当前位置:文档之家› Matlab中快速傅里叶变换FFT结果的物理意义

Matlab中快速傅里叶变换FFT结果的物理意义

Matlab中快速傅里叶变换FFT结果的物理意义
Matlab中快速傅里叶变换FFT结果的物理意义

Matlab中快速傅里叶变换FFT结果的物理意义

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。

现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。

采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,(1/fs*n=t)刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz(fs/n即频域两点间距)。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。

假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。

下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V 的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:

S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)。式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第50个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。

从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看: 1点: 512+0i

2点: -2.6195E-14 - 1.4162E-13i

3点: -2.8586E-14 - 1.1898E-13i

50点:-6.2076E-13 - 2.1713E-12i

51点:332.55 - 192i

52点:-1.6707E-12 - 1.5241E-12i

75点:-2.2199E-13 -1.0076E-12i

76点:3.4315E-12 + 192i

77点:-3.0263E-14 +7.5609E-13i

很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:

1点: 512

51点:384

76点:192

按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。

然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。

总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。

[附录:本测试数据使用的matlab程序]

clc;

clear;

Adc=2; %直流分量幅度

A1=3; %频率F1信号的幅度

A2=1.5; %频率F2信号的幅度

F1=50; %信号1频率(Hz)

F2=75; %信号2频率(Hz)

Fs=256; %采样频率(Hz)

P1=-30; %信号1相位(度)

P2=90; %信号相位(度)

N=256; %采样点数

t=[0:1/Fs:N/Fs]; %采样时刻

%信号

S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);

%显示原始信号

subplot(411);plot(S);

title('原始信号');

Y = fft(S,N); %做FFT变换

Ayy = (abs(Y)); %取模

subplot(412);stem(Ayy(1:N)); %显示原始的FFT模值结果

title('FFT 模值');

Ayy=Ayy/(N/2); %换算成实际的幅度

Ayy(1)=Ayy(1)/2;

F=([1:N]-1)*Fs/N; %换算成实际的频率值,Fn=(n-1)*Fs/N

subplot(413);stem(F(1:N/2),Ayy(1:N/2)); %显示换算后的FFT模值结果title('幅度-频率曲线图');

Pyy=[1:N/2];

for i=1:N/2

Pyy(i)=angle(Y(i)); %计算相位

Pyy(i)=Pyy(i)*180/pi; %换算为角度

end;

subplot(414);stem(F(1:N/2),Pyy(1:N/2)); %显示相位图

title('相位-频率曲线图');

按频率抽取基2-快速傅里叶逆变换算法_MATLAB代码

function x=MyIFFT_FB(y) %MyIFFT_TB:My Inverse Fast Fourier Transform Time Based %按频率抽取基2-傅里叶逆变换算法 %input: % y -- 傅里叶正变换结果,1*N的向量 %output: % x -- 逆变换结果,1*N的向量 %参考文献: % https://www.doczj.com/doc/1410467696.html,/view/fea1e985b9d528ea81c779ee.html N=length(y); x=conj(y); %求共轭 x=MyFFT_FB(x);%求FFT x=conj(x);%求共轭 x=x./N;%除以N end %% 内嵌函数====================================================== function y=MyFFT_FB(x,n) %MYFFT_TB:My Fast Fourier Transform Frequency Based %按频率抽取基2-fft算法 %input: % x -- 输入的一维样本 % n -- 变换长度,缺省时n=length(x) 当n小于x数据长度时,x数据被截断到第n个数据% 当n大于时,x数据在尾部补0直到x 含n个数据 %output: % y -- 1*n的向量,快速傅里叶变换结果 %variable define: % N -- 一维数据x的长度 % xtem -- 临时储存x数据用 % m,M -- 对N进行分解N=2^m*M,M为不能被2整除的整数 % two_m -- 2^m % adr -- 变址,1*N的向量 % l -- 当前蝶形运算的级数 % W -- 长为N/2的向量,记录W(0,N),W(1,N),...W(N/2-1,N) % d -- 蝶形运算两点间距离 % t -- 第l级蝶形运算含有的奇偶数组的个数 % mul -- 标量,乘数 % ind1,ind2 -- 标量,下标 % tem -- 标量,用于临时储存 %参考文献: % https://www.doczj.com/doc/1410467696.html,/view/fea1e985b9d528ea81c779ee.html %% 输入参数个数检查

Matlab傅里叶变换傅里叶逆变换-FFT-IFFT

Matlab傅里叶变换傅里叶逆变换 %% 信号经过傅里叶变换然后进行傅里叶逆变换后信号的变化 clear all;clc; %------Author&Date------ %Author: %Date: 2013/07/31 %========================================================================== Fs=8e3; %采样率 t=0:1/Fs:1; %采样点 len=length(t); %采样长度 f1=10; %频率1 f2=100; %频率2 f3=1000; %频率3 A1=1; %幅度1 A2=0.8; %幅度2 A3=0.3; %幅度3 MaxS=A1+A2+A3; %信号幅度的最大值 signal=A1*sin(2*pi*f1*t)+A2*sin(2*pi*f2*t)+A3*sin(2*pi*f3*t); X=fft(signal,len); %傅里叶变换 magX=abs(X); %信号的幅度 angX=angle(X); %信号的相位 Y=magX.*exp(1i*angX); %信号的频域表示 y=ifft(Y,len); %信号进行傅里叶逆变换 y=real(y); er=signal-y; %原始信号和还原信号的误差 subplot(311);plot(t,signal);axis([0 1 -MaxS MaxS]);xlabel('时间');ylabel('振幅');title('原始信号'); subplot(312);plot(t,y);axis([0 1 -MaxS MaxS]);xlabel('时间');ylabel('振幅');title('还原信号'); subplot(313);plot(t,er);xlabel('时间');ylabel('振幅');title('误差'); % End Script

Matlab编程实现FFT变换.

Matlab编程实现FFT变换及频谱分析的程序代码 内容 1.用Matlab产生正弦波,矩形波,以及白噪声信号,并显示各自时域波形图 2.进行FFT变换,显示各自频谱图,其中采样率,频率、数据长度自选 3.做出上述三种信号的均方根图谱,功率图谱,以及对数均方根图谱 4.用IFFT傅立叶反变换恢复信号,并显示恢复的正弦信号时域波形图 源程序 %*************************************************************** **********% % FFT实践及频谱分析% %*************************************************************** **********% %*************************************************************** **********% %***************1.正弦波****************% fs=100;%设定采样频率 N=128; n=0:N-1; t=n/fs; f0=10;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f0*t); figure(1); subplot(231); plot(t,x);%作正弦信号的时域波形 xlabel('t'); ylabel('y'); title('正弦信号y=2*pi*10t时域波形'); grid; %进行FFT变换并做频谱图 y=fft(x,N);%进行fft变换 mag=abs(y);%求幅值 f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换 figure(1); subplot(232); plot(f,mag);%做频谱图 axis([0,100,0,80]); xlabel('频率(Hz)'); ylabel('幅值'); title('正弦信号y=2*pi*10t幅频谱图N=128'); grid; %求均方根谱

傅里叶变换matlab代码

%傅里叶变换 clc;clear all;close all; tic Fs=128;%采样频率,频谱图的最大频率 T=1/Fs;%采样时间,原始信号的时间间隔 L=256;%原始信号的长度,即原始离散信号的点数 t=(0:L-1)*T;%原始信号的时间取值范围 x=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180)+3*cos(2*pi*30*t-90*pi/ 180); z=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180); z1=6*cos(2*pi*30*t-90*pi/180); z1(1:L/2)=0; z=z+z1; y=x;%+randn(size(t)); figure; plot(t,y) title('含噪信号') xlabel('时间(s)') hold on plot(t,z,'r--') N=2^nextpow2(L);%N为使2^N>=L的最小幂 Y=fft(y,N)/N*2; Z=fft(z,N)/N*2;%快速傅里叶变换之后每个点的幅值是直流信号以外的原始信号幅值的N/2倍(是直流信号的N倍) f=Fs/N*(0:N-1);%频谱图的频率取值范围 A=abs(Y);%幅值 A1=abs(Z); B=A; %让很小的数置零. B1=A1; A(A<10^-10)=0; % A1(A1<10^-10)=0; P=angle(Y).*A./B; P1=angle(Z).*A1./B1; P=unwrap(P,pi);%初相位值,以除去了振幅为零时的相位值 P1=unwrap(P1,pi); figure subplot(211) plot(f(1:N/2),A(1:N/2))%函数ffs返回值的数据结构具有对称性,因此只取前一半 hold on plot(f(1:N/2),A1(1:N/2),'r--') title('幅值频谱')

matlab-离散信号傅里叶变换

1.请用MATLAB编写程序,实现任意两个有限长度序列的卷积和。要求用图 形显示两个序列及卷积结果。 解:y(n)=∑x(i)h(n-i) 假设x(n)={1,2,3,4,5}; h(n)={3,6,7,2,1,6}; y(n)=x(n)*h(n) 验证:y[n]=[1,12,28,46,65,72,58,32,29,30] 【程序】 N=5 M=6 L=N+M-1 x=[1,2,3,4,5] h=[3,6,7,2,1,6] y=conv(x,h) nx=0:N-1 nh=0:M-1 ny=0:L-1 subplot(131);stem(nx,x,'*b');xlabel('n');ylabel('x(n)');grid on subplot(132);stem(nh,h,'*b');xlabel('n');ylabel('h(h)');grid on subplot(133);stem(ny,y,'*r');xlabel('n');ylabel('y(h)');grid on 【运行结果】

2.已知两个序列x[n]=cos(n*pi/2), y[n]=e j*pi*n/4x[n],请编写程序绘制 X(e jw)和Y(e jw)和幅度和相角,说明它们的频移关系。 –提示:用abs函数求幅度,用angle求相角。 【程序】 n=0:15; x=cos(n*pi/2); y=exp(j*pi*n/4).*x; X=fft(x); Y=fft(y); magX=abs(X); angX=angle(X); magY=abs(Y); angY=angle(Y); subplot(221);stem(n,magX,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(222);stem(n,angX,'*b');xlabel('频率');ylabel('相位');grid on; subplot(223);stem(n,magY,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(224);stem(n,angY,'*b');xlabel('频率');ylabel('相位');grid on;

MATLAB数字图像处理几何变换傅里叶变换

Matlab数字图像处理实验指导 实验目的: 通过实验,深入理解和掌握图像处理的基本技术,提高动手实践能力。 实验环境: Matlab变成 实验一图像的几何变换 实验内容:设计一个程序,能够实现图像的各种几何变换。 实验要求:读入图像,打开图像,实现图像的平移变换、比例缩放、转置变换、镜像变换、旋转变换等操作。 实验原理: 图像几何变换又称为图像空间变换,它将一幅图像中的坐标位置映射到另一幅图像中的新坐标位置。学习几何变换的关键就是要确定这种空间映射关系,以及映射过程中的变化参数。 几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排。一个几何变换需要两部分运算:首先是空间变换所需的运算,如平移、镜像和旋转等,需要用它来表示输出图像与输入图像之间的(像素)映射关系;此外,还需要使用灰度插值算法,因为按照这种变换关系进行计算,输出图像的像素可能被映射到输入图像的非整数坐标上。 设原图像f(x0,y0)经过几何变换产生的目标图像为g(x1,y1),则该空间变换(映射)关系可表示为: x1=s(x0,y0) y1=t(x0,y0) 其中,s(x0,y0)和t(x0,y0)为由f(x0,y0)到g(x1,y1)的坐标换变换函数。 一、图像平移 图像平移就是将图像中所有的点按照指定的平移量水平或者垂直移动。

二、图像镜像 镜像变换又分为水平镜像和垂直镜像。水平镜像即将图像左半部分和右半部分以图像竖直中轴线为中心轴进行对换;而竖直镜像则是将图像上半部分和下半部分以图像水平中轴线为中心轴进行对换。 三、图像转置 图像转置是将图像像素的x坐标和y坐标呼唤。图像的大小会随之改变——高度和宽度将呼唤。

Matlab中的FFT使用说明

FFT是Fast Fourier Transform(快速傅里叶变换)的简称,FFT算法在MATLAB 中实现的函数是Y=fft(x,n)。刚接触频谱分析用到FFT时,几乎都会对MATLAB 的fft函数产生一些疑惑,下面以看一个例子(根据MATLA帮助修改)。 Fs = 2000; % 设置采样频率 T = 1/Fs; % 得到采用时间 L = 1000; % 设置信号点数,长度1 秒 t = (0:L-1)*T; % 计算离散时间, % 两个正弦波叠加 f1 = 80; A1 = 0.5; % 第一个正弦波100Hz,幅度0.5 f2 = 150; A2 = 1.0 ; % 第2个正弦波150Hz,幅度 1.0 A3 = 0.5; % 白噪声幅度; x = A1*sin(2*pi*f1*t) + A2*sin(2*pi*f2*t); % 产生离散时间信号; y = x + A3*randn(size(t)); % 叠加噪声; % 时域波形图 subplot(2,1,1) plot(Fs*t(1:50),x(1:50)) title('Sinusoids Signal') xlabel('time (milliseconds)') subplot(2,1,2) plot(Fs*t(1:50),y(1:50)) title('Signal Corrupted with Zero-Mean Random Noise') xlabel('time (milliseconds)') NFFT = 2A nextpow2(L); % 设置FFT点数,一般为2 的N次方,如1024,512 等Y = fft(y,NFFT)/L; % 计算频域信号, f = Fs/2*linspace(0,1,NFFT/2+1); %频率离散化,fft后对应的频率是-Fs/2到Fs/2,由NFFT个离散频点表示 % 这里只画出正频率; % Plot single-sided amplitude spectrum. figure; plot(f,2*abs(Y(1:NFFT/2+1))); % fft 后含幅度和相位,一般观察幅度谱,并把负频率加上去, title('Single-Sided Amplitude Spectrum of y(t)') xlabel('Frequency (Hz)')

MATLAB中FFT的使用方法

MATLAB中FFT的使用方法 一.调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) →Xk = 39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929i Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。 (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。 二.FFT应用举例 例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。 clf; fs=100;N=128; %采样频率和数据点数

n=0:N-1;t=n/fs; %时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求得Fourier变换后的振幅 f=n*fs/N; %频率序列 subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; %对信号采样数据为1024点的处理 fs=100;N=1024;n=0:N-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求取Fourier变换的振幅 f=n*fs/N; subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; subplot(2,2,4) plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; 运行结果:

用Matlab对信号进行傅里叶变换实例

目录 用Matlab 对信号进行傅里叶变换 (2) Matlab 的傅里叶变换实例 (5) Matlab 方波傅立叶变换画出频谱图 (7)

用 Matlab 对信号进行傅里叶变换 1. 离散序列的傅里叶变换 DTFT(Discrete Time Fourier Transform) 代码: %原离散信号有 8 点 %原信号是 1行 8列的矩阵 %构建原始信号,为指数信号 %频域共-800 +800 的长度(本应是无穷, 高 %求 dtft 变换,采用原始定义的方法,对复指 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号 )'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT 变换 ') 结果: 分析:可见,离散序列的 dtft 变换是周期的,这也符合 Nyquist 采样 定理的描述, 连续时间信号经周期采样之后, 所得的离散信号的频谱 是原连续信号频谱的周期延拓。 2. 离散傅里叶变换 1 N=8; 2 n=[0:1:N-1] 3 xn=0.5.^n; 4 5 w=[-800:1:800]*4*pi/800; 频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); 数分 量求和而得

与 1 中 DTFT 不一样的是, DTFT 的求和区间是整个频域,这对 N=8; % 原离散信号有 8 点 n=[0:1:N-1] %原信号是 1行 8列的矩阵 xn=0.5.^n; %构建原始信号,为指数信号 w=[-8:1:8]*4*pi/8; %频域共 -800 +800 的长度(本应是无穷, 高频分量很少, 故省去) X=xn*exp(-j*(n'*w)); %求 dtft 变换,采用原始定义的方法,对复指数分量求和而得 subplot(311) stem(n,xn); w1=[-4:1:4]*4*pi/4; X1=xn*exp(-j*(n'*w1)); title(' 原始信号 (指数信号 )'); subplot(312); stem(w/pi,abs(X)); title(' 原信号的 16 点 DFT 变换 ') subplot(313) stem(w1/pi,abs(X1)); title(' 原信号的 8 点 DFT 变换 ') 计算机的计算来说是不可以实现的, DFT 就是序列的有限傅里叶变换。 实际上, 1 中代码也只是对频域的 -800 +800 中间的 1601 结果图: 分析: DFT 只是 DTFT 的现实版本,因为 DTFT 要求求和区间无穷, 而 DFT 只在有限点内求和。 3. 快速傅里叶变换 FFT ( Fast Fourier Transform ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

【免费下载】matlab实现傅里叶变换

一、傅立叶变化的原理; (1)原理 正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。在此基础上进行推广,从而可以对一个非周期函数进行时频变换。 从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。 当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外, 一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。引入衰减因子e^(-st),从而有了Laplace变换。(好像走远了)。 (2)计算方法 连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 为 连续傅里叶变换的逆变换 (inverse Fourier transform) 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 二、傅立叶变换的应用; DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出 的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算

法,即快速傅里叶变换(快速傅里叶变换(即FFT )是计算离散傅里叶变换及其逆变换的快速算法。)。(1)、频谱分析DFT 是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT 应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。(2)、数据压缩由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。(3)、OFDM OFDM (正交频分复用)在宽带无线通信中有重要的应用。这种技术将带宽为N 个等间隔的子载波,可以证明这些子载波相互正交。尤其重要的是,OFDM 调制可以由IDFT 实现,而解调可以由DFT 实现。OFDM 还利用DFT 的移位性质,在每个帧头部加上循环前缀(Cyclic Prefix ),使得只要信道延时小于循环前缀的长度,就能消除信道延时对传输的影响。三、傅里叶变换的本质; 傅里叶变换的公式为dt e t f F t j ?+∞∞--=ωω)()(可以把傅里叶变换也成另外一种形式: t j e t f F ωπ ω),(21)(=可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三 角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。)(2,21)(2121Ω-Ω==?Ω-ΩΩΩπδdt e e e t j t j t j

傅里叶变换的应用,matlab程序,C语言程序

1 利用FFT 计算连续时间信号的傅里叶变换 设()x t 是连续时间信号,并假设0t <时()0x t =,则其傅里叶变换由下式给出 0()()i t X x t e dt ωω∞ -=? 令Γ是一个固定的正实数,N 是一个固定的正整数。当,0,1,2,,1k k N ω=Γ=-L 时,利用FFT 算法可计算()X ω。 已知一个固定的时间间隔T ,选择T 足够小,使得每一个T 秒的间隔(1)nT t n T ≤<+内,()x t 的变化很小,则式中积分可近似为 (1)0 ()()()n T iwt nT n X e dt x nT ω∞+-==∑? (1)01[ ]()i t t n T t nT n e x nT i ωω ∞-=+==-=∑ 0 1()i T i nT n e e x nT i ωωω-∞-=-=∑ (27) 假设N 足够大,对于所有n N ≥的整数,幅值()x nT 很小,则式(27)变为 1 01()()i T N i nT n e X e x nT i ωωωω---=-=∑ (28) 当2/k NT ωπ=时,式(28)两边的值为 2/2/12/0211()()[]2/2/i k N i k N N i nk N n k e e X e x nT X k NT i k NT i k NT ππππππ----=--==∑ (29) 其中[]X k 代表抽样信号[]()x n x nT =的N 点DFT 。最后令2/NT πΓ=,则上式变为 2/1()[]0,1,2,,12/i k N e X k X k k N i k NT ππ--Γ==-L (30) 首先用FFT 算法求出[]X k ,然后可用上式求出0,1,2,,1k N =-L 时的()X k Γ。 应该强调的是,式(28)只是一个近似表示,计算得到的()X ω只是一个近似值。通过取更小的抽样间隔T ,或者增加点数N ,可以得到更精确的值。如果B ω>时,幅度谱()X ω很小,对应于奈奎斯特抽样频率2s B ω=,抽样间隔T 选择/B π比较合适。如果已知信号只在时间区间10t t ≤≤内存在,可以通过对1nT t >时的抽样信号[]()x n x nT =补零,使N 足够大。 例1 利用FFT 计算傅里叶变换

关于使用Matlab里Powergui的FFTTool分析的问题及解决办法

首先设置 POWERLIB—》powergui,将该模块拖入模型中即可 在需要进行频谱分析的地方连接一示波器 示波器参数设定: Parameters—》Data history—》Save data to workspace; Format—》Structure with time. 运行一次后,双击powergui—》FFT Analysis. 1. 问题1及解决办法 仿真完成后,采用Powergui分析FFT,有时会发生错误:"simulation time of the signals is not enough long for the given fundamental frequency". 很多论坛说是仿真时间短了,可能这也是原因,不过更有可能是这样: FFT的数据来自于示波器SCOPE,在SCOPE PARAMETERS/GENERAL选项卡/SAMPLING 中,有DECIMATION和SAMPLE TIME两项,DECIMATION的意思是 The Decimation parameter allows you to write data at every nth sample, where n is the decimation factor. The default decimation, 1, writes data at every time step. 所以,如果选择DECIMATION,记录数据的时刻为第N个采样点,采样点间的时间间隔为采样步长,而在MATLAB Simulink中,如果采用变步长仿真,采样周期就是变化的,这样就很难对采样的数据进行FFT分析,或许软件只认可采样周期一定的数据,所以会出现文首的错误。 如果选择sample time,那么采样周期固定(与仿真步长无关),这样就可以进行FFT 分析了。所以如果遇到文首的错误,可以尝试将示波器的SAMPLing改为sample time,并设定采样周期,Sampling time

利用MATLAB编写FFT快速傅里叶变换

一、实验目的 1.利用MATLAB 编写FFT 快速傅里叶变换。 2.比较编写的myfft 程序运算结果与MATLAB 中的FFT 的有无误差。 二、实验条件 PC 机,MATLAB7.0 三、实验原理 1. FFT (快速傅里叶变换)原理: 将一个N 点的计算分解为两个N/2点的计算,每个N/2点的计算再进一步分解为N/4点的计算,以此类推。根据DFT 的定义式,将信号x[n]根据采样号n 分解为偶采样点和奇采样点。设偶采样序列为y[n]=x[2n],奇采样序列为z[n]=x[2n+1]。 上式中的k N W -为旋转因子N k j e /2π-。下式则为y[n]与z[n]的表达式: 2. 蝶形变换的原理: 下图给出了蝶形变换的运算流图,可由两个N/2点的FFT (Y[k]和Z[k]得出N 点FFT X[k])。同理,每个N/2点的FFT 可以由两个N/4点的FFT 求得。按这种方法,该过程可延迟后推到2点的FFT 。 下图为N=8的分解过程。图中最右边的为8个时域采样点的8点FFTX[k],由偶编号采样点的4点FFT 和奇编号采样点的4点得到。这4点偶编号又由偶编号的偶采

样点的2点FFT 和奇编号的偶采样点的2点FFT 产生。相同的4点奇编号也是如此。依次往左都可以用相同的方法算出,最后由偶编号的奇采样点和奇编号的偶采样点的2点FFT 算出。图中没2点FFT 成为蝶形,第一级需要每组一个蝶形的4组,第二级有每组两个蝶形的两组,最后一级需要一组4个蝶形。 四、实验内容 1.定义函数disbutterfly ,程序根据FFT 的定义:]2[][][N n x n x n y + +=、n N W N n x n x n z -+-=])2 [][(][,将序列x 分解为偶采样点y 和奇采样点z 。 function [y,z]=disbutterfly(x) N=length(x); n=0:N/2-1; w=exp(-2*1i*pi/N).^n; x1=x(n+1); x2=x(n+1+N/2); y=x1+x2; z=(x1-x2).*w; 2.定义函数rader ,纠正输出序列的输出顺序。 function y=rader(x,N) n=[0:N-1]; bn=dec2bin(n); rbn=fliplr(bn); rn=bin2dec(rbn); y=x(rn+1); 3.定义函数myfft ,程序中套了两个循环。 function X=myfft(x) N=length(x); h=log2(N); %h=3 for i=1:h %第一次i=1;第二次i=2 s=[]; for j=1:2^(i-1);%i=1时,j=1;i=2时,j=1:2 M=2^(h-i+1);%M:M=8;M=4 xj=x([1:M]+(j-1)*M);%xj=x([1:8]+(1-1)*8)=x(1)+x(2)...+x(8); %j=1:xj=x([1:4]);j=2:xj=x([1:4]+4) [y,z]=disbutterfly(xj); s=[s,y,z]; end x=s;

MATLAB中FFT使用详解

MATLAB中FFT使用详解 一.调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MA TLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) → Xk = 39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929i Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。 (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。 二.FFT应用举例 例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。 clf; fs=100;N=128; %采样频率和数据点数 n=0:N-1;t=n/fs; %时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求得Fourier变换后的振幅 f=n*fs/N; %频率序列 subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅

xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; %对信号采样数据为1024点的处理 fs=100;N=1024;n=0:N-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求取Fourier变换的振幅 f=n*fs/N; subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; subplot(2,2,4) plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; 运行结果: fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz

离散信号变换的matlab实现

实验四 离散信号的频域分析 一、 实验目的 1. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab 实现; 2. 学习用FFT 对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。 二、 实验内容及步骤 1. 计算序列的DTFT 和DFT ,观察栅栏效应 设)()(4n R n x =,要求用MATLAB 实现: (1)计算)(n x 的傅里叶变换)(ωj e X ,并绘出其幅度谱; (2)分别计算)(n x 的4点DFT 和8点DFT ,绘出其幅度谱。并说明它们和)(ωj e X 的关系。 (提示:DFT 变换可用MA TLAB 提供的函数fft 实现,也可以自己用C 语言或matlab 编写) 2.计算序列的FFT ,观察频谱泄漏 已知周期为16的信号)1612cos()1610cos()(n n n x π π +=。 (1) 截取一个周期长度M=16点,计算其16点FFT ,并绘出其幅度谱; (2) 截取序列长度M=10点,计算其16点FFT ,绘出其幅度谱,并与(1)的结果进行比 较,观察频谱泄漏现象,说明产生频谱泄漏的原因。 三、 实验报告要求 1. 结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT 作谱分析时有关参数的选择方法。 2. 总结实验所得主要结论。 1. 计算序列的DTFT 和DFT ,观察栅栏效应 设)()(4n R n x =,要求用MATLAB 实现: (1)计算)(n x 的傅里叶变换)(ωj e X ,并绘出其幅度谱; (2)分别计算)(n x 的4点DFT 和8点DFT ,绘出其幅度谱。并说明它们和)(ωj e X 的关系。 (1)代码: n=0:3; M=10;

MATLAB中FFT的使用方法

MATLAB中FFT的使用方法 调用方法 X=FFT(x); X=FFT(x,N);%N为FFT后的数据点数,如果实际信号的数据点数小于N的话,则需要在FFT变换时增加采样点数,或者通过采用频率细分法在原数据后面补充一定数量的0,从而满足N个数据点 X=IFFT(X); X=IFFT(X,N) 一、用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) Xk = 39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929i Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。 (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。

在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。 二、FFT应用举例 例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。 clf; fs=100;N=128; %采样频率和数据点数 n=0:N-1;t=n/fs; %时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求得Fourier变换后的振幅 f=n*fs/N; %频率序列 subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; %对信号采样数据为1024点的处理 fs=100; N=1024;

傅里叶变换MATLAB程序

fs=51.2; N=1024; n=0:N-1; t=n/fs; x=0.5-0.5*sign(t-1); Y=fft(x,N); mag=abs(Y); Y1=fftshift(Y); mag1=abs(Y1); fn2=(-N/10.24:N/10.24)*fs/N; subplot(2,1,1) plot(fn2,mag1((N/2-N/10.24+1):(N/2+N/10.24+1))); set(gca,'XTick',(-5:0.5:5)); set(gca,'YTick',(0:10:60)); xlabel('频率/Hz');ylabel('振幅'); title('图1:矩形函数的FFT结果,N=512,fs=51.2Hz'); grid on; f=linspace(-5,5,1000); y=sqrt(2-2*cos(2*pi*f))./abs((2*pi*f)); subplot(2,1,2) plot(f,y); set(gca,'XTick',(-5:0.5:5)); set(gca,'YTick',(0:0.2:1)); xlabel('频率/Hz');ylabel('振幅'); title('图2:矩形函数傅里叶变换的理论结果'); grid on

-5-4.5-4-3.5-3-2.5-2-1.5-1-0.500.51 1.52 2.53 3.54 4.55010203040 50 60 频率/Hz 振幅 图1:矩形函数的FFT 结果,N=512,fs=51.2Hz -5-4.5-4-3.5-3-2.5-2-1.5-1-0.500.51 1.52 2.53 3.54 4.55 00.2 0.4 0.60.8 1频率/Hz 振幅图2:矩形函数傅里叶变换的理论结果

MAtlab-傅里叶变换-实验报告

陕西科技大学实验报告 班级信工142 学号22 姓名何岩实验组别实验日期室温报告日期成绩报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ,求其DTFT。 (a)代码: f=10;T=1/f;w=-10:0.2:10; t1=0:0.0001:1;t2=0:0.01:1; n1=-2;n2=8;n0=0;n=n1:0.01:n2; x5=[n>=0.01]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j).^(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 1.1*min(x2) 1.1*max(x2)]); xlabel('x(n)');ylabel('x(n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 1.1*min(x2) 1.1*max(x2)]); title('原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem(n,x5); axis([0 1 1.1*min(x5) 1.1*max(x5)]); xlabel('n');ylabel('x2'); title('采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 -0.2+1.1*min(x4) 1.1*max(x4)]); xlabel('t');ylabel('x4'); title('DTFT结果x4'); (b)结果:

相关主题
文本预览
相关文档 最新文档