当前位置:文档之家› 量测系统分析MSA

量测系统分析MSA

量测系统分析MSA
量测系统分析MSA

量测系统分析M S A Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

量测系统分析(MSA)

目录

第1章量测系统介绍

1.1 概述、目的、术语

1

1.2 量测系统之统计特性

2

1.3 量测系统的标准

3

1.4 量测系统的通则

3

1.5 选择/制定检定方法

3

第2章量测系统之评价

2.1概述

5

鉴别力

5

量测系统变异的类型

7

量测系统分析

8

再现性

8

再生性

9

零性间变异

10

偏性

10

稳定性

11

线性

13

范例说明

15

量测系统研究之准备

20

计量值量测系统之研究

21

稳定性之准则

21

偏性之准则

21

独立取样法

21

图表法

22

分析

23

再现性与再生性之准则23

全距法

23

平均值与全距法

23

.1执行研究

24

.2图表分析

26

.3计算及研究

34

变异数分析法

38

量具绩效曲线

43

计数值量具研究

47

短期法

47

长期法

48

第3章附录

标准常态分配表

52

常数表

54

如何适当的选用量测系统分析流程

55

表格

56

量测系统分析版

(Measurement System Analysis)

第1章量测系统介绍

1.1概述、目的、术语

概述

我们知道,一个制程的状况必须经由量测来获取相关信息,因此量测数据将会决定制程是否应被调整,如果统计结果,制程超出管制界限,即制程能力不足时,则须对制程作某些调整,否则,制程将会在无调节的状态下运作。

量测数据的另一用途是可以检视二个或更多变异彼此之间是否存在某种关系

性,如塑料件的尺寸将与进料温度有关。

因此,量测数据的品质对于制程分析结果占有相当重要的因素,为了确保分析结果不致对制程误判,就必须重视数据的品质。

量测数据品质与制程是否在稳定状况下所获得的多种量测有关,若在稳定状况下所获得某一特性的量测数据,其结果”近似于”该特性的标准值,则数据品质可谓”高”;若某些或全部数据偏离标准值甚远,则数据品质可谓”

低”。常用于表示数据品质高低的统计特性有偏差与方差,所谓偏差是指量测数据平均值与标准值之差异;所谓方差则是指量测数据本身之间差异。如果数据品质是不可接受,则必须加以改进,然而这常常应改进量测系统本身,而非改进数据。

因此,对于量测系统品质的评估,是极其重要的,其评价程序应包括

设计及验证

长时间的能力评价

追溯标准

作业定义

管制

维修及再验证

1.目的

本篇的目的在于说明评价量测系统品质之准则,虽然也可以运用在其它量测系统上,但主要还是以使用在工业界制程的量测系统为主,且特性数据可重复读取。

1.术语

量测(Measurement):对某具体事物赋予数据,以表示他们对于特定特性之间的关系。赋予数据的过程称为量测过程,而数据称为量

测值。

量具(Gage):任一可用以量测之设备,通常是用以特别称呼使用在生产现场者,包括GO/NO-GO设备。

量测系统(Measurement System):操作、准则、量具和其它设备、软件及指定之一群待量测之集合,经由完整程序而取得量测值。

量测系统之统计特性

理想之量测系统是一个具有零偏差、零变异的统计特性,但很不幸的是,这种理想的量测系统几乎很少见的,因此,我们必须存在一个观念,就是当在决策时,必须考虑到所依据的是一个非理想统计特性之量测系统。

所以设备管理之责任是确认当每一量测系统被使用时都具有适当的统计特性。虽然每一量测系统可能需具备一些各别的统计特性,但下列举出五项所有量测系统必备的统计特性:

(1)量测系统须在统计管制下,亦即量测纟统之变异仅根源于共同原因,而非特殊

原因。

(2)量测系统的变异必须小于制程变异。

(3)量测系统的变异必须小于规格界限。

(4)量测之最小刻度必须小于制程变异或规格界限之较小者,一个通用的法则是:

最小刻度应小于制程变异或规格界限较小者之1/10。

(5)因量测项目的改变,量测系统之统计特性可能变更,但最大的量测系统变异必

须小于制程变异或规格界限较小者。

量测系统的标准

量测标准分级中,最高级为国家级标准,由国家级标准对应的次一级标准,称为初级,通常由政府部门或学术机构取得,当然私人公司亦可由国家级标准取得初级的对应。但因初级标准常常显得太昂贵,故又可对应至次一级标准,称为第二级标准,通常由一般私人企业所取得。第二级标准又可被对应到另一级,称为作业标准,本级常用于调整在生产中使用的量测系统,又称为生产标准。

总之,不采用可追溯之标准而去确定一个量测系统的精度是难以被接受的,尤其是当生产者与客户之间的量测可能不统一而产生冲突时,更显得可追溯的量测标准之信赖度的重要。

量测系统的通则

每一量测系统均应被评估以决定是否适用于预期之工作。通常以两阶段来评估,第一阶段评估是执行测试以决定量测系统是否具有需求之统计特性,以执行被要求之工作,又称为阶段一评估。第二阶段评估是执行定期之检定以决定此一量测系统是否维持在可接受状态,即使量测系统例行执行保养及/或再校正、再检定,又称为阶段二评估。

量测系统之测试方法应有书面化程序,包含:

范例

选择量测项目之规格及执行测试的环境。

规定数据收集、记录及分析之方式。

定义重要条件及原则之作业方式。

追溯之标准。

选择/制定检定方法

当选择或制定检定方法时,一般考虑之因素如下:

(1)是否使用可追溯国家标准之标准其适用标准是何级水准标准通常为评估

量测系统精确度之基本。

(2)在阶段二评估测试时,应采用盲目测量或是易于取得量测值的方式。所

谓盲目测试是指当作业者执行量测时,事先不知被测物是否有任何不同,而在实际的量测环境下执行量测。

(3)检定之成本。

(4)检定所需之时间。

(5)对于非众所皆知的条文应予以定义,如再现性、再生性….等。

(6)是否此量测系统所取得之量测将用以比较其它量测系统所取得之量测如

是,则其中之一的量测系统应考虑采用可追溯(1)项标准之检定方法。

(7)阶段二评估之频率,应视该量测系统之统计特性对设施之重要性而定。

第2章量测系统之评价准则

2.1概述

评估一量测系统时,应确定三项基本问题。(A)本量测系统是否具备适当的鉴别力(B)是否具有全时的统计稳定性(C)量测误差(变异)是否微小

鉴别力

量测系统能发现并真实地表示被测特性很小变化之能力,称为鉴别力。如最小的量测刻度太大而不足以辨别制程变异,则为鉴别力不足。鉴别力不足的象征将会在R-CHART上显现出来,因此,若使用鉴别力不足的量测系统所表现的R-CHART,将可能造成型I误差。

下图将介绍不同鉴别力之量测系统,所能对制程做不同的管制。

只能显示其制程主要变异来自于平均值偏移不可用于估计制程参数与指数

只能显示制程生产符合或不符合产品

只能用于制程变异较大的管制不可用于估计制程参数与指数

只能提供粗糙的估计

能与管制图一起使用被推荐

图1.制程分配在区别分类数(Number of Distinct Categories, ndc)

上对管制与分析的影响

图2可说明鉴别力不足的量测系统被使用在制程上的例子

图2制程管制图

管制图(a)为量测刻度的量测值;(b)为量测刻度的量测值。当R值只有1、2或3个值落在管制界限内,或R值虽有4个落在管制界限内,但超过1/4的 R值为0,则此量测系统为鉴别力不足,如管制图(b)

量测系统变异的类型 (删除零件间变异)

2.再现性(量具变异)(Repeatability)-

同一人使用同一量具量测同一零

件之相同特性多次所得变异。

2.再生性(人的变异

)(Reproducibility)不同人使用同一量具量测同一零 件之相同特性所得之变异。

2.稳定性(Stability)

同一人使用同一量具于不同时间

在同一地点量测同一零件之相同 特性所得之变异。

3.偏性(Bias)-

同一人使用同一量具量测同一 零件之相同特性多次所得平均 值与工具室或精密仪器量测

同一零件之相同特性所得之

真值或参考值之间的偏差值Array 2.线性(Linearity)-

指量具各作业范围之偏性。

量测系统分析

再现性

指量具变异本身是定值,因量具本身误差及产品在量具之位置差,则构成量测再现性差异。

如R-CHART在管制状态下,则再现性之标准差或量具变异估计值σe

R d =

2

*

量具变异或再现性EV

R

d e =?= 515515

2

..

*

σ

其中表示在常态分配中具有99﹪信赖度(即99﹪信赖度=,可用2=查附录得出a=,故信赖区间=1-×2)(d2*查附录。

如果量测系统再现性不足,可能原因是:

零件内部(抽样样本):形状、位置、表面光度、锥度、样本的一

致性。

仪器内部:维修、磨损、设备或夹具的失效、品质或保养不好。

标准内部:品质、等级、磨损。

方法内部:作业准备、技巧、归零、固定夹持、点密度的变异。

评价者内部:技巧、位置、缺乏经验、操作技能或培训、意识、疲

劳。

环境内部:对温度、湿度、振动、清洁的小幅度波动。

错误的假设—稳定,适当的操作。

缺乏稳健的仪器设计或方法,一致性不好。

量具误用。

失真(量具或零件)、缺乏坚固性。

应用—零件数量、位置、观测误差(易读性、视差)。

再生性

指作业者变异是定值,由X -CHART 中比较每一平均值可发现。

再生性或作业者变异之估计标准差σo o R d =

2

*

作业者变异或再生性o *2

o

σ15.5d R 15.5AV =?

= R o 为某一作业者最大平均全距与最小平均全距之差,但再生性受量具变

异之影响,故必须减去量具变异,即调整后

AV AV EV nr nr o e

=-??????

??=-()()()(.)(.)原2222515

515σσ σo AV =/.515 n:零件数 r:量测次数

如果测量系统再生性不足,可能原因是:

零件之间(抽样样本):使用相同的仪器、操作者和方法测量A 、B 、C 零件类型时的平均差异。

仪器之间:在相同零件、操作者和环境下使用A 、B 、C 仪器测量的平均值差异。注意:在这种情况下,再现性误差通常还混有方法和/或操作者的误差。

标准之间:在测量过程中,不同的设定标准的平均影响。 方法之间:由于改变测量点密度、手动或自动系统、归零、固定或夹紧方法等所造成的平均值差异。

评价者(操作者)之间:评价者A 、B 、C 之间由于培训、技巧、技能和经验所造成的平均值差异。推荐在为产品和过程鉴定和使用手动测量仪器时使用这种研究方法。

环境之间:在经过1、2、3等时段所进行的测量,由于环境周期所造成的平均值差异。这种研究常用在使用高度自动化测量系统对产品和过程的鉴定。 研究中的假设有误。

缺乏稳健的仪器设计或方法。 操作者培训的有效性。

应用—零件数量、位置、观测误差(易读性、视差)。 2.零件间变异

可由X -CHART 发现,若组平均值无落在管制界限外,则零件间变异隐藏在再现性内,且量测变异支配制程变异。反之,若有过半的平均值落在管制界限外,则此量测系统被认为是适用的。

若量测程序是定值(R-CHART 在管制状态下)且能鉴别零件间变异(X -CHART 之过半点落于管制界限外),则能估计量测系统标准差

σσσm e o =

+()

22,而零件间标准差σp p R d =

2

* 故零性间变异

PV R d p p ==5155152

.

.*σ,量测系统变异或量具R &R=σm

R p 为每一零件平均值最大值与最小值之差。制程变异百分比相关量测系统之再现性与再生性,通常称为﹪R &R=()σσm

t ?100来估算。 全制程变异标准差

故σp 亦可由σσt m 22-来求得,且全制程变异o t σ15.5TV =公差之百分

比相对于量测系统之再现性与再生性是以515

100.()σm

公差

?来估算,而区别分类数可用(

).σσp m

?141来决定。查附录

σσσt p m

=+22

测量系统分析(MSA)方法82638

测量系统分析(MSA)方法 测量系统分析(MSA)方法**** 1.目的 对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。 2.范围 适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。 3.职责 质管部负责测量系统分析的归口管理; 公司计量室负责每年对公司在用测量系统进行一次全面的分析; 各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。 4.术语解释 测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。 偏倚(Bias):指测量结果的观测平均值与基准值的差值。 稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。 重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。 再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。 分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。 可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为。有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。关于有效分辨率,在99%置信水平时其标准估计值为GR&R。 分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。

测量系统分析(MSA)

测量系统分析(MSA) 1目得与范围 规范测量系统分析,明确实施方法、步骤及对数据得处理、分析。 2规范性引用文件 无 3定义 3.1测量系统:用来对测量单元进行量化或对被测得特性进行评估,其所使用得仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设得集合;也就就是说,用来获得测量结果得整个过程。 3.2稳定性:就是测量系统在某持续时间内测量同一基准或零件得单一特性时获得得测量值总变差。 稳定性就是整个时间得偏倚得变化。 3.3分辨率:为测量仪器能够读取得最小测量单位。别名:最小读数单位、刻度限度、或探测度、分辨力;要求低于过程变差或允许偏差(tolerance)得十分之一。Minitab中常用得分辨率指标:可区分得类别数ndc=(零件得标准偏差/ 总得量具偏差)* 1、41,一般要求它大于等于5才可接受,10以上更理想。 3.4过程总波动TV=6σ。σ——过程总得标准差 3.5准确性(准确度):测量得平均值就是否偏离了真值,一般通过量具计量鉴定或校准来保证。 3.5.1真值:理论正确值,又称为:参考值。 3.5.2偏倚:就是指对相同零件上同一特性得观测平均值与真值得差异。%偏倚=偏倚得平均绝对值/TV。 3.5.3线性:在测量设备预期得工作量程内,偏倚值得差值。用线性度、线性百分率表示。 3.6精确性(精密度):测量数据得波动。测量系统分析得重点,包括:重复性与再现性 3.6.1重复性:就是由一个评价人,采用一种测量仪器,多次测量同一零件得同一特性时获得得测量值变差。重复性又被称为设备波动(equipment variation,EV)。 3.6.2再现性:就是由不同得评价人,采用相同得测量仪器,测量同一零件得同一特性时测量平均值得变差。再现性又被称为“评价人之间”得波动(appraiser waration,AV)。 3.6.3精确性%公差(SV/Toler),又称为%P/T:就是测量系统得重复性与再现性波动与被测对象质量 σ/ (USL-LSL) *100%。 特性公差之比,%P/T=R&R/(USL-LSL)*100%=6 MS σ/6σ*100%。 3.6.4精确性%研究变异(%Gage R&R、%SV)= R&R/TV*100%=6 MS 线性

测量系统分析(MSA)

测量系统分析(MSA) 1目的和围 规测量系统分析,明确实施方法、步骤及对数据的处理、分析。 2规性引用文件 无 3定义 3.1测量系统:用来对测量单元进行量化或对被测的特性进行评估,其所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合;也就是说,用来获得测量结果的整个过程。 3.2稳定性:是测量系统在某持续时间测量同一基准或零件的单一特性时获得的测量值总变差。 稳定性是整个时间的偏倚的变化。 3.3分辨率:为测量仪器能够读取的最小测量单位。别名:最小读数单位、刻度限度、或探测度、分辨力;要求低于过程变差或允许偏差(tolerance)的十分之一。Minitab中常用的分辨率指标:可区分的类别数ndc=(零件的标准偏差/ 总的量具偏差)* 1.41,一般要求它大于等于5才可接受,10以上更理想。 3.4过程总波动TV=6σ。σ——过程总的标准差 3.5准确性(准确度):测量的平均值是否偏离了真值,一般通过量具计量鉴定或校准来保证。 3.5.1真值:理论正确值,又称为:参考值。 3.5.2偏倚:是指对相同零件上同一特性的观测平均值与真值的差异。%偏倚=偏倚的平均绝对值/TV。 3.5.3线性:在测量设备预期的工作量程,偏倚值的差值。用线性度、线性百分率表示。 3.6精确性(精密度):测量数据的波动。测量系统分析的重点,包括:重复性和再现性 3.6.1重复性:是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差。重复性又被称为设备波动(equipment variation,EV)。 3.6.2再现性:是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。再现性又被称为“评价人之间”的波动(appraiser waration,AV)。 3.6.3精确性%公差(SV/Toler),又称为%P/T:是测量系统的重复性和再现性波动与被测对象质量特性 σ/ (USL-LSL) *100%。 公差之比,%P/T=R&R/(USL-LSL)*100%=6 MS σ/6σ*100%。 3.6.4精确性%研究变异(%Gage R&R、%SV)= R&R/TV*100%=6 MS 线性

MSA测量系统分析与结果解释

量具R&R 研究(交叉): 摘要: 每次测量过程结果时都会发现某些变异。产生这样的变异的变异源有两个:一是任何按照过程制造的部件都会存在差别,二是任何测量方法都不是完美无缺的?因此,重复测量同一部件不一定会产生同样的测量结果。 使用量具R&R 可以确定测量产生的变异性中哪一部分是由测量系统本身引起的。测量系统变异性包括由量具本身和操作员之间的变异性引起的变异。 此方法适用于非破坏性试验。当满足下列假定条件时它也可用于进行破坏性实验: (1)同一批内的所有部件都极为相似,以至于可以认为是同一种部件; (2)所有操作员都测量同一批部件。 可使用方差分析法、均值和R 法进行交叉量具R&R 研究。其中使用均值和R 法时计算更为简单,而方差分析法则更为准确。 在进行量具R&R 研究时,测量应按随机顺序进行,所选部件在可能的响应范围内提供了代表性样本,这一点非常重要。 1.1.1 数据说明 选择了十个表示过程变异预期极差的部件。由三名操作员按照随机顺序测量每个部件的厚度,每个部件测量两次。 1.1.2 方差分析法与均值-R 法的比较 由于利用控制图进行计算比较简单,因而首先产生了均值-R 法。但是,在某些方面方差分析法更为准确: (1)利用方差分析法可以研究操作员和部件之间会产生哪些交互作用,而均值-R 法却不同。 (2)利用方差分析法所用的方差分量对变异性进行的估计比使用均值-R 法的极差进行估计更准确。 1.1.3 量具R&R 的破坏性实验 量具R&R 研究的主要目的之一是要查看同一个操作员或多个操作员对同一个部件的重复测量结果是否相似。如果要进行破坏性实验,则无法进行重复测量。 要对破坏性测试应用Minitab 的量具R&R 研究,则需要假定某些部件“完全相同”,可视为同一个部件。如果假定是合理的,则可将同一批产品中的部件当作同一个部件。 如果上述情形满足该条件,则可以根据部件具体的测试方法选择使用交叉量具R&R 研究或嵌套量具R&R 研究。 如果每个操作员都要对每批部件进行检验,则使用交叉量具R&R 研究比较适合。 如果仅由一名操作员检验每批部件,则可使用嵌套量具R&R 研究。 2. 方差分析法 包含交互作用的双因子方差分析 通过双因子方差分析(方差分析)可以知道两个不同水平的因子是否可产生不同的响应变量平均值。 双因子方差分析表中列出了以下产生变异性的变异源: (1)部件,它表示由于测量不同的部件而产生的变异性。 (2)操作员,它表示由于进行测量的操作员不同而产生的变异性。 (3)操作员*部件,它表示测量过程中由于操作员和部件的不同组合而产生的变异性。如果操作员*部件项的p 值大于0.25,方差分析将在无交互作用项的情况下重新运行。 (4)误差或重复性,它表示在测量过程中不是由部件、操作员或者操作员与部件交互作用产生的变异性。

《MSA测量系统分析作业指导书》

《MSA测量系统分析作业指导书》 题目: 测量系统分析MSA作业指导书分发号: xxxxxx 页码:第9页共9页编号:xxxxxxxxxxxxxxx xxxxxxx 1、目的提供一种评定测量系统质量的方法,从而对必要的测量系统进行评估,以保证本公司所使用的测量系统均能满足于正常的质量评定活动。 2、范围适用于证实产品符合规定要求的所有测量系统。 3、职责品质部负责确定MSA项目,定义测量方法及对数据的处理和对结果的分析。APQP小组负责协助质量管理员完成测量系统的分析和改进。 4、定义 4、1 测量设备:实现测量过程所必需的测量仪器,软件,测量标准,标准样品或辅助设备或它们的组合。 4、2 测量系统:是对被测特性赋值的操作、程序、量具、设备、软件、环境以及操作人员的集合。 4、3 偏倚:对相同零件上同一特性的观测平均值与真值(参考值)的差异。 4、4 稳定性:经过一段长期时间下,用相同的测量系统对同一基准或零件的同一特性进行测量所获得的总变差。 4、5 线性:在测量设备预期的工作(测量)量程内,偏倚值的差异。

4、6 重复性:用一位评价人使用相同的测量仪器对同一特性,进行多次测量所得到的测量变差。 4、7 再现性:不同评价人使用相同的测量仪器对同一产品上的同一特性,进行测量所得的平均值的变差。 4、8 零件间变差:是指包括测量系统变差在内的全部过程变差。 4、9 评价人变差:评价人方法间差异导致的变差。 4、10 总变差:是指过程中单个零件平均值的变差。 4、11 量具:任何用来获得测量结果的装置,包括判断通过/不通过的装置。 5、工作程序 5、1 测量系统分析实施时机 5、1、1 新产品在生产初期,参见“产品实现策划控制程序”HNFH QP-08。 5、1、2 控制计划中指定的检验项目每年需做MSA。 5、1、3 客户有特殊要求时,按客户要求进行。 5、1、4 测量系统不合格改善后需重新进行分析。 5、2 测量设备的选择 a) 有关人员在制定控制计划及作业指导书时,应选择适宜的测量设备,既要经济合理,又要确保测量设备具有足够的分辩率,使用测量结果真实有效。b )

测量系统分析(MSA)控制程序

测量系统分析(MSA)控制程序 1 目的 对测量系统变差进行分析评价,以确定测量系统是否满足规定要求。 2 适用范围 本程序适用于证实产品符合要求的所有测量系统。 3职责 3.1 质管部负责制定测量系统分析计划并实施测量系统分析。 3.2APQP小组负责对检测能力不足的量具适用性重新进行评价。 3.3生产部配合测量系统分析工作。 4作业程序 4.1测量系统分析范围 对控制计划中规定的测量系统进行分析,也包括更新的量具。 4.2 测量系统分析的频率、计划 4.2.1对常规产品粗加工工序测量系统分析的频率为两年一次。对关键工序(四精加工)测量系统分析频率为一年一次。对于新产品粗加工工序的测量系统分析频率为一年一次,对其中的特殊特性暂定为半年一次。 4.2.2质管部负责制定测量系统分析计划,经管理代表批准后,由质管部组织生产部实施。 4.2.3新产品开发过程中根据试生产控制计划由质管部组织实施测量系统分析。 4.3 计量型量具重复性和再现性分析—(均值—极差法) 4.3.1 随机抽取10个零件,确定某一尺寸/特性做为评价样本。 4.3.2 对零件进行编号1~10,编号应覆盖且不被操作员知道某一零件具体编号。 4.3.3 指定3个操作员,每一个操作员单独地以随机动性顺序选取零件,并对零件的尺寸/特性进行测量,负责组织此项研究的人员观察编号并在表格中对应记录数值。3个操作员测完一次后,再从头开始重复测量1~2次。 4.3.4 将测量结果依次记录在?重复性极差控制图?上。 4.3.5 负责组织此项研究的人员,依据数据表和质量特性规格,按标准规定的格式出具报告。 4.3.6 结果分析 1)当重复性(EV)变异值大于再现性(A V)时,可采取下列措施: a)增强量具的设计结构。 b)改进量具的使用方式。 c)对量具进行保养。 2)当再现性(A V)变异值大于重复性(EV)时应考虑: a)修订作业标准,加强对操作员的操作技能培训。 b)是否需采用夹具协助操作,以提高操作的一致性。 c)量具校准后再进行R&R分析。 4.3.7 R&R接收准则 1)R&R<10%可接受。 2)10≤R&R≤30%,依据量具的重要性、成本及维修费用,决定是否接受。 3)R&R%>30%不能接受,必须改进。 4.4计量型量具研究极差法

测量系统分析(MSA)控制程序

【MeiWei_81重点借鉴文档】 测量系统分析(MSA控制程序 1目的 对测量系统变差进行分析评价,以确定测量系统是否满足规定要求。 2适用范围 本程序适用于证实产品符合要求的所有测量系统。 3职责 3.1质管部负责制定测量系统分析计划并实施测量系统分析。 3.2 APQP小组负责对检测能力不足的量具适用性重新进行评价。 3.3生产部配合测量系统分析工作。 4作业程序 4.1测量系统分析范围 对控制计划中规定的测量系统进行分析,也包括更新的量具。 4.2测量系统分析的频率、计划 4.2.1对常规产品粗加工工序测量系统分析的频率为两年一次。对关键工序(四精加工)测量系统分析频率为一年一次。对于新产品粗加工工序的测量系统分析频率为一年一次,对其中的 特殊特性暂定为半年一次。 4.2.2质管部负责制定测量系统分析计划,经管理代表批准后,由质管部组织生产部实施。 4.2.3新产品开发过程中根据试生产控制计划由质管部组织实施测量系统分析。 4.3计量型量具重复性和再现性分析一(均值一极差法) 4.3.1随机抽取10个零件,确定某一尺寸/特性做为评价样本。 4.3.2对零件进行编号1~10,编号应覆盖且不被操作员知道某一零件具体编号。 4.3.3指定3个操作员,每一个操作员单独地以随机动性顺序选取零件,并对零件的尺寸/特性进行测量,负责组织此项研究的人员观察编号并在表格中对应记录数值。3个操作员测完一次后,再从头开始重复测量1~2次。 4.3.4将测量结果依次记录在?重复性极差控制图?上。 4.3.5负责组织此项研究的人员,依据数据表和质量特性规格,按标准规定的格式出具报告。 4.3.6结果分析 1)当重复性(EV)变异值大于再现性(AV)时,可采取下列措施: a)增强量具的设计结构。 b)改进量具的使用方式。 c)对量具进行保养。 2)当再现性(AV)变异值大于重复性(EV)时应考虑: a)修订作业标准,加强对操作员的操作技能培训。 b)是否需采用夹具协助操作,以提高操作的一致性。 c)量具校准后再进行R&R分析。 4.3.7R&R接收准则 1)R&R<10% 可接受。 2)10眾&R W0%,依据量具的重要性、成本及维修费用,决定是否接受。 3)R&R% >3 0%不能接受,必须改进。 4.4计量型量具研究极差法 4.4.1随机抽取5个零件确定某一尺寸/特性做为评价样本。 4.4.2指定2名操作员对5个零件的某一尺寸/性进行测量,并把测量结果填入?测量系并联析极差法统计表?中 4.4.3负责组织此项研究的人员依据数据表和质量特性规格对测量结果进行分析,并出具报告 4.4.4R&R接收准则同4.3.7 4.5计数型量具小样法分析

相关主题
文本预览
相关文档 最新文档