当前位置:文档之家› 函数奇偶性的理解及应用

函数奇偶性的理解及应用

函数奇偶性的理解及应用

龙源期刊网 https://www.doczj.com/doc/13853610.html,

函数奇偶性的理解及应用

作者:王明飞

来源:《新高考·高一数学》2012年第09期

文艺复兴以后,数学进入了分析时代,引入了极限的概念,第二次数学危机也就应运而生,焦点仍然是无穷小问题。直到19世纪,阿贝尔、柯西、魏尔斯特拉斯终于进一步将无穷小理论归结为极限理论加以严格化,然后戴德金又建立了更基本的实数理论,说清了无理数问题(康托尔本人也在两件工作中留下了自己的印记)。两次危机遗留的问题似乎被彻底解决了。然而,数学界风平浪静没多久,第三次数学危机就爆发了。其导火索是集合论研究中产生的罗素悖论。康托尔是顺着魏尔斯特拉斯和戴德金的思路开创集合论的。尽管如此,集合论仍体现了旁人无法企及的丰富想象力和高度的原创精神。集合论这些概念的价值不仅仅在于它们本身非常合适地成为数学各分支的基础,而且集合论的深层次问题在于无穷集,而不是有限集。1873年,康托尔在给戴德金的一封信中提出了一个奇怪的问题。他认为有理数与自然数

一样多!

函数的奇偶性及其应用举例

函数的奇偶性及其应用举例 (湖北省红安县职教中心 金哲、曾诚) 【摘要】 函数是贯穿于初中、高中、大学数学教学的一条主线,也是高中数学的核心 内容,那么真正掌握函数,其中最主要的就是掌握函数的基本性质。函数的奇偶性是函数重要性质之一。近几年高职统考以及技能高考对于函数的奇偶性一直都是热点问题。本文将通过对函数的奇偶性及其应用进行一个系统研究。 【关键词】 函数的奇偶性,判定,应用 一、奇、偶函数的定义: 若函数)(x f ,在其定义域内,任取x 都有))()()(()(x f x f x f x f =--=-或者, 则称函数)(x f 在区间I 上是奇函数(或者偶函数) 二、函数的奇偶性分类 ???? ? ?? =--=-≠--≠-=--=-)()()()()()()()(:)()(:)()(:x f x f x f x f x f x f x f x f x f x f x f x f 且既奇且偶函数: 且非奇非偶函数偶函数奇函数 三、奇、偶函数的图象: 奇函数?图象关于原点成中心对称的函数 偶函数?图象关于y 轴对称的函数。 四、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称 ②若f(x)是奇函数,且x 在0处有定义,则f(0)=0 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反 ④任意定义在R 上的函数f(x)都可以唯一地表示成一个奇函数与一个 偶函数的和。 五、 判断函数奇偶性的方法: (1)定义法:欲判断函数)(x f 在给定区间或者定义域内的奇偶性:

第一步:先判断给定区间或者定义域是否关于原点对称,若 不对称,则函数)(x f 一定是非奇非偶函数。 第二步:若对称,再判断)(x f -与)(x f 的关系: ①若)(x f -=-)(x f ,则)(x f 是奇函数 ②若)(x f -=)(x f ,则)(x f 是偶函数 ③若)(x f -=-)(x f 且)(x f -=)(x f ,则)(x f 是既奇且偶函数 ④若)(x f -≠-)(x f 且)(x f -≠)(x f ,则)(x f 是非奇非偶函数 (2)图象法:图象关于原点成中心对称的函数是奇函数; 图象关于y 轴对称的函数是偶函数。, 六、函数奇偶性的应用: (1)函数奇偶性的判断 例1、(2011年高职统考第4题)下列函数为奇函数的为 )0(.5 1<=x x y A )0(.7 1>=x x y B 2 1.x y C = 3 1.x y D = 析:A,B ,C 这三个函数的定义域都不关于原点对称,故均为非奇非偶函数, 只有D 选项,定义域为()+∞∞-,,关于原点对称,并且()3 13 1x x -=-,故D 项所在函数为奇函数。 例2、(2014年文化综合第25题改编)下列函数中为奇函数的是 A .2 ()1f x x =- B .3 ()f x x = C .5()3x f x ?? = ??? D .2 ()log f x x = 析:A 项2()1f x x =-的定义域为()+∞∞-,关于原点对称,但 () 11)(2 2 -=--=-x x x f ,)()(x f x f =-故为偶函数; C 项5()3x f x ?? = ??? 定义域 为()+∞∞-,关于原点对称,但)()()()(,35)(x f x f x f x f x f x -≠-≠-??? ??=--且, 故为非奇非偶函数;D 项2()log f x x =,定义域为()+∞,0,不关于原点对称, 故为非奇非偶函数,只有B 项符合。 例3、判断函数12)(2+-=x x x f 的奇偶性: 析:(法1-定义法)()f x 函数的定义域是()-∞+∞, , ∵ 2()21f x x x =-+,

高中数学知识点:函数的奇偶性概念及判断步骤

高中数学知识点:函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:()()()0,1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数.

3.用定义判断函数奇偶性的步骤 (1)求函数() f x的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数() f x的解析式; f x的定义域,化简函数() (3)求() f x f x的 -与() f x之间的关系,判断函数() -,可根据() f x 奇偶性. 若() f x,则() f x是奇函数; f x -=-() 若() f x是偶函数; f x,则() -=() f x 若() f x f x既不是奇函数,也不是偶函数; ≠±,则() -() f x 若() -=-() f x既是奇函数,又 f x f x,则() f x f x -() =且() 是偶函数

函数奇偶性练习题(内含答案)

函数奇偶性练习 一、选择题 1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 5.函数1111)(22 +++-++=x x x x x f 是( ) A .偶函数 B .奇函数 C .非奇非偶函数 D .既是奇函数又是偶函数 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5, 则f (x )在(-∞,0)上有( ) A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3 二、填空题 7.函数212 2)(x x x f ---=的奇偶性为________(填奇函数或偶函数) . 8.已知f (x )是偶函数,g (x )是奇函数,若11 )()(-=+x x g x f ,则f (x )的

函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

函数的奇偶性练习题[(附答案)

函数的奇偶性 1.函数f(x)=x(-1﹤x≦1)的奇偶性 是() A.奇函数非偶函数 B.偶函数非奇函数 C.奇函数且偶函数 D.非奇非偶函数 2. 已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是( ) A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数 3. 若函数f(x)是定义在R上的偶函数,在 上是减函数, 且f(2)=0,则使得f(x)<0的x的取值范围是 ( ) A.(-,2) B. (2,+) C. (-,-2)(2,+) D. (-2,2) 4.已知函数f(x)是定义在(-∞,+∞)上的偶函数. 当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0.+∞)时, f(x)= . 5. 判断下列函数的奇偶性:

(1)f(x)=lg( -x); (2)f(x)= + (3) f(x)= 6.已知g(x)=-x2-3,f(x)是二次函数,当x∈[-1,2]时,f(x)的最小值是1,且f(x)+g(x)是奇函数,求f(x)的表达式。 7.定义在(-1,1)上的奇函数f(x)是减函数,且f(1-a)+f(1-a2)<0,求a 的取值范围 8.已知函数 是奇函数, 且 上是增函数, (1)求a,b,c的值; (2)当x∈[-1,0)时,讨论函数的单调性. 9.定义在R上的单调函数f(x)满足f(3)=log 3且对任意x,y∈R都有f(x+y)=f(x)+f(y).

(1)求证f(x)为奇函数; (2)若f(k·3 )+f(3 -9 -2)<0对任意x∈R恒成立,求实数k的取值范围. 10下列四个命题: (1)f(x)=1是偶函数; (2)g(x)=x3,x∈(-1,1 是奇函数; (3)若f(x)是奇函数,g(x)是偶函数,则H(x)=f(x)·g(x)一定是奇函数; (4)函数y=f(|x|)的图象关于y轴对称,其中正确的命题个数 是() A.1 B.2 C. 3 D.4 11下列函数既是奇函数,又在区间 上单调递减的是( ) A. B.

函数奇偶性在解题中的应用

函数奇偶性在解题中的应用 徐辉 函数的奇偶性是函数的重要性质之一,也是日常考试和高考中数学的重点和热点内容之一。它应用广泛,在高中数学的各个分支中都有着极为重要的应用,在解题过程中如果应用的好,常能使难题变易,繁题变简,起到事半功倍的效果。 1.用于求值 例1:已知奇函数,则 解:因为奇函数, 所以对任意,都有成立. 令,则有,从而可得; 令,则有, 从而 . 故. 注:此解利用了若函数是奇函数,则对定义域内的任意, 都有这一性质,特别地,当0在定义域内时,必有. 2.用于比较大小 例2.已知偶函数在区间上单调递减,试比较 的大小.

解:因为是偶函数,所以,故此题只需比较的大小即可. 又因在区间上单调递减,而且 所以,故. 注:此解利用了若函数是偶函数,则对定义域内的任意x,都有这一性质.当然此题也可利用偶函数图象关于y 轴对称这一性质,首先得到在区间是单调递增的,然后再用单调性进行求解. 3.用于求最值 例3.如果奇函数在区间[3,7]上是增函数且最小值为5,那么在区间[-7,-3]上是() A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 解:由在区间[3,7]上是增函数且最小值为5,有, 又是奇函数,而奇函数的图象关于原点对称, 故有在[-7,-3]上也是增函数,且当x=-3时,函数取得最大值, 故选B. 注:此解利用了奇函数图象关于原点对称这一性质. 4.用于求参数的值 例4.已知函数(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.

解:由是奇函数,知f(-x)=-f(x), 从而,即-bx+c=-(bx+c),c=-c,∴c=0. 又由f(1)=2,知,得a+1=2b①, 而由f(2)<3,知,得② 由①②可解得-1<a<2. 又a∈Z,∴a=0或a=1. 若a=0,则b=,应舍去; 若a=1,则b=1∈Z. ∴a=1,b=1,c=0. 注:本题从函数的奇偶性入手,利用函数的思想建立方程或不等式,组成混合组,最终使问题得以解决. 当然此题也可采用取特殊值的方法得到c的值,如由f(-1)=-f(1),可得c=0. 5.用于求函数的解析式 例5.已知定义在(-∞,+∞)上的函数f(x)的图像关于原点对称,且当x>0时,f(x)=x2-2x+2,求函数f(x)的解析式。解:当x<0时,-x>0,故f(-x)=(-x)2-2(-x)+2=x2+2x+2 因函数f(x)的图像关于原点对称,故函数f(x)为奇函数, 于是f(-x)=-f(x),从而当x<0时,f(x)=-f(-x)=-(x2+2x+2)=-x2-2x-2,

函数奇偶性的定义与应用

函数2:函数的奇偶性 【教学目的】 使学生了解奇偶性的概念,掌握判断函数奇偶性的方法; 【重点难点】 重点:函数的奇偶性的有关概念; 难点:奇偶性的应用 一、函数的奇偶性 1.偶函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做 偶函数. 2.奇函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)就叫 做奇函数. 3.判断函数奇偶性的方法: (1)图像法:偶函数的图像关于y 轴对称;奇函数的图像关于原点对称. (2)定义法:○1首先确定函数的定义域,并判断其是否关于原点对称; ②确定f(-x)与f(x)的关系; ○ 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 4.奇偶函数的简单性质: (1)奇函数:奇函数的图像关于原点对称,其单调性在对称区间内相同,如在[a,b ]上为 增函数,则在[-b ,-a ]上也为增函数. (2)偶函数:奇函数的图像关于y 轴对称,其单调性在对称区间内相反,如在[a,b ]上为 增函数,则在[-b ,-a ]上为减函数. 二、函数奇偶性的应用 1、利用定义判断函数奇偶性 例1(1)x x x f 2)(3+= ; (2)2 432)(x x x f +=; (3)1)(2 3--=x x x x f ; (4)2)(x x f = []2,1-∈x ; (5)x x x f -+-=22)( ; (6)2211)(x x x f -+-=; (7)2211(0)2()11(0)2 x x g x x x ?+>??=??--x 时,()()x x x f -=1,求()x f 在R 上解析式;

函数的奇偶性练习题

函数的奇偶性 一、选择题 1.若)(x f 是奇函数,则其图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线x y =对称 2.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数y f x =()图象 上的是( ) A . (())a f a ,- B . (())--a f a , C . (())---a f a , D .(())a f a ,- 3.下列函数中为偶函数的是( ) A .x y = B .x y = C .2x y = D .13+=x y 4. 如果奇函数)(x f 在[]7,3上是增函数,且最小值是5,那么)(x f 在[]3,7--上是( ) A .增函数,最小值是-5 B .增函数,最大值是-5 C .减函数,最小值是-5 D .减函数,最大值是-5 5. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 6.已知偶函数)(x f 在],0[π上单调递增,则下列关系式成立的是( ) A .)2()2 ()(f f f >- >-π π B .)()2 ()2(ππ ->->f f f C .)2 ()2()(π π- >>-f f f D .)()2()2 (ππ ->>- f f f 二、填空题 7.若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为____________ . 8.若函数)(x f y =)(R x ∈是偶函数,且)3()1(f f <,则)3(-f 与)1(-f 的大小关系为__________________________. 9.已知)(x f 是定义在[)2,0-?(]0,2上的奇函数,当0>x 时,)(x f 的图象如右图所示,那么f (x ) 的值域是 .

函数奇偶性的应用

对应学生用书P106 基础达标 一、选择题 1.有下列4个命题: ①偶函数的图象一定与纵轴相交; ②奇函数的图象一定通过原点; ③既是奇函数又是偶函数的函数一定是f(x)=0(x∈R); ④偶函数的图象关于纵轴对称. 其中正确的命题有() A.1个B.2个 C.3个D.4个 解析:只有④正确,③中x∈R,定义域只要关于原点对称即可.函数f(x)=0不唯一.答案:A 2.若函数y=f(x)的定义域是[0,1],则下列函数中,可能是偶函数的一个为() A.y=[f(x)]2B.y=f(2x) C.y=f(|x|) D.y=f(-x) 解析:A、B、D三项函数的定义域不关于原点对称. 答案:C 3.设f(x)是定义在R上单调递减的奇函数.若x1+x2>0,x2+x3>0,x3+x1>0,则() A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0 C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3) 解析:利用减函数和奇函数的性质判断. ∵x1+x2>0,∴x1>-x2. 又∵f(x)是定义在R上单调递减的奇函数, ∴f(x1)<-f(x2).∴f(x1)+f(x2)<0. 同理,可得f(x2)+f(x3)<0,f(x1)+f(x2)<0.∴2f(x1)+2f(x2)+2f(x3)<0. ∴f(x1)+f(x2)+f(x3)<0. 答案:B

4.函数f(x)是R上的偶函数,且在[0,+∞)上单调递增,则下列各式成立的是() A.f(-2)>f(0)>f(1) B.f(-2)>f(1)>f(0) C.f(1)>f(0)>f(-2) D.f(1)>f(-2)>f(0) 解析:∵f(x)是R上的偶函数, ∴f(-2)=f(2), 又∵f(x)在[0,+∞)上递增, ∴f(-2)>f(1)>f(0). 答案:B 5.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为() A.-1 B.0 C.1 D.2 解析:∵f(x)是定义在R上的奇函数,∴f(0)=0.又f(6)=f(4+2)=-f(4)=-f(2+2)=f(2)=f(0+2)=-f(0)=0. 答案:B 6.若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是() A.f(x)为奇函数B.f(x)为偶函数 C.f(x)+1为奇函数D.f(x)+1为偶函数 解析:令x1=x2=0,得f(0)=2f(0)+1,所以f(0)=-1,令x2=-x1,得f(0)=f(x1)+f(-x1)+1,即f(-x1)+1=-f(x1)-1, 所以f(x)+1为奇函数. 答案:C 二、填空题 7.若y=(a-1)x2-2ax+3为偶函数,则在(-∞,3]内函数的单调区间为________.解析:a=0,y=-x2+3结合二次函数的单调性知. 答案:增区间(-∞,0),减区间[0,3] 8.若f(x)=ax2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx的奇偶性是________.解析:∵f(x)=ax2+bx+c是偶函数,∴b=0,g(x)=ax3+cx,即为奇函数. 答案:奇函数 9.若函数f(x)满足f(-x)=-f(x),又在(0,+∞)上单调递增,且f(3)=0,则不等式x·f(x)<0的解集是________. 解析:

函数单调性与奇偶性教案

函数单调性与奇偶性 教学目标 1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法. (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念. (2)能从数和形两个角度认识单调性和奇偶性. (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程. 2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想. 3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度. 教学建议 一、知识结构 (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像. 二、重点难点分析 (1)本节教学的重点是函数的单调性,奇偶性概念的 形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明. (2)函数的单调性这一性质学生在初中所学函数中曾 经了解过,但只是从图象上直观观察图象的上升与下降, 而现在要求把它上升到理论的高度,用准确的数学语言去 刻画它.这种由形到数的翻译,从直观到抽象的转变对高 一的学生来说是比较困难的,因此要在概念的形成上重点 下功夫.单调性的证明是学生在函数内容中首次接触到的 代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识 到它的重要性,所以单调性的证明自然就是教学中的难点. 三、教法建议 (1)函数单调性概念引入时,可以先从学生熟悉的一 次函数,,二次函数.反比例函数图象出发,回忆图象的增 减性,从这点感性认识出发,通过问题逐步向抽象的定义 靠拢.如可以设计这样的问题:图象怎么就升上去了?可以 从点的坐标的角度,也可以从自变量与函数值的关系的角 度来解释,引导学生发现自变量与函数值的的变化规律,

函数的奇偶性练习题

函数的奇偶性 1.函数f (x )=x(-1﹤x ≦1)的奇偶性是 ( ) A .奇函数非偶函数 B .偶函数非奇函数 C .奇函数且偶函数 D .非奇非偶函数 2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 3. (2005重庆)若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值范围是 ( ) A.(-¥,2) B. (2,+¥) C. (-¥,-2)è(2,+¥) D. (-2,2) 4.(2006春上海) 已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性: (1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2 (3) f (x )=???>+<-).0()1(),0()1(x x x x x x 6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。 7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2)<0,求a 的取值范围 8.已知函数21()(,,)ax f x a b c N bx c +=∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数, (1)求a,b,c 的值; (2)当x ∈[-1,0)时,讨论函数的单调性. 9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

函数的奇偶性的经典总结

x x x f 1)(+=1 )(2+= x x x f x x f 1)(=函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-,0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及 ) ()(x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2)(,(2)x x x f -=3)( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3)(x x f =,x x f sin )(=, (3)常见的奇函数有:2)(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时,) ()(x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时,) ()(x g x f 是偶函数。

(完整版)函数奇偶性知识点和经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+; (2)1()f x x x =;

函数的奇偶性问题练习题(含答案)

. .. 函数的奇偶性问题 一、选择题 1.已知函数f (x )=ax 2 +bx +c (a ≠0)是偶函数,那么g (x )=ax 3 +bx 2 +cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2 +bx +c 为偶函数,x x =)(?为奇函数, ∴g (x )=ax 3 +bx 2 +cx =f (x )·)(x ?满足奇函数的条件. 答案:A 2.已知函数f (x )=ax 2 +bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .3 1 = a , b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2 +bx +3a +b 为偶函数,得b =0. 又定义域为[a -1,2a ],∴a -1=2a ,∴3 1 =a .故选A . 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2 -2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2 -2x ,f (x )为奇函数, ∴当x <0时,f (x )=-f (-x )=-(x 2 +2x )=-x 2 -2x =x (-x -2). ∴(2) (0)()(2) (0),, x x x f x x x x ?? ?-≥=--<即f (x )=x (|x |-2)答案:D 4.已知f (x )=x 5 +ax 3 +bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5 +ax 3 +bx 为奇函数, f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A 5.函数1 11 1)(22+++-++= x x x x x f 是( ) A .偶函数 B .奇函数 C .非奇非偶函数 D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( ) A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3 解析:)(x ?、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2 122)(x x x f ---= 的奇偶性为____奇函数____(填奇函数或偶函数) . 8.若y =(m -1)x 2 +2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2 +2mx +3为偶函数, ∴f (-x )=f (x ),即(m -1)(-x )2 +2m (-x )+3=(m —1)x 2 +2mx +3,整理,得m =0. 9.已知f (x )是偶函数,g (x )是奇函数,若1 1)()(-=+x x g x f ,则f (x )的 解析式为____1 1)(2 -= x x f ___. 解析:由f (x )是偶函数,g (x )是奇函数,

函数的奇偶性

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:() ()()0, 1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:() ()()01(()0)() f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数 要点二、判断函数奇偶性的常用方法

相关主题
文本预览
相关文档 最新文档