当前位置:文档之家› 2016年高考之 几何证明选讲

2016年高考之 几何证明选讲

2016年高考之 几何证明选讲
2016年高考之 几何证明选讲

D C

A

E B

2016年高考之 几何证明选讲

【高考再现

1.(2012年高考(四川理))如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,

连接EC 、ED 则sin CED ∠=( )

A . B

D

3. (2012年高考(陕西理))如图,在圆O 中,直径AB

与弦CD 垂直,垂足

为E,EF DB ⊥,垂足为F,若6AB =,1AE =

,则DF DB ?=__________.

【解析】:5BE =,25DE AE EB =?=,

DE =在Rt DEB D

中,25DF DB DE ?==

4. (2012年高考(湖南理))如图2,过点P 的直线与圆O 相交于A,B

两点.若PA=1,AB=2,PO=3,则圆O 的半径等于_______.

【解析】设PO 交圆O 于C,D,如图,设圆的半径为R,由割线定理知

,1(12)(3-)(3),PA PB PC PD r r r ?=??+=+∴=即

P

5.(2012年高考(广东理))(几何证明选讲)如图3,圆O 的半径为1,A 、B 、C 是圆

周上的三点,满足30ABC ∠=?,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =__________.

【解析】:连接OA ,则60AOC ∠=?,90OAP ∠=?,因为1OA =,

所以PA =

7.(2012年高考(陕西文))如图,在圆O 中,直径AB 与弦CD 垂直,

垂足为E,EF DB ⊥,垂足为F,若6AB =,1AE =,则

DF DB ?=___ ______.

【解析】:5BE =,25DE AE EB =?=

,DE =在Rt DEB D 中,25DF DB DE ?==

9.(2012年高考(新课标理))选修4-1:几何证明选讲

如图,,D E 分别为ABC ?边,AB AC 的中点,直线DE 交ABC ?的外接圆于,F G 两点,若//CF AB ,证明: (1)CD BC =

;

(2)BCD GBD ??

【解析】(1)//CF AB ,//////DF BC CF BD AD CD BF ??=

//CF AB AF BC BC CD ?=?= (2)//BC GF BG FC BD ?==

//BC GF GDE BGD DBC BDC ?∠=∠=∠=∠?BCD

GBD ??

10.(2012年高考(辽宁理))选修4-1:几何证明选讲

如图,⊙O 和⊙/O 相交于,A B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连接DB 并延长交⊙O 于点

E .证明:

(Ⅰ)AC BD AD AB ?=?; (Ⅱ) AC AE =. 【答案及解析】

11.(2012年高考(江苏))[选修4 - 1:几何证明选讲]如图,AB 是圆

O 的直径,,D E 为圆上位于AB 异侧的两点,连结BD 并延长至点C ,

使BD DC =,连结,,AC AE DE .

求证:E C ∠=∠.

【解析】证明:连接AD .

∵AB 是圆O 的直径,∴090ADB ∠=(直径所对的圆周角是直角).

∴AD BD ⊥(垂直的定义).

又∵BD DC =,∴AD 是线段BC 的中垂线(线段的中垂线定义).

∴AB AC =(线段中垂线上的点到线段两端的距离相等). ∴B C ∠=∠(等腰三角形等边对等角的性质).

又∵,D E为圆上位于AB异侧的两点,

∴B E

∠=∠(同弧所对圆周角相等).

∴E C

∠=∠(等量代换).

12.(2012年高考(课标文))选修4-1:几何选讲

如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外

接圆与F,G两点,若CF∥AB,证明:

(Ⅰ) CD=BC;

(Ⅱ)△BCD∽△GBD.

【方法总结】

注意结合图形的性质特点灵活选择判定定理.在一个题目中,判定定理和性质定理可能多次用到.涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.

【考点剖析】

一.明确要求

考查相似三角形的判定和性质定理的应用及直角三角形的射影定理的应用;考查圆的切线定理和性质定理的应用;考查相交弦定理,切割线定理的应用;考查圆内接四边形的判定与性质定理.

二.命题方向

牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法;紧紧抓住相交弦定理、切割线定理以及圆内接四边形的判定与性质定理,重点以基本知识、基本方法为主,通过典型的题组训练,掌握解决问题的基本技能.

三.规律总结

1.平行截割定理

(1)平行线等分线段定理及其推论

①定理:如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.

②推论:经过梯形一腰的中点而且平行于底边的直线平分另一腰.

(2)平行截割定理及其推论

①定理:两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例.

②推论:平行于三角形一边的直线截其他两边(或两边的延长线),截得的三角形与原三角形的对应边成比例.

(3)三角形角平分线的性质

三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比.

(4)梯形的中位线定理

梯形的中位线平行于两底,并且等于两底和的一半.

2.相似三角形

基础梳理

1.圆周角定理

(1)圆周角:顶点在圆周上且两边都与圆相交的角.

(2)圆周角定理:圆周角的度数等于它所对弧度数的一半.

(3)圆周角定理的推论

①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.

②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径.

2.圆的切线

(1)直线与圆的位置关系

①切线的性质定理:圆的切线垂直于经过切点的半径.

②切线的判定定理

过半径外端且与这条半径垂直的直线是圆的切线.

(3)切线长定理

从圆外一点引圆的两条切线长相等.

3.弦切角

基础梳理

1.圆中的比例线段

(1)圆内接四边形性质定理:圆内接四边形的对角互补. (2)圆内接四边形判定定理:

①如果四边形的对角互补,则此四边形内接于圆;

②若两点在一条线段同侧且对该线段张角相等,则此两点与线段两个端点共圆,特别的,对定线段张角为直角的点共圆.

【基础练习】 1.(经典习题)如图所示,已知a ∥b ∥c ,直线m 、n 分别与a 、b 、c 交于点A ,B ,C 和A ′,B ′,C ′,如果AB =BC =1,A ′B ′=3

2

,则B ′C ′=________.

2.(经典习题)如图所示,BD 、CE 是△ABC 的高,BD 、CE 交于F ,写出图中所有与△

ACE 相似的三角形________.

3.(经典习题)如图所示,已知DE ∥BC ,BF ∶EF =3∶2,则AC ∶AE =______,AD ∶DB =________.

4.(经典习题)如图所示,△ABC中,∠C=90°,AB=10,AC=6,以AC为直径的圆与斜边交于点P,则BP长为________.

【解析】连接CP.由推论2知∠CPA=90°,即CP⊥AB,由射影定理知,AC2=AP·AB.∴AP=3.6,∴BP=AB-AP=6.4.

【答案】 6.4

5.(经典习题)如图所示,AB、AC是⊙O的两条切线,切点分

别为B、C,D是优弧BC上的点,已知∠BAC=80°,那么∠BDC=

________.

6.(经典习题)如图所示,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE =CE+3,则CD的长为________.

【名校模拟】 一.基础扎实

1. (北京市东城区2011-2012学年度第二学期高三综合练习(二)理) 如图,直线PC

与O 相切于点C ,割线PAB 经过圆心O ,弦CD ⊥AB 于点E ,4PC =,8PB =,则CE = .

2.(北京市西城区2012届高三下学期二模试卷理)如图,△ABC 是⊙O 的内接三角形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D .若

PA PE =,

60ABC ?∠=,1PD =,9PB =,则PA =_____;

EC =_____.

【答案】3,4;

【解析】由切割线定理可知

219,3;

PA PD PB PA =?=?∴=60,ABC PAC PA PE APE ∠=∠==∴?,为等边三角

形,3126AE AP DP ED EP DP BE ∴===∴=-==,,,,由割线定理可知:

,362 4.AE EC BE ED EC EC ∴?=?∴?=?∴=,

AC

3.(北京市西城区2012届高三4月第一次模拟考试试题理)如图,

为⊙O 的直径,OB AC ⊥,弦

BN 交AC 于点M .若

OC =1OM

=,则MN =_____.

【答案】1

A B

C

O

M

N

【解析】∵BM MN CM AM ?=?∴21)1)MN =?-∴1MN = 4.如图,PC 切圆O 于点C ,割线PAB 经过圆心O ,4,8PC PB ==,则

OBC S ?= .

5.(湖北2012高考冲刺理)

6.(湖北省黄冈中学2012届高三五月模拟考试理)如图,A ,B 是圆O 上的两点,且OA ⊥

OB ,OA =2,C 为OA 的中点,连接BC 并延长交圆O 于点D ,则CD= .

【解析】:由题意得,在直角BOC ?,中

2,1OB OC BC ==?=,

延长AO ,与圆O 的交点为E ,在圆O 中,由相交弦定理得BC CD AC CE ?=?,

AC CE CD BC ?=

==

7.(华中师大一附中2012届高考适应性考试理)(选修4—1:几何

证明选讲)

如图,⊙O 的直径为6,C为圆周上一点,BC=3,过C作圆的切线l ,

过A 作l 的垂线AD ,垂足为D,则CD= .

8.(2012年大连沈阳联合考试第二次模拟试题理) 已知AB 为半圆O 的直径,4AB =,C 为半圆上一.点,过点C 作半圆的切线CD ,过点A 作AD CD ⊥于D ,交圆于点E ,1DE =.(Ⅰ)求证:AC 平分BAD ∠;(Ⅱ)求BC 的长.

二.能力拔高

9.(2012东城区普通高中示范校高三综合练习(二)理)

如图,已知PA 是⊙O 的切线,A 是切点,直线PO 交⊙O 于,B C 两点,D 是OC

的中点,连结AD 并延长交⊙O 于点E ,若30PA APB =∠=?,则AE = .

【答案】AE =

【解析】根据已知可得tan 302AO AP ?==。故1OD =,且120AOD ∠=,在

AOD ?中,根据余弦定理可得7AD ==

CD DB AD DE ?=?,即13DE ?=,所以DE =

AE =.

11.(2012年长春市高中毕业班第二次调研测试理)如图,在△ABC 中,CD 是

ACB ∠的平分线,△ACD 的外接圆交BC 于点E ,2AB AC =. ⑴求证:2BE AD =;⑵当1AC =,2EC =时,求AD 的长.

12. (2012年石家庄市高中毕业班教学质量检测(二)文)

如图,AB 为圆O 的直径,P 为圆O 外一点,过P 点作PC ⊥AB 于C ,交圆O 于D 点,

PA 交圆O 于E 点,BE 交PC 于F 点.

(I)求证:P ABE ∠=∠; (Ⅱ)求证:2CD CF CP =.

[证明]:(Ⅰ)依题意, 090AEB ACP ∠=∠=,

所以在 Rt ACP ?中,90;P PAB ∠=-∠

在 Rt ABE ?中,90;ABE PAB ∠=-∠所以.P ABE ∠=∠ (Ⅱ)在ADB Rt ?中,2CD AC CB =?, 由①得BCF ?∽PCA ?,∴

BC CF

PC AC

=

, ∴2CD BC AC CF CP

=?=?,所以2CD CF CP =.

13. (唐山市2011—2012学年度高三年级第一次模拟考试文) 如图,AB 是圆O 的直径,以B 为圆心的圆B 与圆O 的一个交点为

P.过点A 作直线交圆O 于点Q,交圆B 于点M 、N. (I )求证:QM=QN;

(II)设圆O 的半径为2,圆B 的半径为1,当AM=10

3

时,求MN 的长.

14. (2012河南豫东豫北十所名校毕业班阶段性测试(三)文) 如图,四边形ABCD 是的内接四边形,延长BC ,AD 交于点E,且CE=AB=AC,连接BD ,交AC

于点F.

(I)证明:BD 平分

(II)若AD=6,BD=8,求DF 的长.

【解析】:(Ⅰ)CE AC =,

∴E CAE ∠=∠.……………………………(2分)

AB AC =,∴ABC ACB ∠=∠.

DBC CAE ∠=∠,∴DBC E CAE ∠=∠=∠.

ABC ABD DBC ∠=∠+∠,ACB E CAE ∠=∠+∠,……………………(4分)

∴ABD CAE ∠=∠,ABD DBC ∴∠=∠,即BD 平分ABC ∠.……………(5分) (Ⅱ)由(Ⅰ)知CAE DBC ABD ∠=∠=∠.

又ADF ADB ∠=∠,∴ADF BDA V V ∽.………………………(7分) ∴AD DF

BD AD

=

,6AD =,8BD =. ∴236982

AD DF BD ===.…………………………………(10分) 15. (中原六校联谊2012年高三第一次联考理) 如图,⊙O 1与⊙O 2相交于A 、B 两点,

过点A 作⊙O

1的切线交⊙O 2于点C ,过点B 作两圆的割线,分别交⊙O 1、⊙O 2于点D 、E ,DE 与AC 相交于点P .

(1)求证:AD//EC ;

(2)若AD 是⊙O 2的切线,且PA=6,PC =2,BD =9,求AD 的长。

三.提升自我

16.(仙桃市2012年五月高考仿真模拟试题理)如图,半径分别为a 和a 3的圆O 1与圆O 2外切于T ,自圆O 2上一点P 引圆O 1的切线,切点为Q ,若PQ=2a ,则PT= 。

17.(湖北钟祥一中2012高三五月适应性考试理)(4—1:几何证明选讲)如图,PA 是

圆O 的切线,A 是切点,直线PO 交圆O 于B 、C 两点,D 是OC 的中点,连结AD 并延长交圆O 于点E

,若PA =,∠30APB =,则AE =________.

18.(襄阳五中高三年级第一次适应性考试理)如图:直角三角形ABC 中,∠B =90 o

,AB =4,以BC 为直径的圆交边AC 于点D ,AD =2,则∠C 的大小为 .

19.(湖北省武汉市2012届高中毕业生五月供题训练(二)理)

如图,已知C 点在⊙O 直径BE 的延长线上,CA 切⊙O 于A 点,CD 是∠ACB 的平分线且交AB 于点D .则∠ADC 的度数是 . 【答案】:045ADC ∠=

C

第15题

【解析】:由题意得,设AE 与CD 交于F ,EAC α∠=,个怒弦切角定理,则

ABE α∠=, 根据三角形外角定理,得090AEC α∠=+,根据三角形内角和定理

0902ACE α∠=-,

由于CD 时∠ACB 的平分线,所以045FCE α∠=-,

由三角形的内角和定理,的0000180(90)(45)45CFE αα∠=-+--=,

再由对顶角定理,知045AFD ∠=,又090DAF ∠=,所以045ADC ∠=。 20.(河北唐山市2012届高三第三次模拟理)(本小题满分10分)选修4—1;几何证明选讲

21.(河北省唐山市2011—2012学年度高三年级第二次模拟考试理)(本小题满分10分)

选修4-1:几何证明选讲 如图,在△ABC 中,BC 边上的点D 满足BD=2DC ,以BD 为直径作圆O 恰与CA 相切于点A ,过点B 作BE ⊥CA 于点E ,BE 交圆D 于点F . (I )求∠ABC 的度数: ( II )求证:BD=4EF .

∴3

16BD2=EF×

3

4

BD,∴BD=4EF.

22.(2012年石家庄市高中毕业班第二次模拟考试文)已知四边形ACBE,AB交CE于D 点,(I )求证:;(II)求证:A、E、B、C四点共圆.

【原创预测】

如图AB是的直径,弦BD, CA的延长线相交于点E,EF垂直JBA

的延长线于点F.

(I) 求证:,;

(II) 若,求AF的长.

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

高中数学选修 几何证明选讲相关知识点

高中数学选修4-4,几何证明选讲相关 知识点 相似三角形的判定及有关性质 知识点1:比例线段的有关定理 平行线等分线段定理: 推论1: 推论2: 平行线等分线段成比例定理: 推论:(1) (2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点2:相似图形 1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形. 叫做相似比(或相似系数) 2、相似三角形的判定方法 预备定理:平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理的基本图形语言:

数学符号语言表述是:BC DE // ∴ADE ∽ABC . 判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似. 判定定理2:如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 判定定理3:如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两个三角形相似. 判定定理4:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似. 三角形相似的判定方法与全等的判定方法的联系列表如下: 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法. 3、相似三角形的性质定理: (1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于 ; (2)相似三角形的周长比等于 ; (3)相似三角形的面积比等于 ; (4)相似三角形内切圆与外接圆的直径比、周长比等于相似比,面积比等于相似比的平方. 4、直角三角形的射影定理 从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影;一条线段在直线上的正射影,是指线段的两个端点在这条直线上的正射影间的线段. 点和线段的正射影简称为射影 直角三角形的射影定理:

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

(完整版)高一数学常考立体几何证明的题目及答案.docx

实用标准文案 1、如图,已知空间四边形ABCD 中,BC AC , AD BD ,E是AB的中点。 求证:( 1)AB平面CDE;(2)平面CDE平面ABC。A E B C 2、如图,在正方体ABCD A1B1C1D1中, E 是 AA1的中点,D 求证: AC1 // 平面 BDE 。A D1 B1C E A 3、已知ABC 中ACB 90o,SA面ABC,AD SC , D B C 求证: AD面 SBC .S D A B ABCD A1B1C1D1,O是底ABCD对角线的交点.C 4、已知正方体 D1C1求证: (1 ) C1O∥面AB D; (2) AC面 AB D . B1 1 11 1 1 A1 D C O A B 5、正方体ABCD A ' B 'C ' D ' 中,求证: (1) AC 平面 B ' D ' DB ; (2) BD ' 平面 ACB ' . 6、正方体 ABCD —A B C D中. 1111 D 1C 1 (1) 求证:平面 A1 BD∥平面 B1D1C; A B1 (2) 若 E、 F 分别是 AA , CC的中点,求证:平面 EB D1F ∥平面 FBD . 1111 E G C

实用标准文案 2o 7、四面体ABCD 中,AC BD , E, F 分别为 AD , BC 的中点,且 EF AC ,BDC 90 , 求证: BD平面ACD 8、如图,在正方体ABCD A1B1C1D1中, E 、F、G分别是AB、AD、 C1 D1的中点.求证:平面 D1EF ∥平面 BDG . 9、如图,在正方体ABCD A1B1C1D1中, E 是 AA1的中点. (1)求证:A1C //平面BDE; (2)求证:平面A1AC平面BDE . 10、已知ABCD是矩形,PA平面ABCD,AB 2 , PA AD 4 , E 为 BC 的中点. ( 1)求证:DE平面PAE; ( 2)求直线DP与平面PAE所成的角. 11、如图,在四棱锥P ABCD 中,底面ABCD 是DAB 600且边长为 a 的菱形, 侧面 PAD 是等边三角形,且平面 PAD 垂直于底面 ABCD .( 1)若G为AD的中点,求证:BG平面PAD; ( 2)求证:AD PB. 12、如图 1,在正方体ABCD A B C D中, M 为 CC的中点, AC 交 BD 于点 O,求证:AO平面 MBD . 1 1 1 111 13 、如图2,在三棱锥A- BCD 中, BC= AC, AD= BD, 作BE⊥ CD,E为垂足,作 AH⊥ BE 于 H.求证: AH⊥平面 BCD.

高考数学专题几何证明选讲

编写说明:考虑到复习实际,本书将选修4-5不等式选讲与前面第六章不等式、推理与证明整合编写。 选修4-1几何证明选讲 第一节相似三角形的判定及有关性质 1.平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. 2.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例. 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定与性质 (1)判定定理: (2)

1.在使用平行线截割定理时易出现对应线段、对应边对应顺序混乱,导致错误. 2.在解决相似三角形的判定或应用时易出现对应边和对应角对应失误. [试一试] 1.如图,F 为?ABCD 的边AD 延长线上的一点,DF =AD ,BF 分别交DC ,AC 于G ,E 两点,EF =16,GF =12,则BE 的长为________. 解析:由DF =AD ,AB ∥CD 知BG =GF =12,又EF =16知EG =4,故BE =8. 答案:8 2.在△ABC 中,点D 在线段BC 上,∠BAC =∠ADC ,AC =8,BC =16,则CD =________. 解析:∵∠BAC =∠ADC ,∠C =∠C ,∴△ABC ∽△DAC ,∴BC AC =AC CD ,∴CD =AC 2BC = 8216=4. 答案:4 1.判定两个三角形相似的常规思路 (1)先找两对对应角相等; (2)若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例; (3)若找不到角相等,就判断三边是否对应成比例,否则考虑平行线分线段成比例定理及相似三角形的“传递性”. 2.借助图形判断三角形相似的方法 (1)有平行线的可围绕平行线找相似; (2)有公共角或相等角的可围绕角做文章,再找其他相等的角或对应边成比例; (3)有公共边的可将图形旋转,观察其特征,找出相等的角或成比例的对应边. [练一练] 1.如图,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC 且AD DB =2, 那么△ADE 与四边形DBCE 的面积比是________. 解析:∵DE ∥BC ,∴△ADE ∽△ABC ,

高中数学-几何证明选讲知识点汇总与练习(内含答案)

高中数学-《几何证明选讲》知识点归纳与练习(含答案) 一、相似三角形的判定及有关性质 平行线等分线段定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。 推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。 推理2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰。 平分线分线段成比例定理 平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 相似三角形的判定及性质 相似三角形的判定: 定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似 系数)。 由于从定义岀发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给岀过如下几个判定两个三角形相似的简单方法: (1 )两角对应相等,两三角形相似; (2 )两边对应成比例且夹角相等,两三角形相似; (3 )三边对应成比例,两三角形相似。 预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。 判定定理1 :对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三 角形相似。简述为:两角对应相等,两三角形相似。 判定定理2 :对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等, 那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 判定定理3 :对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个 三角形相似。简述为:三边对应成比例,两三角形相似。 引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

如何做几何证明题(方法总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的 系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两

的角平分线AD、CE相交于O。 (补

AE=BD,连结CE、DE。

求证:BC=AC+AD B、C作此射线的垂线BP和CQ。 设M为BC的中点。求证:MP=MQ

北京市各区2012年高考数学一模试题分类解析(17) 几何证明选讲 理

十七、几何证明选讲 13.(2012年海淀一模理13)如图,以ABC ?的边AB 为直径的半圆交AC 于点D ,交BC 于点E ,EF AB ^于点F ,3AF BF =,22BE EC ==,那么CDE D= , CD = . 答案:60° 11.(2012年西城一模理11) 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M .若OC =,1OM =,则MN =_____. 答案:1。 12.(2012年东城一模理12)如图,AB 是⊙O 的直径,直线DE 切⊙O 于点D , 且与AB 延长线交于点C ,若CD =1CB =,则ADE ∠= . 答案:60 。 F E D C B A A B C O M N

12.(2012年丰台一模理12)如图所示,Rt △ABC 内接于圆,60ABC ∠= ,PA 是圆的切线,A 为切点, PB 交AC 于E ,交圆于D .若PA=AE , BD=AP= ,AC= . 答案: 10.(2012年东城11校联考理10)如图,已知PA 是⊙O 的切线,A 是切点,直线PO 交⊙O 于,B C 两点,D 是OC 的中点,连结AD 并延长交⊙O 于点E , 若 ,30P A A P B =∠=? ,则AE = . 答案:7710。 11.(2012年石景山一模理11)如图,已知圆中两条弦AB 与CD 相交于点F ,CE 与圆相切交AB 延长线上于点E , 若DF CF ==,::4:2:1AF FB BE =,则线段CE 的长为 . 答案:7。 E D P C B A

3.(2012年房山一模理3)如图,PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C 两点, 1PA PB ==,则ABC ∠=( B ) A.70? B.60? C.45? D.30? 12.(2012年密云一模理12)如图3所示,AB 与CD 是O 的直径,AB ⊥CD ,P 是AB 延长线上一点,连PC 交O 于点E ,连DE 交AB 于点F ,若42==BP AB ,则 =PF . 答案:3。 12.(2012年门头沟一模理12)如右图:点P 是O 直径AB 延长线上一点, PC 是O 的切线,C 是切点,4AC =,3BC =,则PC = . 答案:60 7 。 C

初一几何证明典型例题

初一几何证明典型例题 1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC 2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、 A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。∴ AB=AE。在△ABF和△AEF中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD= ∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA 4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=

高中数学立体几何专题证明题训练

A P B C F E D 立体几何专题训练 1.在四棱锥P -ABCD 中,PA =PB .底面ABCD 是菱形, 且∠ ABC =60°.E 在棱PD 上,满足DE =2PE ,M 是AB 的中点. (1)求证:平面PAB ⊥平面PMC ; (2)求证:直线PB ∥平面EMC . 2.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相 等, D 、 E 分别是CC 1和AB 1的中点,点 F 在BC 上且满 足BF ∶FC =1∶3. (1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC 。 3.如图,在长方体1111ABCD A B C D -中,,E P 分别是 11,BC A D 的中点,M 、N 分别是1,AE CD 的中点,1,2AD AA a AB a === (1)求证://MN 面11ADD A (2)求三棱锥P DEN -的体积 4如图1,等腰梯形ABCD 中,AD ∠ο 60⊥⊥⊥ 4a 2a (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. 6如图,等腰梯形ABEF 中,//AB EF ,AB =2, 1AD AF ==,AF BF ⊥,O 为AB 的中点,矩形ABCD 所在的平面和平面ABEF 互相垂直. (Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ; (Ⅲ)求三棱锥C BEF -的体积. 7在直三棱柱111C B A ABC -中,,900=∠ABC E 、F 分别为 11A C 、11B C 的中点,D 为棱1CC 上任一点. (Ⅰ)求证:直线EF ∥平面ABD ;(Ⅱ)求证:平面ABD ⊥平面11BCC B 8已知正六棱柱111111ABCDEF A B C D E F -的所有棱长均为2,G 为 AF 的中点。 (1)求证:1F G ∥平面11BB E E ; (2)求证:平面1F AE ⊥平面11DEE D ; D A B C P E M A B D C E A B C D E P F A B C D E F M O C 1 A B C D E F A 1 B 1

高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题 1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 2、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点, 求证: 1// A C 平面BDE 。 3、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC . 4、已知正方体 1111 ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C1O ∥面11 AB D ;(2) 1 AC ⊥面 11 AB D . 5、正方体''''ABCD A B C D -中,求证: ''AC B D DB ⊥平面; 6、正方体ABCD —A1B1C1D1中. (1)求证:平面A1BD ∥平面B1D1C ; (2)若E 、F 分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD . 7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且 22EF AC = ,90BDC ∠=, A E D B C A E D 1 C B 1 D C B A S D C B A D 1 O D B A C 1 B 1 A 1 C A 1 A B 1 B C 1 C D 1 D G E F

求证:BD ⊥平面ACD 8、如图,在正方体 1111 ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、 11 C D 的中点.求证:平面 1D EF ∥平面BDG . 9、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点. (1)求证: 1// A C 平面BDE ; (2)求证:平面1A AC ⊥ 平面BDE . 10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==, E 为BC 的中点. 求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 11、如图,在四棱锥P ABCD -中,底面ABCD 是0 60DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥. 12、如图1,在正方体 1111 ABCD A B C D -中,M 为 1 CC 的中点,AC 交BD

高考数学几何证明选讲

几何证明选讲 沙市五中高三数学组 一、填空题(每小题6分,共48分) 1.如图所示,l1∥l2∥l3,下列比例式正确的有________(填序号). (1)AD DF = CE BC ;(2) AD BE = BC AF ;(3) CE DF = AD BC ;(4) AF DF = BE CE . 2.如图所示,D是△ABC的边AB上的一点,过D点作DE∥BC交AC于E.已 知AD DB = 2 3 ,则 S △ADE S 四边形BCED = __________________________________________________________________. 3.如图,在四边形ABCD中,EF∥BC,FG∥AD,则EF BC + FG AD =________.

4.在直角三角形中,斜边上的高为6,斜边上的高把斜边分成两部分,这两部分的比为3∶2,则斜边上的中线的长为________. 5.(2010·苏州模拟)如图,在梯形ABCD中,AD∥BC,BD与AC相交于点O,过点O的直线分别交AB,CD于E,F,且EF∥BC,若AD=12,BC=20,则EF=________. 6.如图所示,在△ABC中,AD⊥BC,CE是中线,DC=BE,DG⊥CE于G,EC 的长为4,则EG=________. 7.(2010·天津武清一模)如图,在△ABC中,AD平分∠BAC,DE∥AC,EF ∥BC,AB=15,AF=4,则DE=________. 8.如图所示,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ BC = ________. 二、解答题(共42分) 9.(14分)如图所示,在△ABC中,∠CAB=90°,AD⊥BC于D,BE是∠ABC 的平分线,交AD于F,求证:DF AF = AE EC .

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

高中数学立体几何证明题汇总

高中数学立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D C B D C B A A H G F E D C B A E D B C S D C B A D 1 O D B A C 1 B 1 A 1 C

N M P C B A 6、正方体''''ABCD A B C D -中, 求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面垂直的判定 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面 FBD . 考点:线面平行的判定(利用平行四边形) 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点, 且2 2 EF AC = , 90BDC ∠=o ,求证:BD ⊥平面ACD 考点:线面垂直的判定,三角形中位线,构造直角三角形 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB = (1)求证:MN AB ⊥;(2)当90APB ∠=o ,24AB BC ==时, 求MN 的长。 考点:三垂线定理 10、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、 AD 、11C D 的中点.求证:平面1D EF ∥平面BDG . 考点:线面平行的判定(利用三角形中位线) 11、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . 考点:线面平行的判定(利用三角形中位线),面面垂直的判定 12、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点. (1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 考点:线面垂直的判定,构造直角三角形 A 1 A B 1 C 1 D 1 D G E F

高中数学高考总复习几何证明选讲习题及详解

高中数学高考总复习几何证明选讲习题 (附参考答案) 一、选择题 1.已知矩形ABCD ,R 、P 分别在边CD 、BC 上,E 、F 分别为AP 、PR 的中点,当P 在BC 上由B 向C 运动时,点R 在CD 上固定不变,设BP =x ,EF =y ,那么下列结论中正确的是( ) A .y 是x 的增函数 B .y 是x 的减函数 C .y 随x 的增大先增大再减小 D .无论x 怎样变化,y 为常数 [答案] D [解析] ∵E 、F 分别为AP 、PR 中点,∴EF 是△P AR 的中位线,∴EF =12 AR ,∵R 固定,∴AR 是常数,即y 为常数. 2.(2010·湖南考试院)如图,四边形ABCD 中,DF ⊥AB ,垂足为F ,DF =3,AF =2FB =2,延长FB 到E ,使BE =FB ,连结BD ,EC .若BD ∥EC ,则四边形ABCD 的面积为( ) A .4 B .5 C .6 D .7 [答案] C [解析] 由条件知AF =2,BF =BE =1, ∴S △ADE =12AE ×DF =12 ×4×3=6, ∵CE ∥DB ,∴S △DBC =S △DBE ,∴S 四边形ABCD =S △ADE =6. 3.(2010·广东中山)如图,⊙O 与⊙O ′相交于A 和B ,PQ 切⊙O 于P ,交⊙O ′于Q

和M ,交AB 的延长线于N ,MN =3,NQ =15,则PN =( ) A .3 B.15 C .3 2 D .3 5 [答案] D [解析] 由切割线定理知: PN 2=NB ·NA =MN ·NQ =3×15=45, ∴PN =3 5. 4.如图,Rt △ABC 中,CD 为斜边AB 上的高,CD =6,且AD BD =32,则斜边AB 上的中线CE 的长为( ) A .5 6 B.56 C.15 D.3102 [答案] B [解析] 设AD =3x ,则DB =2x ,由射影定理得CD 2=AD ·BD ,∴36=6x 2,∴x =6,∴AB =56, ∴CE =12AB =562 . 5.已知f (x )=(x -2010)(x +2009)的图象与x 轴、y 轴有三个不同的交点,有一个圆恰好经过这三个点,则此圆与坐标轴的另一个交点的坐标是( ) A .(0,1) B .(0,2)

初一几何典型例题

初一几何典型例题 1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。 PC=PD 证明:作PE⊥OA于点E,PF⊥OB于点F ∵OM是角平分线 ∴PE=PF ∠EPF=90° ∵∠CPD=90° ∴∠CPE=∠DPF ∵∠PEC=∠PFD=90° ∴△PCE≌△PDF ∴PC=PD 2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。 AF⊥BE 证明: ∵CD=CE,CA=CB,∠ACD=∠BCE=90° ∴△ACD≌△BCE

∵∠CBE+∠BEC=90° ∴∠EAF+∠AEF=90° ∴∠AFE=90° ∴AF⊥BE 3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3; 理由:过点P作l1的平行线PQ, ∵l1∥l2,∴l1∥l2∥PQ, ∴∠1=∠4,∠2=∠5. ∵∠4+∠5=∠3,∴∠1+∠2=∠3; (2)同理:∠1-∠2=∠3或∠2-∠1=∠3. 理由:当点P在下侧时,过点P作l1的平行线PQ, ∵l1∥l2 ∴l1∥l2∥PQ, ∴∠2=∠4,∠1=∠3+∠4,

当点P在上侧时,同理可得∠2-∠1=∠3. 4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GC>EC 所以 FB+FD+FA+AG+EG+GC>BD+FG+EC 即AB+AC+FD+EG>BD+FD+EG+DE+EC 所以AB+AC>BD+DE+EC 5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。 解:如图,作DF‖AC交AB于F. ∵DF‖AC.等边△ABC. ∴等边△BFD.

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高考数学试题汇编几何证明选讲

第十四章 选修4系列选讲 第一节 几何证明选讲 高考试题 考点一 相似三角形的判定与性质 1. (2013年陕西卷,理15B)(几何证明选做题)如图,弦AB 与CD 相交于☉O 内一点E,过E 作BC 的平行线与AD 的延长线交于点P.已知PD=2DA=2,则PE= . 解析:由PD=2DA=2,得PA=PD+DA=2+1=3, 又PE ∥BC,得∠PED=∠C, 又∠C=∠A,得∠PED=∠A, 在△PED 和△PAE 中,∠EPD=∠APE,∠PED=∠A, 所以△PED ∽△PAE, 得 PE PA =PD PE , 因此PE 2 =PA ·PD=3× 答案2.(2011年陕西卷,理15B)如图所示,∠B=∠D,AE ⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE= . 解析:由∠B=∠D,∠AEB=∠ACD=90°, 得△ACD ∽△AEB, 所以 AC AE =AD AB ,即4AE =12 6 ,所以AE=2, 所以在直角三角形ABE 中, 答案3.(2011年湖南卷,理11)如图所示,A,E 是半圆周上的两个三等分点,直径BC=4,AD ⊥BC,垂足为D,BE 与AD 相交于点F,则AF 的长为 .

解析:如图所示,设圆心为O,连接OA,OE,AE,因为A,E 是半圆周上的两个三等分点,所以AE ∥BC,AE=1 2 BC=2,所以△AFE ∽△DFB,所以 AF DF =AE DB .在△AOD 中, ∠AOD=60°,AO=2,AD ⊥BC,故OD=AOcos ∠AOD=1,AD=AOsin ∠所以BD=1.故 AF= AE BD ·DF=2(AD-AF).解得 答案考点二 直线和圆的位置关系 1.(2013年重庆卷,理14)如图所示,在△ABC 中,∠ACB=90°,∠A=60°,AB=20,过C 作△ABC 的外接圆的切线CD,BD ⊥CD,BD 与外接圆交于点E,则DE 的长为 . 解析:在△ABC 中, BC=AB ·sin 60°, 由弦切角定理知∠BCD=∠A=60°, 所以 由切割线定理知,CD 2 =DE ·BD, 解得DE=5. 答案:5 2.(2012年湖北卷,理15)如图所示,点D 在☉O 的弦AB 上移动,AB=4,连接OD,过点D 作OD 的垂线交☉O 于点C,则CD 的最大值为 . 解析:连接OC.因为CD ⊥OD,所以又OC 为☉O 的半径,是定值,所以当OD 取最小值时,CD 取最大值.显然当OD ⊥AB 时,OD 取最小值,此时CD=1 2 AB=2,即CD 的最大值为2. 答案:2 3.(2013年广东卷,理15)(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC=CD,过C 作圆O 的切线交AD 于E.若AB=6, ED=2,则BC= .

相关主题
文本预览
相关文档 最新文档