当前位置:文档之家› 碳质储氢材料的研究进展

碳质储氢材料的研究进展

碳质储氢材料的研究进展
碳质储氢材料的研究进展

碳质储氢材料的研究进展

摘要

碳质材料由于具备质量轻、吸氢量大等优良特性,近年来引起了学者们的广泛关注。综述了碳质储氢材料的研究进展,介绍了碳质材料的储氢机理,并就近年来研究的热点探讨了影响碳质材料储氢的各种因素。最后,对碳质储氢材料的发展前景进行了展望。

关键词:碳质材料储氢储氢材料进展

Abstract

Carbonaceous materials have been arousing increased research attention recently ,due to numerousadvantages such as low density and high storage capacity .Research advances of carbonaceous materials for hydrogenstorage are reviewed ,and hydrogen storage mechanism of carbonaceous materials is introduced .Moreover,based onrecent research highlights ,influence factors on hydrogen storage capacity of carbonaceous materials are discusseck E ventually future development of the carbon materials for hydrogen storage is prospected

Key wolds :Carbonaceous materials ,Hydrogen Storage , Hydrogen Storage Materials , Progress

、八、,

前言

能源和资源是人类赖以生存和发展的源泉。随着社会经济的发展,全球能源供应的日趋紧缺,环境污染的日益加剧,已有的能源和资源正在以越来越快的速度消耗。面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。氢能作为一种可储可输的洁净的可再生能源,从长远上看,它的发展可能对能源结构产生重大改变。洁净无污染的氢能利用技术正在以惊人的速度发展,己引起工业界的热切关注。

氢的规模制备是氢能应用的基础,氢的规模储运是氢能应用的关键,氢燃料电池汽车是氢能应用的主要途径和最佳表现形式,三方面只有有机结合才能使氢能迅速走向实用化。但是,由于氢在常温常压下为气态,密度很小,仅为空气的1/14,故氢的储存就成了氢能系统的关键技术。

1. 储氢技术

国内外储氢的方法大致可分为物理储氢方法和化学储氢方法两大类。其中物理储氢方法有高压压缩储氢、液化储氢、地下岩洞储氢、活性炭吸附储氢、碳纳米管储氢等;化学储氢方法有金属氧化物储氢、有机液态氢化物储氢、无机物储氢等⑴。本文主要介绍碳质吸附储氢。

固体材料储氢因具备安全性高、耗能少等特点而得到了研究人员的广泛青睐。目前研究开发的固体储氢材料主要有金属合金材料、碳质材料、无机多孔材料、复合化学氢化合物材料以及金属有机骨架化合物(MOFs材料等[2-4]。其中,碳质材料由于具有吸氢量大、质量轻、抗毒化性能强、易脱附等优点,其物理吸附储氢被认为是非常有应用前景的储氢方式。

2. 碳质吸附储氢

碳质吸附储氢是近年来出现的利用吸附理论的物理储氢方法。氢在碳质材料中吸附储存主要分为在活性炭上吸附和在碳纳米材料中的吸附储存。因此,储氢碳材料主要有单壁纳米碳管(SWNT)多壁纳米碳管(MWNT)碳纳米纤维(CNF)、碳纳米石墨、高比表面积活性炭、活性炭纤维(ACF)和纳米石墨等。MWNTCNF和高比表面积活性炭等碳材料的储氢(表1)是目前研究的重点。另外,金属与碳材料联合储氢也受到了极大的重视。

吸附材料

表一

吸附温度

(K)

几种碳质材料储氢性能的比较[5呵

吸附压力(MPA)吸附容量

活性碳65 4.28.2%

石墨烯纳米纤维常温常压较好

碳纳米管300常压14%

多壁纳米管3000.1 1.8%

总之:各国学者对碳纳米材料的吸附储氢研究都刚刚开始,在不同的条件下,其储氢性能存在较大差异,氢吸附量从1. 8%到65%不等。这主要在于他们所采用的物理模型不同,模拟的工况不同,碳纳米管的类型不同,以及纳米管是否开口等。尽管如此,碳质吸附储氢已经显示出了显著的优越性,有望成为未来储氢的有效方法。

2.1 碳纳米管储氢

碳纳米管由于其具有储氢量大、释放氢速度快、可在常温下释氢等优点,被认为是

种有广阔发展前景的储氢材料。碳纳米管可分为单壁碳纳米管(SWNT和多壁碳纳米管(MWNT,) 它们均是由单层或多层的石墨片卷曲而成,具有长径比很高的纳米级中空管。中空管内径为0. 7到几十nm特别是SWN的内径一般<2nm而这个尺度是微孔和中孔的分界尺寸,这说明SWN的中空管具有微孔性质,可以看作是一种微孔材料。

其研究重点主要集中在H在碳纳米管内的吸附性质、氢在碳纳米管中的存在状态、表面势和碳纳米管直径对储氢密度的影响等上。H2 在常温下的吸附温度和压强都远高于其临

界温度(Tc= 一2400C)和临界压力(Pc=1. 28kPa),是一种超临界状态的吸附。根据吸附势理论,在纳米孔中由于分子力场的相互叠加形成宽而深的势阱,即使压力非常低,吸附质H2 分子也很容易进入势阱中,并以分子簇的形式存在,在强大的分子场的作用下,吸附态H2 的性质已与本体大不相同。并且,研究表明:氢在碳纳米管中的吸附为单分子层吸附,氢在活性炭及碳纳米管上的饱和吸附量的对数值随温度升高线性地下降[9]。

吸附的BET理论[10]认为,在固体表面吸附的第一层吸附质分子靠气一固之间的相互作用维系,第二层以后的吸附分子靠凝聚力维系。因此第一层的吸附热必与第二层以后各层的吸附热不同,后者类似于吸附质的蒸发潜热。对N在炭黑上吸附热的测量结果[10]使该理论得到生动的证明:实验测得的第一层分子的吸附热为11 —12kJ/mol(0 . 11?0. 12eV),

以后各层的吸附热下降到5. 56kJ/mol(0 . 058eV)。相当于氮的凝聚潜热,超临界温度下分子问凝聚力不足以把它们维系住(因为临界温度以上不存在液态),因此不可能存在第二层以后的凝聚层,即超临界温度气体只能发生单分子层吸附,而与吸附剂的几何特征无关。Strobel等[11]对多种碳材料的吸氢量测量结果表明,在吸附剂比表面积100—3300m/g时,12. 5MPa 296K条件下氢的吸附量与比表面积成正比;Nijkamp等[12]对77K下氢在多种

碳吸附剂的吸脱附实验亦证明:氢的吸附量与样品的比表面积呈线性相关,从而为单分子层吸附机理提供了有力的证明。

国内外对碳纳米管储氢做了大量的研究,成会明等[13]测得在室温、10MPa下单壁碳纳

米管的储氢密度为4. 2wt%, DillonAC等冋.纠研究的单壁碳纳米管在一140C、6. 7 x 104Pa 下的储氢密度为5wt%,Ye Y等[15].报道在一293C、12MPa下碳纳米管的储氢密度为8wt%,Chen P等⑺.报道在380E、常压下碳纳米管的储氢密度达20.0wt %。

2.2 碳纳米纤维储氢

由于碳纳米纤维具有很高的比表面积,大量的“被吸附在碳纳米纤维表面,并为“

进入碳纳米纤维提供了主要通道;并且,碳纳米纤维的层间距远远大于H分子的动力学直

径(0.289nm),大量的“可进入碳纳米纤维的层面之间;而且,碳纳米纤维有中空管,可以像碳纳米管一样具有毛细作用,H可凝结在中空管中,从而使碳纳米纤维具有较高储氢密[16]。碳纳米纤维的储氢量与其直径:结构和质量有密切关系。在一定范围内,直径越细,质量越

高,纳米碳纤维的储氢量越大。几种碳纳米纤维储氢容量如表2所示。

表2纳米纤维储氢容量表

H2在碳纳米纤维和碳纳米管的吸附过程中,纳米孔的结构和性质对吸附影响最大。根据吸附势理论,微孔填充的本质是:在纳米级的孔隙中,相对孔壁势能叠加形成的强大分子场对吸附质分子的吸附。在纳米孔中,由于分子力场的相互叠加形成宽而深的势阱,即使压力非常低,吸附质分子也很容易进入势阱中,并以分子簇的形式存在,同时受到孔壁上的碳原子和其它吸附态分子的作用。由于强大的分子场作用,吸附相分子之间的作用力远远大于本体分子间的作用力,所以吸附态气体的性质与本体大不相同。白朔等购.用流动催化法制备的碳纳米纤维(直径约100nm在室温下的储氢密度为10wt%, hambers A等⑹用碳纳米纤维在25C、12MPaF的储氢密度达67. 0wt%。

2.3 高比表面积活性炭储氢

高比表面积活性炭储氢是利用其巨大的表面积与氢分子之间的范德华力来实现的,是

典型的超临界气体吸附。一方面H2的吸附量与碳材料的表面积成正比;另一方面H2的吸附量随着温度的升高而呈指数规律降低[18]。

活性炭吸氢性能与温度和压力密切相关,温度越低、压力越大,储氢量越大,但在某一温度下,吸附量随压力增大将趋于某一定值。压力的影响小于低温的影响。周理对超临界氢在高比表面积活性炭(超级活性炭)上的吸附特性进行了研究。结果说明其吸附储氢的压力不高:吸附量随温度的下降增长很快,说明吸附储氢适宜低温。氢气在活性炭上的吸附是一种物理平衡。温度恒定时,加压吸附(吸氢),减压脱附(放氢)。从实测吸附等温线看,脱附线与吸附线重合,没有滞留效应。即在给定的压力区间内,增压时的吸氢量与减压时的放氢量相等。吸氢与放氢仅仅取决于压力的变化,因此吸放氢条件十分温和[19]。

活性炭储氢主要利用炭对H2的吸附作用储氢。普通活性炭的储氢密度很低,即使在低温下也达不到1wt%。周理四.用比表面积高达3000m2/g的超级活性炭储氢,在196C、3MPs下储氢密度高达5wt%。

2.4 纳米石墨储氢

纳米石墨储氢近年来也取得了较大的进展,Orimo S等如.在1MPa氢气气氛中用机械球磨法制备的纳米石墨粉储氢,储氢密度随球磨时间的延长而增加,当球磨80h 后,氢浓度可达

7. 4wt%,热分析(TDS)出现了2个峰,解吸温度在377—677C[21]。Shindo K等[22]. 在0. 8MPs 氢气气氛中用机械球磨法研究天然石墨球磨储氢,球磨10h,进行热分析(TDS), 出现了2个解吸蜂,峰温为500r和800r,储氢密度为3wt%。文潮等[23]用炸药爆轰法制备了纳米石墨粉,其结构为六方结构,纳米晶平均粒度为1. 86?2. 61 nm比表面积为500?650m2/g,室温、

12MPa ffi力条件下,其氢密度仅为0. 33%?0. 37%wt。

3. 质材料的储氢机理

碳质材料是近年来出现的一种新型储氢基质。很多学者对碳质材料的储氢机理进行了研究,目前普遍认为碳质材料的储氢机理以物理吸附为主。考虑到实用性的问题,人们对碳质材料储氢的研究大多基于室温(RT)和相对较高的压强条件。以石墨为例,经过理论计算,在室温条件下,石墨化学吸附氢原子的能障为0. 15?0. 2 eV,化学吸附氢原子的扩散能障以及化学吸附氢原子的解吸能障分别是1. 4 eV和0. 8 ev[24].如此高的能量位垒预示着氢原子与石墨的碳原子之间发生化学吸附的可能性非常小。与此同时,从理论上计算得到的氢原子与石墨的碳原子之间发生物理吸附的能障范围为0. 03?o. 04 eV,并且即使在较低的温度条件下,石墨上物理吸附的氢原子同样具备优异的扩散性(相比室温条件下)。这就从理论上说明碳质材料主要是利用物理吸附的机理进行储氢。

4. 温度和压强对碳质材料储氢的影响

气体分子在固体材料表面的吸附量与温度和压强有关。首先,物理吸附是放热的,降低温度可以侧进物理吸附;另外,增大气体压强可以提高气体分子与材料表面的接触几率和频率,也有利于物理吸附。而从实用性和安全性的角度考虑,希望碳质材料可以在室温和适宜压强的条件下储备氢气。研究表明,在室温条件下,纯的碳质材料物理吸附氢气分子的能力不超过I % (质量分数)西。高的储氢量(如3%?8% (质量分数))只在极低的温度(如77 K) 或非常高的压强[26-27]条件下才能实现。也就是说,纯的碳质材料在温和的条件下几乎不具备氢气储存的能力。为了降低氢气分子在碳质材料上物理吸附的条件,研究人员进行了许多其他的尝试。

5. 展望

究的重点主要集中在以下几个方面:(1) 寻找有效的方法增加碳质储氢材料的比表面积以及孔隙率,从而增强物理吸附能力;(2) 尝试采用各种金属或合金作催化剂,力求找到具有最佳催化效果的催化剂,同时确定催化剂的用量;(3) 对碳质材料储氢机理进行理论研究,其中包括催化机理的软件模拟、碳质材料储氢机理的软件模拟等。

由于实验中所采用的碳质吸附材料的制备工艺复杂,实验过程的处理方法迥异,导致实验参数过于繁琐。目前对碳质材料吸放氢测试手段也不够成熟,大多数实验得到的结果可重复性

差。

综上所述,笔者认为碳质材料作为储氢介质亟待解决的问题以及发展方向是:加强碳质储氢材料吸放氢机理以及催化机理的研究,为实验研究工作提供理论指导;改进材料的制备工艺、后处理方法以及测试手段,使之标准化和可控化;寻找储氢量大、成本低的碳材料,发展大规模连续制备技术,降低碳质材料储氢成本。

参考文献

[1] 陈卓, 廖有贵. 储氢技术的研究发展现状[J]. 化工技术与开

发,2012,41(8):29-31.DOI:10.3969/j.iss n.1671-9905.2012.08.009.

[2] Wu X J ,Zheng J,Li J ,et a1 .Molecular simulation on hydrogen storage capacities of

porous metal organic frameworks[J] .Acta Physico-Chimica Sinica ,2013,29(10) :2207

[3] Rao D W,et a1 .Influences of lithium doping and fullerene impregnation

on hydrogen storage in metal organic frameworks[J] .Molecular Simulation ,2013,39(12) :968

[4] Ding L ,Yazaydi n A O .Hydrogen and methane storage in ultrahigh surface

area metal-organic frameworks[J] .Microp Mesop Mater ,2013,182:185

⑸倪萌,M K H tams , K Sumathy ?氢一未来的绿色燃料[J].现代车用动力,2004,

(2) .

[6] ChambersA, Park C, Baker RTK, et al.Hydrogen Storage in Graphite Nanofibers

[J].PHYS.CHEMB 1998.102(22).

[7] ChenP,WuX,IAn J.High H2 uptake by Alkali —DopedCarben Nanotubes under

Ambient Preogure and Moderate Temperatunm[J] .Science ,1999,285(2):

[8] 郑青榕.多壁碳纳米管储氢行为分析[D] .上海:上海交通大学,2004.

[9] Zhon L,Zhon Y P.Linearizatien of Adsorption Isotherms for High Pressure

Applications [J].Chem.Eng.Sci.1998,53(14).

[10] 周理,孙艳,苏伟.纳米碳管储能的化学原理与储存容量研究[J] .化学进展,2005,

17(4).

[11] Strobel R ,Jorison L ,Schliermaun T ,et a1 .H ydrogen adsorption on cadxm

materials[J]. J .Power Sources ,1999,84

[12] Nijkarnp M G, Raaymakers J E M J , van Dillen A J,et al. Hydrogen storage

using physisorption materish demands [J] .AppL Phys.A,2001,(72).

[13] 成会明,刘畅?丛洪涛?具有优异储氢性能的高质量单壁纳米碳管的合成[J].物

理。2000, 29(8).

[14] 黄德超,黄德欢.碳纳米管材料及应用[J].物理学进展,2004, 24(3).

[15] 刘博,龚宇光,于军胜.氢气储存材料[J].实验科学与技术,2006, 12(增刊).

[16] 毛宗强,徐才录,阎军,等.碳钠米纤维储氢性能初步研究[J].新型碳材料,2000,

(15).

[17] 白朔,侯鹏翔,范月英,等.一种新型储氢材料一纳米炭纤维的制备及其储氢特

性[J].材料研究学报,2001,15(1).

[18] Li Zhou,Yaping Zhou, Yah Sun. Enhanced Storage of Hydrogen at the

Temperature 0f Liquid Nitroge n[J] .In t . J. Hydrogen En ergy.2001,29(3).

[19] 周理.氢能利用与高表面活性炭吸附储氢技术[J].科技导报。1999。(12).

[20] Orimo S, Majer G, Fukunaga T。et aL Hydriding pmperties of the MgN—based

systems[J] . AppL Phys.Lett,1999(293-295).

[21] Olinlo S, Matsushima S, Fujii H, et aL Effect of mechanical grinding under Ar and H2

atmospheres on structural and hydri ding properties in LaNi5[J] . AppL Phys., 2002, (330 —332).

[22] Shindo K, KondoT, Sakumi Y. Dependenceof hydrogen storage characteristics

0f mecha ni cally milled carb on materials On their host

structures[J] . Alloys . Comp, 2004(1-2).

[23] 文潮,金志浩,李迅,等.炸药爆轰制备纳米石墨粉储放氢性能实验研究[J].物

理学报,2004, 53(7).

[24] Psofogia nn akis G M Froudakis G E. Fun dame ntal studies and percepti ons on

the spillover mechanism for hydrogen storage[J] . Chem Commun2011, 47(28): 7933

[25] An son A, Callejas M A , Benito A M , et a1 . Hydrogen ad sorption studies on

single wall carbon nanotubes[J] . Car bon , 2004, 42(7) : 1243

[26] WangH, GaoQ HuJ. High hydrogen storage capacity of porous carbons prepared

by using activated carbon[J-] . J Am Chem Soc, 2009, 131(20) : 7016

[27] Frackowiak E, Begu in F. Electrochemical storage of en ergy in carb on

nano tubes and nan ostructured carbo ns[J] . Carbo n, 2002, 40(10) : 1775

新材料概论课程感想

这本书对材料类专业及其他相关专业的学生,掌握各类材料,特别是新材料的相关知

识,对于拓展其知识结构,提高综合科学素质是十分必要的。全书共分12章,第1章为材料概论,简要介绍了材料的特征和分类,材料结构与性能的基本知识,材料的发展简史,阐述了新材料的基本特点和对人类社会发展的科技推动作用,同时还简要介绍了材料科学

与工程的内涵和基本要素。其余11章分别从概念、性能特点、应用和发展等方面分类介绍了高性能结构材料、先进复合材料、电性材料、磁性材料、光学功能材料、信息功能材料、新能源材料、智能材料、生物医用材料、纳米材料、生态环境材料。《新材料概论》具有内容新颖,涵盖面广,通俗易懂,可读性强等特点。可作为材料科学与工程专业导论课程的选用教材,也可作为非材料专业大学通识教育基础课程的参考教材,还适合从事与材料相关的科研人员、管理人员以及生产技术人员阅读参考。

随着课程的继续,惊喜也不断的发生,最让我感到兴奋的是,我们不需要背书了,不需要死啃书本了。每一章节的知识,老师都会举出相当丰富的实例,这些形象的例子,让我们更加透彻的了解到,新型材料的应用理念以及在土木工程上所发挥的巨大作用。每个知识点结束,老师还会让同学们收集一些相关方面的内容,作为知识的拓宽。

我觉得最锻炼能力的还是课堂演讲了,老师在讲完某个知识点时,都会让同学就自己感兴趣的某个方面,以PPT的形式汇报给大家,事实上制作PPT的过程本身就是一个学习的过程,通过PPT的制作,我们能够更加完善自己的知识体系,同时又能拓宽视野,得到一些书本上没有的东西;同时,通过我们的上台演讲,自身的表达能力有了大幅度的提升。众所周知,我们中国的学生在表达自我方面有一定的缺失,其实满腹经纶、学富五车可是每每在众人面前,就张不开嘴,不能把所要表达的内容讲的清楚准确,这无疑成为我们进入社会这个充满挑战舞台的最大的劣势,然而我们国家的教育又不能给学生提供一个比较合适的舞台,从而从根本上扭转这种劣势。所以说,课堂演讲无疑是改变这种被动局面的最好的方式,通过课堂演讲,我们充分的锻炼了这方面的能力,同时又使专业素质得到加强,真可谓一举两得。

这种上课方式能够极大的锻炼学生。总而言之,这门课教给我很多东西。

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

储氢材料

储氢材料 摘要:作为一种新型的清洁能源,氢的廉价制取、安全高效储存与运输及其模型应用,将是今后研究的重点。本文介绍了储氢材料的结构、性能、制 备及应用;展望了储氢材料的发展趋势。 关键字:氢;储氢材料;清洁能源 1引言 随着传统能源的日渐枯竭,致使人类面临着能源、资源和环境危机的严峻挑战,同时人们环保意识的日益增强,开始大力寻找新的洁净能源己成为科研工作的焦点[l]。在这些过程中,氢以其独有的优点逐渐得到人们的公认。氢作为洁净能源具有以下优点:(l) 氢的燃烧产物是水,对环境不产生任何污染;(2) 氢可以通过太阳能、风能等分解水而再生,是可再生能源;(3) 燃烧1g氢放出的热量是等量汽油的3倍左右;(4) 氢资源丰富,可通过水、碳氢化合物等电解或分解生成。由此可见,氢是一种清洁,高效的能源,在未来有着广阔的应用前景。在氢能利用过程中,有两个重要的方面,即氢能的制备和储运。在氢能的制备方面:人类通过利用太阳能光解海水可以制得大量的氢;故氢的储存和运输是其发展和应用中遇到的难点之一。 2 氢的存储标准与现状 “储氢材料”顾名思义是一种能够储存氢的材料。衡量储氢材料性能的标准主要有2个:体积储氢密度(kg/m3)和储氢质量分数(%)。体积储氢密度为系统单位体积内储存氢气的质量,储氢质量分数为系统储存氢气的质量与系统质量的比值。另外,充放氢的可逆性、充放气速率及可循环使用寿命等也是衡量储氢材料性能的重要参数[2]。 和其它物质一样,氢的存在状态也是固态、液态、气态。气态时存储方式较为简单方便,也是目前储存压力低于17MPa氢气的常用方法。但其密度较小,体积大;由于是易燃气体在运输和使用过程中存在安全隐患是该方法的不足之处。液态储氢方法的体积密度高(70kg/m3),但氢气的液化需要冷却到20K的超低温下才能实现,此过程消耗的能量约占所储存氢能的25%~45%。液态氢不仅储存成本高,而且使用条件苛刻,目前只限于在航天技术领域中应用。因此这些传统的储氢方法根本无法满足现代社会对氢能利用的要求。为此世界各国纷纷投人大量精力来解决这一难题。随着研究的深入进展,在储氢材料领域中逐渐出现了多样化,其中最典型的有三大类:金属储氢材料、多孔吸附储氢材料、有机液态储氢材料等。

碳质储氢材料的研究进展

碳质储氢材料的研究进展 摘要 碳质材料由于具备质量轻、吸氢量大等优良特性,近年来引起了学者们的广泛关注。综述了碳质储氢材料的研究进展,介绍了碳质材料的储氢机理,并就近年来研究的热点探讨了影响碳质材料储氢的各种因素。最后,对碳质储氢材料的发展前景进行了展望。 关键词:碳质材料储氢储氢材料进展 Abstract Carbonaceous materials have been arousing increased research attention recently ,due to numerousadvantages such as low density and high storage capacity .Research advances of carbonaceous materials for hydrogenstorage are reviewed ,and hydrogen storage mechanism of carbonaceous materials is introduced .Moreover,based onrecent research highlights ,influence factors on hydrogen storage capacity of carbonaceous materials are discusseck E ventually future development of the carbon materials for hydrogen storage is prospected Key wolds :Carbonaceous materials ,Hydrogen Storage , Hydrogen Storage Materials , Progress 、八、, 前言 能源和资源是人类赖以生存和发展的源泉。随着社会经济的发展,全球能源供应的日趋紧缺,环境污染的日益加剧,已有的能源和资源正在以越来越快的速度消耗。面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。氢能作为一种可储可输的洁净的可再生能源,从长远上看,它的发展可能对能源结构产生重大改变。洁净无污染的氢能利用技术正在以惊人的速度发展,己引起工业界的热切关注。 氢的规模制备是氢能应用的基础,氢的规模储运是氢能应用的关键,氢燃料电池汽车是氢能应用的主要途径和最佳表现形式,三方面只有有机结合才能使氢能迅速走向实用化。但是,由于氢在常温常压下为气态,密度很小,仅为空气的1/14,故氢的储存就成了氢能系统的关键技术。

浅谈储氢材料

储氢材料的背景 人类社会发展进步到今天,生活现代化了。但是由于资源的大量开发、使用,使人类面临着全地球的能源危机和环境污染问题。长期以来,地球上的主 要能源煤炭、石油、天然气现在已面临枯竭的境地。在能源危机警钟响起时, 人们把注意力集中到太阳能、原子能、风能、地热能等新能源上。但是要使这 些自然存在形态的能量转变为人们直接能使用的电能,必须要把它们转化为二 次能源。那么最佳的二次能源是什么呢?氢能就是一种最佳的二次能源。 氢是地球上一种取之不尽的元素。用电解水法取氢就是氢元素的广阔源泉。氢是一种热值很高的燃料。燃烧1千克氢可放出62.8千焦的热量,1千克氢可以代替3千克煤油。氢氧结合的燃烧产物是最干净的物质--水,没有任何污染。未来最有前途的燃料电池也主要是以氢为能源。所以人们很自然地把注意力集 中在氢能源的开发和利用上。要利用好氢能源。摆在人们面前的问题是如何把 氢储存、运输和利用。 氢的来源非常丰富,若能从水中制取氢,则可谓取之不尽、用之不竭。氢 能的利用,主要包括两个方面:一是制氢工艺,二是储氢方法。 传统储氢方法有两种,一种方法是利用高压钢瓶(氢气瓶)来储存氢气, 但钢瓶储存氢气的容积小,瓶里的氢气即使加压到150个大气压,所装氢气的质量也不到氢气瓶质量的1%,而且还有爆炸的危险;另一种方法是储存液态氢,将气态氢降温到-253 0C变为液体进行储存,但液体储存箱非常庞大,需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化。近年来,一种新型 简便的储氢方法应运而生,即利用储氢合金(金属氢化物)来储存氢气。 储氢材料的定义 储氢材料是一种能够储存氢的材料,储氢材料是能与氢反应生成金属氢化 物的物质,(狭义)具有高度的吸氢放氢反应可逆性;(广义)储氢材料是能 够担负能量储存、转换盒输送功能的物质,“载氢体”、或“载能体” 研究证明,某些金属具有很强的捕捉氢的能力,在一定的温度和压力条件下,这些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。 其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。 这些会“吸收”氢气的金属,称为储氢合金。 储氢材料的分类 化学吸附材料 金属氢化物及合金(如LaAlH4) 复合氢化物(NaAlH4、NaBH4、LiBH4等)等 物理吸附材料

储氢材料综述

储氢材料研究现状与发展趋势 xxx 摘要:氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料,如金属储氢(镁基储氢、Fe-Ti基储氢、金属配位氢化物、钒基固溶体型储氢)、碳基储氢、有机液体储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。 关键字:储氢材料,储氢性能,金属储氢,碳基储氢,有机液体储氢。 1.引言 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)提出的目标是质量储氢密度大于5wt%,体积储氢密度大于50kgH2/m3,并且放氢温度低于423K,循环寿命超过1000次;而美国能源部(DOE)提出的目标是到2010年质量储氢密度不低于6wt%,体积储氢密度大于45kgH2/m3;到2015年上述指标分别达9wt%和81kgH2/m3;到2010年车用储氢系统的实际储氢能力大于3.1kg(相当于小汽车行使500km所需的燃料)。图1给出了目前所采用和正在研究的储氢材料的储氢能力对比。

储氢的各种材料

一、前言 随着社会的发展,环境保护问题已经越来越为人们所重视。酸雨、温室效应、城市热岛效应等等 或初露倪端,或已对人类造成巨大的危害,这些环保问题的产生在很大程度上与人类大量使用化石能 源有关。同时,由于能源消耗量的迅猛增加,化石能源将不能满足经济高速发展的需求,需要开发新 的能源。在我国开发清洁的新能源体系更具有重要意义。 氢可以地球上近于无限的水为原料来制备,其燃烧产物也是水,具有零污染的优点,有望在石油中国论文联盟https://www.doczj.com/doc/1416487597.html, 时代末期成为一种主要的二次能源。氢能技术的发展,已在航天技术中得到了成功的应用。 氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。 二、目前主要的储氢方式 近年来研究较多的储氢方式有:(1)金属氢化物储氢;(2)液化储氢;(3)吸附储氢;(4)压缩储氢。 2.1金属氢化物储氢 氢和氢化金属之间可以进行可逆反应,当外界有热量加给氢化物时,它就分解为氢化金属并释放 出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:(1)稀土镧镍,每公斤镧镍合金可储氢153L;(2)铁钛合金,储氢量大,价格低月在常温常压下释放氢;(3)镁系合金,是吸氢量最大的元素,但需要在287℃条件下才能释放氢,而且吸收氢十分缓慢;(4)钒、铌、铅等多元素系,这些金属本身是稀贵金属,因此只适用于某 些特殊场合。 与其它储氢方式相比,金属氢化物储氢具有压力平稳,充氢简单、方便、安全等优点,单位体积贮氢的密度,是相同温度、压力条件下气态氢的1000倍。该储氢方式存在的问题为在大规模应用中如 何提高储氢材料的储氢量和降低材料成本,节约贵重金属。国际能源机构确定的未来新型储素材料的标准为储氢量应大于5Wt%,并且能在温和条件下吸放氢。根据这一标准,目前的储氢合金大多尚不能满足这一性能要求。 2.2液化储氢 将氢气冷却到-253℃时氢气即可液化。液氢储存方式的质量能量密度最大,是一种轻巧紧凑的方式。但氢气液化成本高,能量损失大(氢液化所需能量为液化氢燃烧产热额的30%),且存在蒸发损 失。液氢贮存工艺首先用于宇航中,但需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化, 导致液体贮存箱非常庞大。 2.3吸附储氢 C.CarPetis和W.Peschka是首先提出在低温条件下氢气能够在活性炭中吸附储存的两位学者。他们提出可以考虑将低温吸附刘运用到大型氢气储存中,并研究得到了在温度为-195℃和-208℃,压力为0-4.15MPa时,氢在多种活性炭上的吸附等温线:压力为4.2MPa 时,氢气在活性炭上的吸附容量分别可以达到 6.8wt%和 8.2wt%在果等温膨胀到0.2MPa,则吸附容量为4.2wt%和5.2wt%。 在一个最近的研究中,Hynek在27℃和-83℃条件下测试了一系列吸附剂,如活性炭、碳黑、碳气凝胶 以及碳分子筛等。测试结果为:在0-20MPa压力范围内,随着压力的增大,吸附剂的储氢量只有少 量的增加。 目前吸附储氢材料研究的热点是碳纳米材料。由于碳纳米材料中独特的晶格排列结构,其储氢数量大大的高过了传统的吸附储氢材料。碳纳米管产生一些带有斜口形状的层板,层

表面吸附与效储氢材料

表面吸附与高效储氢材料 0809401083 匡鹏 一.能源危机与应用氢气的瓶颈 人类的历史某种程度上也是能源的发展历史,过去的五千年里,人类主要能源由草木,秸秆到煤天然气,尤其是近代以来,工业革命的发展与人们生活水平的快速提高使能源的需求快速增长,而据估计地球的化石能源只可以再支持50年的这种消耗速度,而即使没有能源枯竭的危机,人类使用化石能源也会受到极大的制约,因为化石带来的巨大污染近几十年来不断的浮现,更加促使人们寻找替代的能源。 当前几种有前途的能源解决方案——核聚变,裂变(体积太大,且危险过大),风能(不适宜携带,且有间隔性),太阳能(功率不够),都有各种缺陷,而不可以完全取代化石能源。氢能作为一种储量丰富,来源广泛(海水)能量密度高(氢气热值:143kJ/g,为汽油的3倍,酒精的3.9倍,焦炭的4.5倍)清洁(生成水),取代方便(利用原理与汽油等一样,稍加改进即可用于现在的发动机)的绿色能源受到了广泛的关注。 氢能是一种二次能源,其开发与利用需要解决氢的制取,储存,和利用三个问题,由于氢易燃,易爆且已扩散,这就使得人们实际应用中优先考虑氢储存,运输中的安全,高效和无泄漏损失,因此,氢的规模安全存储是现阶段氢能利用的瓶颈。 二.可以采用的氢气存储方法 根据氢的气体特征,其存储方式可以分为物理法与化学法。目前采用的储氢方式主要有四种:高压储氢,液化储氢,金属氢化物储氢以及吸附储氢。高压储氢的最大优点是操作方便,能耗小。

由以上表可以看到无论传统还是最近的金属氢化物,固态储氢都没有达到可以大规模应用的技术成熟水平。而吸附储氢在储氢密度,能源效率及操作安全性等方面颇具技术优势,其发展前景被看好。 三.表面吸附的原理及其对吸附材料的要求 固体表面的原子,由于周围原子对他的作用力不对称,即表面原子所受的力不饱和,因而有剩余力场,可以吸附气体或液体。制糖时,用活性炭来处理糖液,以吸附其中的杂质,得到洁白的产品,就是利用了活性炭的吸附能力。固体吸附有如下几个特点:1.固体表面分子移动困难,所以只可以靠降低界面张力的方法降低表面能2.固体表面是不均匀的,各个不同位置的吸附热与催化活性差别很大3.固体表面层的组成不同于体相内部。 按照吸附分子与固体表面的作用力的不同可以将吸附分为两类

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属 →MHx+ΔH(生成热)。 氢化物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

碳基和有机物储氢材料的研究进展_吕丹

碳基和有机物储氢材料的研究进展 吕 丹1,2,刘太奇1 (1.北京石油化工学院环境材料研究中心,北京102617;2.北京化工大学,北京100029) 摘 要:日益严峻的能源危机和环境污染,使得发展清洁的可再生能源成为各个国家的重要议题。氢能源以其可再生性和良好的环保效应成为未来最具发展潜力的能源载体。氢的储存是发展氢能技术的难点之一。本文介绍了目前很受关注的两种储氢材料:碳基储氢材料和有机物储氢材料。其中碳基储氢材料主要介绍了活性炭、碳纤维、碳纳米管及碳化物的衍生物;而有机物储氢材料主要介绍了有机液体和金属有机物。同时对碳基及有机物储氢材料的研究进展进行了综述。指出了碳基储氢材料的未来研究方向,提出了金属有机多孔材料的逐步发展,是开发新型多孔材料的一个关键,也是探索新型的金属有机物储氢材料的关键。 关键词:碳基储氢材料;有机物储氢材料;金属有机物 中图分类号:TQ127.12 文献识别码:A 随着环境污染的日趋严重以及石油、煤等能源的逐渐枯竭,世界各国都已开始致力于新能源的研究与开发。氢气是一种高能量密度、清洁且资源丰富的绿色新能源,它在燃料电池以及高能可充放电电池等方面展现了很好的应用前景,从而有望成为未来世界的主要能源。在利用氢能的过程中,氢气的储存和运输是关键问题。目前所用的储氢材料主要有合金、碳材料、有机化合物以及玻璃微球和某些络合物。本文主要讨论碳基及有机物储氢的储氢功能特点,综述了它们的近期研究进展。 1 碳基储氢材料 1.1 活性炭储氢 Carpetis是最早研究在活性碳中吸附储存氢的学者,他在论文中第一次提到将低温吸附剂运用到大型储氢系统中,指出氢气在活性炭中吸附储存的容积密度和液态氢的容积密度相当。当温度为78 K和65K,压力为4.20×105Pa时,氢气在活性炭上的储氢质量分数分别为6.37%和7.58%[1]。但是普通活性炭储氢,即使在低温下储氢量也达不到质量分数1%,对氢气的储存能力不太明显,只是活性炭便宜且容易制得。周理等用比表面积3000 m2/g,微孔容积1.5mL/g的超级活性炭,在-196℃,3MPa下储氢量达到质量分数5%。但随温度提高,储氢量越来越低[2]。詹亮等用高硫焦制备了一系列的活性炭,研究表明氢在超级活性炭上的储存量,在较低压力下随压力升高而显著增加;在较高压力下,活性炭的比表面积对其影响较为明显。在293K/5MPa,94K/6M Pa下,超级活性炭上的储氢质量分数达1.90%,9.80%[3]。 活性炭贮氢主要用于低压吸附贮氢,如作为汽车燃料的贮存。由于该技术具有压力低、贮存容器自重轻、形状选择余地大、成本低等优点,已引起广泛关注。但美国能源部(DOE)要求,对燃料电池电动汽车,其体积储氢密度必须达到63kg/m3,质量分数6.50%。从已有的应用研究证明,各种分子筛和超级活性炭均达不到DOE的要求[4]。 1.2 碳纤维储氢材料 碳纳米纤维表面具有分子级细孔,内部直径大约10nm的中空管,比表面积大,而且可以合成石墨层面垂直于纤维轴向或与轴向成一定角度的鱼骨状特殊结构的纳米碳纤维,大量氢气可以在纳米碳纤维中凝聚,从而可能具有超级贮氢能力[5]。 石墨纳米纤维由含碳化合物经所选金属颗粒催化分解产生。Chambe rs等用鲱鱼骨状的纳米炭纤维在12MPa,25℃下竟然得到的储氢质量分数为67%,但至今无人能重复此结果。最近Angela等人报道了进行各种预处理的石墨纳米纤维,在预处理阶段具有显著的储氢水平。最好的预处理能导致在7.04M Pa和室温下储存氢气的质量分数为3.80%[6]。 范月英等用纳米炭纤维于12M Pa,25℃下储存了质量分数13.60%的氢气[7]。毛宗强等用自制的碳纳米纤维在特制的不锈钢高压回路中进行了吸附储氢的验证实验,发现在室温条件下,经适当处理的碳纳米纤维的储氢能力最高可达9.99%[8]。 螺旋形炭纤维是20世纪90年代初日本的Mo-tojima等以镍作催化剂,采用催化热解乙炔方法制备而得并能很好地重复[9]。螺旋炭纤维由于具有不同手性的特殊螺旋结构(手性材料的最大特点是具有电磁场的交叉极化性能),从而使其有可能在储能材料、微电子器件、电磁波吸收剂等诸多领域得到应 14《新技术新工艺》纳米材料、新材料研究进展综述 2006年 第8期

储氢材料概述 (1)

课程论文 储氢材料概述Hydrogen storage material in the paper 作者姓名:关体红 年级专业: 2010 级应用化学 课程名称:化工实用技术 学号: 20105052006 指导教师:许东利 完成日期: 2012-06-15 成绩: 信阳师范学院 Xinyang Normal University

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1 碳基储氢材料 (2) 1.1活性炭储氢 (2) 1.2 碳纤维储氢材料 (3) 1.3 碳纳米管储氢材料 (3) 1.4 碳化物的衍生物作为储氢材料 (4) 2 有机物储氢材料 (4) 3 储氢合金 (5) 3.1 镁系 (5) 3.2 稀土系 (6) 3.3 钛系 (6) 3.4 锆系 (6) 3.5 V基固溶体储氢合金 (6) 4 配位氢化物储氢材料 (7) 结束语 (7) 参考文献 (8)

信阳师范学院化学化工学院学年论文 储氢材料概述 学生姓名:关体红学号:20105052006 化学化工学院2010级应用化学 课程名称化工实用技术 摘要:氢能是21世纪主要的新能源之一。作为一种新型的清洁能源 ,氢的廉价制取、安全高效储存与输送及规模应用是当今研究的重点课题 ,而氢的储存是氢能应用的关键。储氢材料能可逆地大量吸放氢 ,在氢的储存与输送过程中是一种重要载体。本文综述了目前研究最广的四大类储氢材料:碳基储氢材料、有机物储氢材料、储氢合金、配位氢化物储氢材料。 关键词:储氢;碳基;有机液体;储氢合金;配位氢化物 Hydrogen storage material in the paper Abstract:In the 21st century, the hydrogen is one of the major new energy. As a new type of clean energy, the cheap hydrogen production, storage and transportation safety and efficiency and scale of application is the key research subject, and hydrogen storage is the key of hydrogen application. Hydrogen storage material can absorb a large reversibly put hydrogen, in hydrogen storage and transport process is a kind of important carrier. This paper summarized the present study is the most extensive four categories of hydrogen storage material: carbon hydrogen storage material and organic hydrogen storage material, hydrogen storage alloy, coordination hydride hydrogen storage material. Keywords:Hydrogen storage; Carbon; Organic liquid. Hydrogen storage alloy; Coordination hydride 引言 人类进入21世纪,节能环保不再只是一句口号。随着能源紧张与环境污染问题的日益凸显,新能源和清洁能源的开发利用受到人们越来越多的关注。在众多新能源中,氢能被人们寄予了厚望。

纳米储氢材料的研究进展

纳米储氢材料的研究进展* 刘战伟? (桂林电子科技大学信息材料科学与工程系,广西 桂林 541004) 摘 要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料 的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米;储氢材料;储氢性能 中图分类号:TB383 文献标识码:A文章编号:1003-7551(2009)01-0033-04 1 引言 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视[1]。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型[4],储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少为5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。 纳米材料是指一类粒度在1~100nm之间的超细材料,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观体系。由于纳米材料的比表面能高,存在大量的表面缺陷,高度的不饱和悬键,较高的化学反应活性以及自身的小尺寸效应、表面效应、量子尺寸效应等,从而使其具有常规尺寸材料所不具备光学、磁、电、热等特性,成为继互联网和基因研究之后科学领域的又一研究热点,引发了世界各国科学工作者在相关理论研究及应用开发的广泛兴趣。纳米尺度的贮氢合金呈现出许多新的热力学和动力学特征,其活化性能明显提高[5,6],具有更高的氢扩散系统[7,8],并具有优良的吸放氢动力学性能[7,9,10]。储氢材料的纳米化为新兴的储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 2 纳米储氢材料储氢性能提高机理 一般认为,储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:(1)量子尺寸效应和宏观量子隧道效应:对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低;(2)纳米材料的表面效应:纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定,金属氢化物能够大量生成。单位体积吸纳的氢的质量明显大于宏观颗粒。(3)比表面积和催化特性:纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子, 有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶 * 基金项目:广西研究生教育创新计划资助项目(2008105950805M438) ? 通讯作者:liuzhanwei@https://www.doczj.com/doc/1416487597.html, 收稿日期:2009-01-13 33

(完整版)镁基储氢材料发展进展

Mg基储氢材料的进展 一、课题国内外现状 氢能作为一种资源丰富,能量高,干净无污染的二次能源已经引起了人们的极大兴趣[1],随着“氢经济”(以氢为能源而驱动的政治和经济)时代即将来临,氢能成为新世纪的重要二次能源已为科学界所广泛认同。 氢能的发展涉及到很多方面,如氢能技术、工程、生产、运输、储存、经济及利用等,其中储存问题是制约整个氢能系统应用的关键步骤,在已经探明的储存方法中,金属氢化物储氢具有储氢体积密度大、安全性好的优势,比较容易操作,运行成本较低,因此,金属氢化物技术的开发与研究近年来在世界各国掀起极大的热潮。其中,由于Mg密度小(1.74 g/cm3)、储氢能力高(理论上可达到7.6 wt.%)、价格低、储量丰富而使之成为一种很有前途的储氢合金材料。在众多储氢合金中,Mg基储氢合金因其储氢量大且资源丰富,价格低廉,成为最具潜力的储氢材料[2]。 然而,镁及其合金作为储氢材料也存在吸放氢速度慢、温度高及反应动力学性能差等缺点,因而严重阻碍了其实用化的进程。研究表明,将Mg基合金与具有催化活性的添加剂(过渡金属、过渡金属化合物、AB5型储氢合金等)混合球磨制备Mg基合金复合材料是提高Mg基合金吸/放氢性能的有效途径之一。针对上述Mg基储氢复合材料的研究,科研工作人员围绕以下几个方面展开工作: (1) 镁与单质金属复合 在球磨过程中添加其它单质金属元素,特别是过渡金属元素对镁的吸放氢性能有明显的改善作用。用于镁基材料复合的单质金属元素主要包括Pd、Fe、Ni、V、Ti、Co、Mo等。 Milanese等[3]研究了Al、Cu、Fe、Mn、Mo、Sn、Ti、Zn、Zr对镁吸放氢性能的影响,发现A1、Cu、Zn有助于镁的吸放氢,只有Cu能降低MgH2的稳定性,从而使其放氢温度降至270 ℃。Kwon等[4]球磨Mgl0%Ni5%Fe5%Ti混合材料,复合后其在300 ℃、1.2 MPa H2条件下吸收氢,吸氢时间分别为5 min和1 h,吸氢量分别为5.31%(质量分数,下同)和5.51%。初始吸氢速率从200 ℃升到300 ℃时增长较快,但在350 ℃时开始下降,放氢速率从200 ℃升到350 ℃时速度快速增长。他们认为添加的Ni、Fe和Ti元素能够产生活性点,并降低颗粒粒度,从而减少氢原子的扩散距离,形成新的高活性表面。同时,Ni、Fe、Ti也起到活性基点的作用,并能在球磨过程中创造缺陷,这些缺陷可以起到活性基点的作用,产生裂缝并能降低颗粒粒度。Varin等[5]在镁中添加0.5%~2.0%的纳米镍粉进行球磨储氢,结果表明,球磨70 h后,MgH2的粒径只有11~12 nm,当镍的添加量增加到2%时,储氢速率明显加快,球磨15 h,储氢密度就可达到6.0%以上;与MgH2相比,放

金属储氢材料研究进展

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

储氢材料与方式

储氢材料的研究概况与发展方向 随着社会发展、人口增长,人类对能源的需求将越来越大。以煤、石油、天然气等为代表的化石能源是当前的主要能源,但化石能源属不可再生资源,储量有限,而且化石能源的大量使用,还造成了越来越严重的环境污染问题。因此,可持续发展的压力迫使人类去寻找更为清洁的新型能源。氢能作为一种高能量密度、清洁的绿色新能源,氢能的如何有效利用便引起了人们的广泛研究。 目前来看,氢能的存储是氢能应用的主要瓶颈。氢能工业对储氢的要求总的来说是储氢系统要安全、容量大、成本低、使用方便。美国能源部将储氢系统的目标定为:质量密度为6.5%,体积密度为62kgH2/m3。瞄准该目标,国内外展开了大量的研究。本文综述了目前所采用或正在研究的主要储氢材料与技术,包括金属氢化物、碳质材料、配位氢化物、水合物,分析了它们的优缺点,同时指出其相关发展趋势。 1金属氢化物 金属氢化物储氢具有安全可靠、储氢能耗低、储存容量高(单位体积储氢密度高)、制备技术和工艺相对成熟等优点。此外,金属氢化物储氢还有将氢气纯化、 压缩的功能。因此,金属氢化物储氢是目前应用最为广泛的储氢材料。 储氢合金是指在一定温度和氢气压力下,能可逆地大量吸收、储存和释放氢气的金属间化合物。储氢合金由两部分组成,一部分为吸氢元素或与氢有很强亲和力的元素(A),它控制着储氢量的多少,是组成储氢合金的关键元素,主要是I A~ VB族金属,如Ti、Zr、Ca、Mg、V、Nb、Re(稀土元素);另一部分则为吸氢量小或根本不吸氢的元素(B),它则控制着吸/放氢的可逆性,起调节生成热与分解压力的作用,女口Fe、Co、Ni、Cr、Cu、Al等。图1列出了一些金属氢化物的储氢能力。 目前世界上已经研制出多种储氢合金,按储氢合金金属组成元素的数目划分,可分为:二元系、三元系和多元系;按储氢合金材料的主要金属元素区分,可分为:稀土系、镁系、钛系、钒基固溶体、锆系等;而组成储氢合金的金属可分为吸氢类(用A表示)和不吸氢类(用B表示),据此又可将储氢合金分为:AB5型、AB2 型、AB 型、A2B 型。 1.1稀土系储氢合金

储氢材料的研究与发展前景

目录 1.前言 (3) 2.储氢材料 (4) 2.1金属储氢材料 (4) 2.1.1镁基储氢材料 (5) 2.1.2钛基(Fe-Ti)储氢材料 (8) 2.1.3稀土系合金储氢材料 (9) 2.1.4锆系合金储氢材料 (10) 2.1.5金属配位氢化物 (11) 2.2碳质储氢材料 (11) 2.3液态有机储氢材料 (12) 3.储氢方式 (14) 3.1气态储存 (14) 3.2液化储存 (14) 3.3固态储存 (15) 4.氢能前景 (15) 参考文献 (17)

储氢材料的研究与发展前景 摘要:氢能作为一种新型的能量密度高的绿色能源, 正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一, 也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料, 如镁基储氢材料钛碳基储氢材料、稀土储氢材料、碳质储氢等材料的研究进展、发展前景和方向。 关键字:储氢材料,储氢性能,储氢方式,发展前景 1.前言 当今世界, 化石燃料储量正在迅速减少, 现存储量不能满足日益增长的需求。目前世界能源的80%来源于化石燃料, 但化石燃料的使用产生了大量有害物质, 对环境造成巨大影响。因此, 加速能源系统向可再生能源转换以适应当前和未来世界能源需求, 是迫切需要解决问题。 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)

储氢材料

课程名称:先进材料综合实验 指导老师: 成绩:_____________ 实验名称: 储氢材料 实验类型: 技术实验 同组学生姓名:__________ 一、实验目的和要求 二、实验内容和原理 三、主要实验仪器设备 四、操作方法与实验步骤 五、实验数据记录和处理 六、实验结果与分析 七、讨论、心得 一、实验目的 1.了解储氢材料的基本理论及实验方法; 2.掌握储氢材料的设计、制备技术及吸放氢性能测试方法; 3.增强对材料的成分、结构和储氢性能之间关系的认识。 二、实验原理 储氢材料:名义上是一种能有效储存氢的材料,实际上它必须是能在适当的温度、压力条件下进行可逆吸放氢的材料,其主要应用于染料电池和镍氢电池中。 特点: 1.容易活化,单位质量和体积储氢量大(电化学储氢容量高); 2.吸放氢速度快,氢扩散速度大,可逆性好; 3.有较平坦和较宽的平衡平台压区,平衡分解压适中。做气态储氢材料应用时,室温附近的分解压应为>0.1MPa ,做电池材料应用时以10-3——10-1MPa 为宜; 4.吸收、分解过程中的平衡氢压差,即滞后要小; 5.氢化物生成焓,作为储氢材料或电池材料时应该小,做蓄热材料时则应该大; 6.寿命长,能保持性能稳定,作为电池材料时能耐碱液腐蚀; 7.有效导热率大、电催化活性高; 8.价格低廉,不污染环境,容易制造。 分类: 目前研究较多的传统材料体系主要有以下几种类型:AB 5型稀土系材料,非AB 5型稀土 系材料,AB 2型Laves 相材料,AB 型钛系材料,Mg 基材料和V 基固溶体型材料;另外,还包括近年来研究非常热门的金属或非金属的配位氢化物储氢材料:如Al 基配位氢化物、B 基配位氢化物和氨基氢化物。 储氢材料的储氢机理: 1. 气-固储氢反应机理 在一定的温度和压力条件下,储氢材料和H 2通过气-固反应生成含氢固溶体和氢化物相。其吸、 放氢反应可表示为: o 222H MH x y H MH x y y x ?+-?+- 式中MH x 为含氢固溶体相(α相),MH y 为氢化物相(β相),?H o 表示氢化物生成焓或氢化反应 热。一般吸放氢反应为可逆反应,吸氢过程是放热反应,?H o <0,而放氢过程则是吸热反应,即?H o >0。 材料科学与工程学系 实验报告

相关主题
文本预览
相关文档 最新文档