班级: 火电062班 学号: 姓名: 王军定 指导教师: 周振起 目录

1.本课程设计的目的..................... 错误!未定义书签。 2.计算任务............................. 错误!未定义书签。 3.计算原始资料......................... 错误!未定义书签。 4.计算过程............................. 错误!未定义书签。 4.1全厂热力系统辅助性计算........... 错误!未定义书签。 4.2原始数据整理及汽态线绘制......... 错误!未定义书签。 4.3全厂汽水平衡..................... 错误!未定义书签。 4.4各回热抽汽量计算及汇总........... 错误!未定义书签。 4.5汽轮机排汽量计算与校核........... 错误!未定义书签。 4.6汽轮机汽耗量计算................. 错误!未定义书签。 5.热经济指标计算....................... 错误!未定义书签。 5.1.汽轮机发电机组热经济性指标计算 .. 错误!未定义书签。 5.2.全厂热经济指标计算.............. 错误!未定义书签。 6.反平衡校核........................... 错误!未定义书签。 7.参考文献............................. 错误!未定义书签。

汽轮机课程设计报告书

军工路男子职业技术学院课程设计报告书 课程名称:透平机械原理课程设计 院(系、部、中心):能源与动力工程学院 专业:能源与动力工程 班级:2013级 姓名:JackT 学号:131141xxxx 起止日期:2016.12.19---2017.1.6 指导教师:万福哥

我校研究的透平机械主要是是以水蒸汽为工质的旋转式动力机械,即汽轮机,常用于火力发电。汽轮机通常与锅炉、凝汽器、水泵等一些列的设备、装置配合使用,将燃煤热能通过转化为高品质电能。与其它原动机相比,汽轮机机具有单机功率大、效率高、运转平稳和使用寿命长等优点,但电站汽轮机在体积方面较为庞大。 汽轮机的主要用途是作为发动机的原动机。与常规活塞式内燃机相比,其具有输出功率稳定、功率大等特点。在使用化石燃料的现代常规火力发电厂、核电站及地热发电站中,都采用以汽轮机为原动机的汽轮发电机组,这种汽轮机具有转速一定的特点。汽轮机在一定条件下还可变转速运行,例如驱动各种泵、风机、压缩机和船舶螺旋桨等,我国第一艘航母“辽宁号”就是以汽轮为原动机。汽轮机的排汽或中间抽气还可以用来满足工业生产(卷烟厂、纺织厂)和生活(北方冬季供暖、宾馆供应热水)上的供热需要。在生产过程中有余能、余热的工厂企业中,还可以用各种类型的工业汽轮机(包括发电、热电联供、驱动动力用),使用不同品位的热能,使热能得以合理且有效地利用。 汽轮机与锅炉(或其他蒸汽发生装置,比如核岛)、发电机(或其他被驱动机械,比如泵、螺旋桨等)、凝汽器、加热器、泵等机械设备组成成套装置,协同工作。具有一定温度和压力的蒸汽可来自锅炉或其他汽源,经主汽阀和调节汽阀进入汽轮机内,依次流过一系列环形安装的喷嘴栅(或静叶栅)和动叶栅而膨胀做功,将其热能转换成推动汽轮机转子旋转的机械功,通过联轴器驱动其他机械,如发电机。膨胀做功后的蒸汽由汽轮机的排汽部分排出。在火电厂中,其排气通常被引入凝汽器,向冷却水或空气放热而凝结,凝结水再经泵输送至加热器中加热后作为锅炉给水,循环工作。

汽轮机课程设计(调节级强度)

能源与动力工程学院汽轮机课程设计 题目:600MW超临界汽轮机调节级叶片强度核算时间:2006年11月13日-2006年12月4日 学生姓名:杨雪莲杨晓明吴建中单威李响梅闫指导老师:谭欣星 热能与动力工程036503班

2006-12-4 600MW超临界汽轮机调节级叶片强度核算 [摘要]本次课程设计是针对600MW超临界汽轮机调节级叶片强度的校核, 并主要对第一调节阀全开,第二调节阀未开时的调节级最危险工况对叶片强度的校核。 首先确定了最危险工况下的蒸汽流量。部分进汽度选择叶型为HQ-1型,喷嘴叶型HQ-2型。根据主蒸汽温度确定叶片的材料为Cr12WmoV马氏体-铁素体钢。 其次,计算了由于汽轮机高速旋转时叶片自身质量和围带质量引起的离心力和蒸汽对叶片的作用力。 选取了安全系数,计算屈服强度极限、蠕变强度极限和持久强度极限,三者中的最小值为叶片的许用用力,叶片拉弯应力的合成并校核,确定叶片是否达到强度要求。 最后,论述了调节级的变化规律即压力-流量之间的关系。 一、课程设计任务书 课程名称:汽轮机原理 题目:600MW超临界汽轮机调节级叶片强度核算 指导老师:谭欣星 课题内容与要求 设计内容: 1、部分进汽度的确定,选择叶型 2、流经叶片的蒸汽流量计算蒸汽对叶片的作用力计算 3、叶片离心力计算 4、安全系数的确定 5、叶片拉弯合成应力计算与校核 6、调节级后的变化规律 设计要求: 1、运行时具有较高的经济性 2、不同工况下工作时均有高的可靠性 已知技术条件与参数: 1、600MW 2、转速:3000r/min 3、主汽压力:24.2Mpa; 主汽温度:566C 4、单列调节级,喷嘴调节 5、其他参数由高压缸通流设计组提供 参考文献资料: 1、汽轮机课程设计参考资料冯慧雯,水利电力出版社,1998 2、汽轮机原理翦天聪,水利电力出版社 3、叶轮机械原理舒士甑,清华大学出版社,1991

25MW汽轮机课程设计计算书

汽轮机课程设计 汽轮机参数: 容量:25MW 蒸汽初参数:压力:3.43Mpa 温度:435℃ 排汽参数:冷却水温20℃背压:0.005~0.006Mpa (取0.005 Mpa) 前轴封漏汽与轴封加热器耗汽量为0.007D○,轴封加热器焓升21KJ/Kg 加热器效率ηjr=0.98 设计功率:Pr=25MW 最大功率P=25*(0.2~0.3) 1.近拟热力过程图 在焓熵图上选取进口参数P0=3.43MP a,t0=435℃,可得 h0=3304kJ/Kg.设进汽机构的节流损失△P0=0.04P0,可得调节级 压力=3.3 MP a,并确定调节级前蒸汽状态点1(3.3 MP a, 435℃) 过1点作等比熵线向下交P Z线于2点,查得h2t=2128KJ/Kg,整 机理想比焓降(△h t mac)’=h0-h2t=3304-2128=1176KJ/Kg.选取汽 轮机的效率η=0.85,有效比焓降△h i mac=(△h t mac)’*ηri=999.6

KJ/Kg,排气比焓和h z=2304kj/kg.在焓熵图上得排汽点Z,用直线连接1,Z,去两点的中点沿等压线下移21-25Kj/Kg,用光滑曲线连接1,3两点,得热力过程曲线的近似曲线见图1, 图1 选取给水温度T=160℃回热级数:5 效率η=0.85 主汽门和调节阀中节流损失△P0=(0.03~0.05)PO 排汽管中压力损失△P C=(0.02~0.06)P C 回热抽汽管中的压力损失△P E=(0.04~0.08)P E 2.汽轮机进汽量D○ ηm=0.99 ηg=0.97 m=1.15 △D=0.03D O D0=/ h i macηmηg*m+△D=3.6*20000*1.15/(93*0.99*0.97)

汽轮机课程设计

第一章23 MW凝汽式汽轮机设计任务书 1.1设计题目:23MW凝汽式汽轮机热力设计 1.2设计任务及内容 根据给定条件完成汽轮机各级尺寸的确定及级效率和内功率的计算。在保证运行安全的基础上,力求达到结构紧凑、系统简单、布置合理、使用经济性高。 汽轮机设计的主要内容: 1.确定汽轮机型式及配汽方式; 2.拟定热力过程及原则性热力系统,进行汽耗量于热经济性的初步计算; 3.确定调节级型式、比焓降、叶型及尺寸等; 4.确定压力级级数,进行比焓降分配; 5.各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整 机实际热力过程曲线; 6.整机校核,汇总计算表格。 1.3设计原始资料 额定功率:23MW 设计功率:18.4MW 新汽压力:3.43MR 新汽温度:435 C 排汽压力:0.005MR 冷却水温:22 C 机组转速:3000r/mi n 回热抽汽级数:5 给水温度:168 C 1.4设计要求 1.严格遵守作息时间,在规定地点认真完成设计,设计共计两周; 2.完成设计说明书一份,要求过程完整,数据准确; 3.完成通流部分纵剖面图一张(A0图) 4.计算结果以表格汇总。

第二章多极汽轮机热力计算 2.1近似热力过程曲线的拟定 一、进排汽机构及连接管道的各项损失 蒸汽流过个阀门及连接管道时,会产生节流损失和压力损失。表2-1列出了这些损失通常选取范围。 表2-1汽轮机各阀门及连接管道中节流损失和压力估取范围 s

二、汽轮机近似热力过程曲线的拟定 根据经验,对一般非中间再热凝汽式汽轮机可近似地按图 2-2所示方法拟定近似 热力过程曲线。 由已知的新汽参数p o 、t o ,可得汽轮机进汽状态点0,并查得初比焓 h °=3304.2kj/kg 。由前所得,设进汽机构的节流损失 △ P °=0.04 R=0.1372 MPa 寻到调 节级前压力R = P 0 - △ P °=3.2928MPa 并确定调节级前蒸汽状态点1。过1点作等 比熵线向下交于P x 线于2点,查得h 2t =2152.1kj/kg ,整机的理想比焓降 (少罟)=h ° -h 2t =330422228=11764j 2kg 。由上估计进汽量后得到的相对内效率 n ri =83.1%,有效比焓降△ ht mac = ( A ht mac f n 『=1176X 0.831=977.3kj/kg ,排汽比 接1、Z 两点,在中间3'点处沿等压线下移21?25 kj/kg Z 点,得该机设计工况下的近似热力过程曲线,如图 2-2所示 3.43Mpa 焓 h z =0「hT 二:3304.^-99863 2231kj/872 ,在h-s 图上得排汽点乙用直线连 得3点,用光滑连接1、3、 h ° =3304.2kJ/kg 2t h 2t =2152.1kj/kg 3.2928Mp K 3 747 *1 435 C 0.005Mpa

汽轮机课程设计

15 第二部分 使用说明书 一、软件简介 汽轮机课程设计教学软件《设计宝典Xp 》是由蚂蚁虫工作室马唯唯开发的。适合热动及相关专业汽轮机课程设计使用。设计汽轮机级数不超过12级。 软件特点: 1.查焓熵图由计算机查取,快速,准确。输入输出采用了OLE 高级拖放技术,自动截取数据,无需手动输入。(参见《焓熵查表通》介绍) 2.《新视图1.0》包含了设计中的所有视图,可以直接打印,可以查取各个系数。 3.可以自动生成设计报告。 4.可以随时查看每一步或者每一级的详细计算过程。 5.可以模拟组装汽轮机通流部分。 6.支持dbf 到 xls 文件格式转换。 7.强大的数据逻辑性检测将大大减少人为的错误。 8.可以设计个性化界面。 9.可以播放背景音乐。 软件安装最低要求: 1.中央处理器为80486或更高。 2.已设虚拟内存的计算机要求内存在4MB 以上, 未设虚拟内存的计算机内存

至少要16MB内存,安装后不少于15MB的自由空间。 3.与windows配套的鼠标。 《新视图1.0》介绍 (1)《新视图1.0》中包含了课程设中使用的各幅图,每一幅图中的符号都有解释,只需鼠标移到符号上即可。 (2)系数采用鼠标移动查取。当鼠标移动时,横纵坐标值会变化。 (3)压力级平均直径确定采用作图法,Array采用计算机作图,快速准确。点击详细过程 可以看到每一段的长度,改变比例尺寸后会 从新量取。 《焓熵查表通》介绍 理论来源: 焓熵查表采用国际公式化委员会(IFC) 提供的标准计算公式。 软件特点; (1)计算和输出可采用国际单位和工程 单位。系统默认已知参数为国际单位。 (2)查出来参数与水/水蒸气性质表上 的数据有所误差。误差均小于1/100。 (3)采用了自动对位数字输入,系统会 自动切换成英文状态输入小数。 (4)可以判断在计算机范围内的两个性 质参数对应的状态。 (5)可以根据焓值来判断熵值的大小范 围。 (6)数据可以手动输入也可以使用拖放 技术。 操作说明: (1)焓、熵、压力、比容、一般取4位小数,温度和干度一般取2位小数进行计算。 (2)如果想计算另一种单位制下的结果,选择单位制后一定要点确定才能生效。 (3)建议查焓熵图时采用拖放技术,它可以自动截取有效数据,减少人为判断。设计经常要使用焓熵查表通,你可以点击就可以缩小为一个标题栏大小,它悬浮在主界面上,要展开只需点一下“焓熵查表通”这几个字。在数据上点击并按住鼠标左 键,数据上显示一只表示系统已抓取该数据,按住鼠标左键实现拖动。 16

中温中压冷凝式汽轮机课程设计说明书

中温中压冷凝式汽轮机课程设计说明书

目录 一.总述 1.课程设计的目的及要求 2.设计题目 3.热力设计内容 4.主要参数 二.热力设计内容 ㈠回热系统计算 ㈡调节级 ㈢中间级焓降分配及级数确定 ㈣压力级计算 ㈤汽封漏气量、叶顶漏汽量计算 ㈥末级扭叶片叶型 附:上述计算程序详见相关文件

一.总述 1.课程设计的目的及要求 任务:N25-3.43/435 冷凝式汽轮机组热力设计 目的:①系统总结巩固已有知识 ②对汽轮机结构、通流部分、叶片等联系 ③对于设计资料的合理利用 要求:①掌握汽轮机原理的基本知识 ②了解装置间的相互联系 2.设计题目 本次课程设计采用的基本数据为上海汽轮机厂数据设计题目:中温中压冷凝式汽轮机课程设计 设计原则:⑴安全性:采用合理结构、安全材料、危险工况校核 ⑵经济性:设计工况效率高 ⑶可加工性:工艺、形状、材料有一定要求 ⑷新材料、新结构选用需进行全面试验 ⑸节省贵重材料的用量与消耗 3.热力设计内容 ⑴调节级计算速比选用0.23/0.26 ⑵非调节级热降分配 ⑶压力级的热力计算 ⑷作h-s 热力过程线,速度三角形 ⑸整理说明书,计算结果以表格呈现 4.主要参数 ⑴ P0=3.43Mpa t0=435℃ ⑵额定功率 Nm=25000 kw 承担尖峰负荷工况 经济负荷 Ne=0.8—0.85Nm ⑶转速 n=3000 rad/min ⑷背压Pk=4.9kPa ⑸冷却水温 tw=20℃

二.热力设计内容 ㈠回热系统计算: 1.基本参数: Ne t0 p0 pc 2.设计工况的确定 中温中压,取设计工况为额定工况的80% 3.回热系统说明 ⑴已知参数: t fw=160.4℃加热器端差θ=6℃抽汽压损△p=4%p0 ⑵型式:两高两低一除氧 除氧室压设计:压力pN=0.118Mpa (定压) ⑶给水泵压力为 0.272Mpa 凝水泵压力为 1.176Mpa ⑷作过程线 ⑸热平衡计算 取加热器温升为 25℃±5℃,计算结果见热平衡图 ㈡调节级 采用喷嘴调节的汽轮机在运行时,主汽门全开。当负荷发生变化时,依次开启或关闭若干个调节阀,改变调节级的通流面积,以控制进入汽轮机的蒸汽量。调节级的喷嘴分成若干个独立的组,通常每个调节阀控制一组喷嘴。因此调节级为部分进汽。 对于参数不高的中小功率汽轮机,宜采用热降较大的双列调节级,可使整个机组级减小,结构紧凑,造价降低,且负荷适应性好,但效率低,所以宜应用于带尖峰负荷的机组上。 1.双列级主要参数选取见表一 2.调节级计算见表二 3. 调节级热力过程线见附图

热力发电厂课程设计计算书详解

执 八、、力发电厂课程设计

指导老师:连佳 姓名:陈阔班级:12-1 600MW凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2, C1 1?整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:S P1=4%,中低压连通管压损淞=2%,贝U p'0 (1 0.04) 24.2 23.232(MPa); p' 4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p0=24.2MPa t°=566 C,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段:P rh=3.602MPa t rh=556 C, 冷段:p'rh=4.002MPa t'rh=301.9 C, 可知h rh=3577.6kJ/kg, h'rh=2966.9kJ/kg, cr=610.7kJ/kg。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

表4 600MW凝汽式机组回热系统计算点汽水参数 1.1绘制汽轮机的汽态线,如图2所示

1.3计算给水泵焓升: 1?假设给水泵加压过程为等熵过程; 2 .给水泵入口处水的温度和密度与除氧器的出口水的温度和密度相等; 3 .给水泵入口压力为除氧器出口压力与高度差产生的静压之和。 2全厂物质平衡计算 已知全厂汽水损失:D i=0.015D b (锅炉蒸发量)则计算结果如下表:(表5) ,锅炉为直流锅炉,无汽包排污。 3.计算汽轮 机各级回热抽汽量 假设加热器的效率n =1

4 根据水泵的能量平衡计算小汽机的用汽份额 (1) 高压加热器组的计算 由H1, H2, H3的热平衡求a,a,a 0. 063788 …■ d d fw 2/ - i (h wi h w2 ) 1 (1079 879.1)/1 0.063788 (1106.3 904.6) Q 09Q67 q 2 2967.4 904.6 1 2 0.063788 0.09067 0.154458 .■? d d fw 3/ - S2(h w2 h w3) (879.1 741.1)/1 0.154458 (904.6 782.2) 0 045924 q 3 3375.5 782.2 s3 3 s2 0.045924 0.154458 0.200382 (2) 除氧器H4的计算 进小汽机的份额为a s2 进除氧器的份额为 a'; fW 4 d s 3 h w3 q 4 (741.3 587.4)/1 0.200382 (782.2 587.4) 3187.6 587.4 0.044176

相关主题
文本预览
相关文档 最新文档