当前位置:文档之家› 大学物理第11章习题解答

大学物理第11章习题解答

大学物理第11章习题解答
大学物理第11章习题解答

习题11

1. 选择题

(1) 一圆形线圈在均匀磁场中作下列运动时, 哪些情况会产生感应电流( ) A. 沿垂直磁场方向平移

B. 以直径为轴转动, 轴跟磁场垂直

C. 沿平行磁场方向平移

D. 以直径为轴转动, 轴跟磁场平行

(2) 尺寸相同的铁环与铜环所包围的面积中, 通以相同变化率的磁通量, 环中( ) A. 感应电动势相同, 感应电流不同. B. 感应电动势相同, 感应电流相同. C. 感应电动势不同, 感应电流相同. D. 感应电动势不同.

(3) 对于涡旋电场, 下列说法不正确的是( ) A. 涡旋电场对电荷有作用力. B. 涡旋电场由变化的磁场产生. C. 涡旋电场由电荷激发.

D. 涡旋电场的电场线是闭合的.

(4) 用线圈的自感系数L 来表示载流线圈磁场能量的公式2

12

m W LI =( ) A. 只适用于单匝圆线圈.

B. 只适用于一个匝数很多, 且密绕的螺线环.

C. 适用于自感系数L 一定的任意线圈.

D. 只适用于无限长密绕螺线管.

(5) 有两个长直密绕螺线管, 长度及线圈匝数均相同, 半径分别为1r 和2r . 管内充满均匀介质, 其磁导率分别为1μ和2μ. 设1212r r =, 1221μμ=, 当将两只螺线管串联在电路中通电稳定后, 其自感系数之比12L L 与磁能之比12m m W W 分别为( ) A. 1211L L =, 1211m m W W =. B. 1212L L =, 1211m m W W =. C. 1212L L =, 1212m m W W =. D. 1221L L =, 1221m m W W =.

答案:B A C D C

2. 填空题

(1) 电阻2R =Ω的闭合导体回路置于变化磁场中, 通过回路包围面的磁通量与时间的关系

为23

(582)10()m t t Wb -Φ=+-?, 则在2t s =至3t s =的时间内, 流过回路导体横截面

的感应电荷等于______________C .

(2) 长为l 的金属直导线在垂直于均匀磁场的平面内以角速度ω转动. 如果转轴在导线上的位置是在_______, 整个导线上的电动势为最大, 其值为_________; 如果转轴位置是在___________, 整个导线上的电动势为最小, 其值为____________.

(3) 半径为a 的无限长密绕螺线管, 单位长度上的匝数为n , 通以交变电流sin m i I t ω=, 则围在管外的同轴圆形回路(半径为r )上的感生电动势为______________.

(4) 一自感系数为0.25H 的线圈, 当线圈中的电流在0.01s 内由2A 均匀地减小到零. 线圈中的自感电动势的大小为______________.

(5) 产生动生电动势的非静电力是______________, 产生感生电动势的非静电力是______________, 激发感生电场的场源是______________. 答案:(1) 2

1065.1-? (2) 端点,2

B l

ω;中点,0。

(3) ()2

00 cos n r I t V μπωω- (4) 50V (5)洛伦兹力,感生电场力(或涡旋电场力),变化的磁场。

3. 计算题

(1)面积为S 的单匝平面线圈,以恒定角速度ω在磁感强度k t B B

ωsin 0=的均匀外磁场中

转动,转轴与线圈共面且与B 垂直( k 为沿z 轴的单位矢量).设t =0时线圈的正法向与k

同方向,求线圈中的感应电动势.

解: 0cos sin cos m BS t B S t t ωωωΦ==

22

0/(sin cos )m d dt B S t t ωωωΦ=-+)2cos(0t S B ωω=

0cos(2)B S t εωω=-

(2)电量Q 均匀分布在半径为a 、长为L( a L >>)的绝缘薄壁长圆筒表面上,圆筒以角速度ω绕中心轴线旋转, 一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如图10.22所示). 若圆筒转速按照ω=ω0(1-t/t 0)的规律(ω0和t 0是已知常数)随时间线性地减小, 求圆形线圈中感应电流的大小和流向.

解:筒以ω旋转时,相当于表面单位长度上有环形电流

π

?2ω

L Q ,它和通电流螺线管的nI 等效.按长螺线管产生磁场的公式,筒内均匀磁场磁感强度为:

L

Q B π=

20ω

μ (方向沿筒的轴向)

筒外磁场为零.穿过线圈的磁通量为:

2

202m Q a

a B L

μωπΦ==

在单匝线圈中产生感生电动势为

m d dt εΦ=-=)d d (22

0t L Qa ω

μ-2

000

2Qa Lt μω= 感应电流i 为 200

2Qa i R

RLt μωε

=

=

a

? B

r

i 的流向与圆筒转向一致.

(3)如图11.23所示, 一长圆柱状磁场,磁场方向沿轴线并垂直图面向里,磁场大小既随到轴线的距离r 成正比而变化,又随时间t 作正弦变化,即B =B 0r sin ωt ,B 0、ω均为常数.若在磁场内放一半径为a 的金属圆环,环心在圆柱状磁场的轴线上,求金属环中的感生电动势,并讨论其方向.

解:取回路正向顺时针,则 2

00

22sin a

m B rdr B r tdr ππωΦ==??

t a B ωsin )3/2(30π=

30/(2/3)cos m d dt B a t επωω=-Φ=-

当 0ε>时,电动势沿顺时针方向;当0ε<时,电动势沿逆时针方向.

(4)两根平行无限长直导线相距为d, 载有大小相等方向相反的电流I, 电流变化率dI/dt=α且α>0. 一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图11.24所示.求线圈中的感应电动势ε,并说明线圈中的感应电流是顺时针还是逆时针方向. 解1:穿过面元d S 的磁通量为

0012d d d d 2()

2m I

I

ΦB dS B S B dS d x x x d x

μμππ=?=?+?=

-

+ 因此穿过线圈的磁通量为 220003

d d d ln 2()

224

d d m m d

d

Id

Id Id ΦΦx x x d x μμμπππ==

-=+??

?

再由法拉第电磁感应定律,有

0d 3d ln d 24d m Φd I

t t μεπ

??=-

= ??? 解2:当两长直导线有电流I 通过时,穿过线圈的磁通量为

03

ln 24

m Id Φμπ=

线圈与两长直导线间的互感为

03ln 24

m Φd M I μπ=

= 当电流以

t

I

d d 变化时,线圈中的互感电动势为

0d 3d ln d 24d d I I M

t t

μεπ??=-= ???

(5)一内外半径分别为R 1, R 2的均匀带电平面圆环, 电荷面密度为σ, 其中心有一半径为r 的导体小环(R 1>>r ),二者同心共面如图11.25所示. 设带电圆环以变角速度ω(t )绕垂直于环面的中心轴旋转,导体小环中的感应电流i 等于多少?方向如何(已知小环的电阻为R ')? 解:带电平面圆环的旋转相当于圆环中通有电流I ,在R 1与R 2之间取半径为R 、宽度为dR

R 1 R 2 r

σ

ω (t )

的环带,环带内有电流 ()dI R t dR σω=,dI 在圆心处O 产生的磁场

0011

/()22B dI R t dR μμσω=

= 由于整个带电圆环面旋转,在中心产生的磁感应强度的大小为

0211

())2

B t R R μσω=

-( 选逆时针方向为小环回路的正方向,则小环中

20211

())2

m t R R r μσωπΦ=

-( 2

021()

)2m L d r d t R R dt dt

μπωεσΦ=-

=--( 2

021()()

2'

r R R d t i R

R dt

μσε

ω-=

=-

方向,当d ω(t)/dt >0时,i 与选定的正方向相反;

当d ω(t)/dt <0时,i 与选定的正方向相同。

(6)如图11.26所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转,O 1O 2在离细杆a 端L/5处. 若已知地磁场 在竖直方向的分量为B. 求ab 两端间的电势差U a -U b .

解: (1)在Ob 上取dr r r +→一小段 则4250

16

d 50l Ob rB r B l εωω=

=

?

同理250

1

d 50

l Oa rB r B l εωω=

=

?

∴221613

(

)505010

ab aO Ob B l B l εεεωω=+=-= (2)∵0>ab ε 即0<-b a U U

∴b 点电势高.

(7)如图11.27所示, 一长直导线通有电流I, 其旁共面地放置一匀质金属梯形线框a b c d a, 已知:da=ab=bc=L, 两斜边与下底边夹角均为60°,d 点与导线相距为 l. 今线框从静止开始自由下落H 高度, 且保持线框平面与长直导线始终共面, 求: ①下落H 高度后瞬间,线框中的感应电流为多少?

r

②该瞬时线框中电势最高处与电势最低处之间的电势差为多少?

解:①由于线框垂直下落,线框所包围面积内的磁通量无变化,故感应电流I i =0

②设dc 边长为

l′,则由图可见 l′=L+2Lcos60°=2L 取d→c 的方向为dc 边内感应电动势的正向,则

()00

2()

'2ln

2c c

dc d

d

l v B dl vBdl

u I

dr

r l l l

gH l l L

l

επ=??==++=+=???

cd 段内电动势ε的方向d→c 由于回路内无电流,

l

l

L gH I u U U V dc d c cd +=

=-=2ln

220π

ε 因为c 点电势最高,d 点电势最低,故V 为电势最高处与电势最低处之间的电势差。

(8)如图11.28所示, 一长直导线载有电流I ,在它的旁边有一段直导线AB(AB=L),长直载流导线与直导线在同一平面内, 夹角为θ. 直导线AB 以速度v (v 的方向垂直于载流导线)运动. 已知: I=100A, v=5.0m/s, θ=30°, a=2cm, AB=16cm. 求: ①在图示位置AB 导线中的感应电动势ε. ②A 和B 哪端电势高.

解:① AB 中的感应电动势为动生电动势,如图所示,d l 所在处的磁感强度为 )2/(0r I B π=μ d l 与d r 的关系为 d l = d r /sin θ

令 b = a + L sin θ,AB 中的感应电动势为

00()cos cos 22sin b

L a

I Iv dr

v B dl v dl r r μμεθθ

ππθ=?==????40sin cot ln 2.79102Iv L a a

μθθπ-+==? V ② B 端电势高.

(9)载有恒定电流I 的长直导线旁有一半圆环导线cd,半圆环半径为b, 环面与直导线垂直,

且半圆环两端点连线的延长线与直导线相交, 如图11.29所示. 当半圆环以速度v

沿平行于直导线的方向平移时, 求半圆环上的感应电动势 解:由于无限长直导线所产生的磁场方向与半圆形导线所在平面平行,因此当导线回路运动时,通过它的磁通量不随时间改变,导线回路中感应电动势0ε=。

l

I

A

C

υ

a

D r

r

d

半圆形导线中的感应电动势与直导线中的感应电动势大小相等,方向相反,所以可由直导线计算感应电动势的大小。

在cd 线段上、距载流直导线x 处取线元dx,, dx 中产生感应电动势大小为

()

d v B dl ε=??

其中02I

B x

μπ=

直导线cd 及圆弧cd 产生感应电动势的大小均为

00ln 22l r

l r l r

l r Iv Iv dx l r

vBdx x l r

μμεππ++--+==

=-??

(10)如图11.30所示, 直角三角形金属框架abc 放在均匀磁场中, 磁场B

平行于ab 边, bc 的长度为l . 当金属框架绕ab 边以匀角速度ω转动时, 求abc 回路中的感应电动势ε和a 、c

两点间的电势差U a – U c .

解:当金属框绕ab 边转动时,通过回路abc 面积的磁通量始终为零,没有变化,所以,回路abc 的感应电动势为零, 即0ab bc ca εεεε=++=。 由于ab 边0ab ε=,bc 边20

12

l

bc lBdl Bl εωω==?

则有21002ab bc ca ca Bl εεεωε++=++=,即21

2

ca Bl εω=- 那么21

2

a c ac

ca U U Bl εεω-=-==-。

(11)如图11.31所示,在纸面所在的平面内有一载有电流I 的无限长直导线,其旁另有一边长为l 的等边三角形线圈ACD .该线圈的AC 边与长直导线距离最近且相互平行.今使线

圈ACD 在纸面内以匀速v 远离长直导线运动,且v

与长直导线相垂直.求当线圈AC 边与长直导线相距a 时,线圈ACD 内的动生电动势.

解:取距长直电流为r 远处的宽为d r 且与长直电流平行的狭条为面积元

2[cos30]tan30d dS a l r r =?+?-??

通过线圈ACD 的磁通量为

d d m m S

S

B S

Φ=Φ=???

cos 3002[cos30]tan 30d 2a l

a

I

a l r r r

μπ+?=?+?-???

o

????

??

??

???

?

R d

003

33

32()23

3

a I I

a l a

μμππ

+=

+?- 由于

da

dt

υ=,所以,线圈ACD 内的动生电动势为 0d 333)]d 322m i I l l

t a a

μευπΦ=-

=-+-

(12)均匀磁场B

被限制在半径R =10 cm 的无限长圆柱空间内,方向垂直纸面向里.取一

固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图11.32所

示.设磁感应强度以d B /d t =1 T/s 的匀速率增加,已知π=31θ,

6==Ob Oa cm ,求等腰梯形回路中感生电动势的大小和方向. 解:大小:ε=?d Φ /d t ? = S d B / d t = S d B / d t =t B Oa R d /d )sin 2

1

2

1

(22

θθ?-

=3.68 mV 方向:沿adcb 绕向.

(13)如图11.33所示,在半径为R 的无限长直圆柱形空间内,存在磁感应强度为B 的均匀磁场,B 的方向平行于圆柱轴线,在垂直于圆柱轴线的平面内有一根无限长直导线,直导线与圆柱轴线相距为d ,且d>R ,已知dB/dt=k ,k 为大于零的常量,求长直导线中的感应电动势的大小和方向.

解:选回路,回路沿半径向外直至无穷远与直线构成闭合回路,则

21

2

m R B πΦ=

ε=m d dt Φ-=21d 2d B R t π-=212

R k π- 长直导线中的电动势等于闭合回路中的电动势,即

所求感应电动势的大小为|ε|=2

12

R k π,方向在直导线中由左向右。

(14)如图11.34所示,长直导线中电流为i ,矩形导线框abcd 与长直导线共面,且ad ∥AB ,dc 边固定,ab 边沿da 及cb 以速度v 无摩擦地匀速平动,设线框自感忽略不计,t=0时,ab 边与dc 边重合.

① 如i = I 0, I 0为常量, 求ab 中的感应电动势, a 、b 两点哪点电势高? ② 如I = I 0 cos (ωt ), 求线框中的总感应电动势. 解:通过线圈abcd 的磁通量为

1

l 0

l 2

l i

A

B

υ

a

b c

d

r

r

d

01

0200120

d d d 2ln 2m m S

S

l l l B S

i

l r r

i l l l l μπμπ+Φ=Φ=?=?+=

???

①由于2l t υ=,所以,ab 中感应电动势为

00012000010

d d d ln 2d ln 2m

i t I l l l t l I l l

l εμπμυπΦ=-+=-+=-

由楞次定律可知,ab 中感应电动势方向由b 指向a ,即a 点为高电势。 ②由于0cos i I t ω=和2l t υ=,所以,ab 中感应电动势为

001001220000010

d d d d ln ln 2d 2d (cos sin )ln 2m i t i l l l l l i l t l t l I l l

t t t l εμμππμυωωωπΦ=-

++=--+=-

-

(15)一载流长直导线与矩形回路ABCD 共面,导线平行于AB ,如图11.35所示.求下列情况下ABCD 中的感应电动势:

①长直导线中电流I = I 0不变,ABCD 以垂直于导线的速度v

从图示初始位置远离导线匀速平移到某一位置时(t 时刻). ②长直导线中电流I = I 0 sin ω t ,ABCD 不动.

③长直导线中电流I = I 0 sin ω t ,ABCD 以垂直于导线的速度v 远离导线匀速运动,初始位置也如图.

解:在t 时刻,假设矩形回路AB 边与长直导线之间的距离为x ,则?

dx

v dt

=,为ABCD 远离导线的速度大小。此时,直导线中电流于矩形回路ABCD 中产生的磁通量为

00ln 22x b

m x

I Il x b

B dS ldr r x

μμππ++Φ=?=?=??

①当0I I =、

dx

v dt

=时,m m d d dx dt dx dt εΦΦ=-=-?002()I l bv x b x μπ=+

②当0sin I I t ω=且x a =时,m m d d dI dt dI dt εΦΦ=-=-?00cos ln 2I l a b

t a μωωπ+=- ③当0sin I I t ω=、dx

v dt

=时,m m m d d d dI dx dt dI dt dx dt εΦΦΦ=-=-?--?

00[-cos ln cos ]2()I l x b bv

t t x x b x

μωωωπ+=

?++

(16)如图11.36所示, 在垂直图面的圆柱形空间内有一随时间均匀变化的匀强磁场, 其磁感强度的方向垂直图面向里. 在图面内有两条相交于O 点夹角为60°的直导线Oa 和Ob , 而O 点则是圆柱形空间的轴线与图面的交点. 此外, 在图面内另有一半径为r 的半圆环形导线在上述两条直导线上以速度v 匀速滑动, v 的方向与∠aOb 的平分线一致, 并指向O 点(如图). 在时刻t, 半圆环的圆心正好与O 点重合, 此时磁感应强度的大小为B, 磁感应强度大小随时间的变化率为k(k 为正数). 求此时半圆环导线与两条直线所围成的闭合回路cOdc 中的感应电动势ε. 解:同时存在,动ε感ε 设B 不变:vBr cd vB l B v d

c

==??=?

d )(动ε,顺时针

设导线不动:6

d 2r k S t B s πε?=???=? 感

,逆时针 26

r k vBr πεεε-=+=感动,顺时针

(17)如图11.37所示, 两根平行长直导线,横截面的半径都是a ,中心相距为d ,两导线属于同一回路.设两导线内部的磁通可忽略不计,证明:这样一对导线长度为l 的一段自感为

0L=

In

l d a

a

μπ-. 解: 如图10-17图所示,取r l S d d = 则 00(

)d 22π(d )

d a

a

I

I

l r r π

r μμ-Φ=

+

-?

011

()d 2π

d

d a

a

Il

r r r μ-=

--?

0(ln

ln )2π

Il

d a d

a d a

μ-=

-- a

a d Il

-=

ln

π0μ

∴ a a d l I L -==ln π0μΦ

(18)一矩形线圈长l=20cm ,宽b=10cm ,由100匝导线绕成, 放置在无限长直导线旁边, 并和直导线在同一平面内, 该直导线是一个闭合回路的一部分, 其余部分离线圈很远, 其影响可略去不计. 求图11.38(a)、图(b)两种情况下, 线圈与长直导线间的互感. 解:(a)设长直电流为I ,它在图(a )中面元处产生的磁感应强度为

1

R 2

R h r

r

d

b

b

2

b

l

)

(a )

(b r

r

d I

02I

B r

μπ=

通过矩形线圈的磁通为

2ln π

2d 2πd 02012

Il r r Il S B b b S μμ??==?=Φ 线圈与长直导线间的互感为

∴ 6012

108.22ln π

2-?==Φ=l N I N M μ (H )

(b)∵图(b )中长直电流磁场通过矩形线圈的磁通012=Φ ∴0=M

(19)一无限长直导线通有电流I = I 0e –3t ,一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图11.39所示,求:

① 矩形线圈中感应电动势的大小及感应电流的方向; ② 导线与线圈的互感系数.

解:①矩形线圈中以顺时针方向为正

00d d ln 22b

m a

Il Il x b

B S x a μμππΦ=?==??

3003ln 2t m m d d I l dI b e dt dI dt a

μεπ-ΦΦ=-

=-= 由0ε>可知,感应电动势的方向与正向一致,故感应电流的方向为顺时针。

②在①中的m Φ,显然是:无限长直导线中电流I 在矩形线圈中所引起的互感磁通。 故互感系数 0ln 2m l b

M I a

μπΦ=

=

(20)一螺绕环单位长度上的线圈匝数为n =10匝/cm .环心材料的磁导率μ=μ0.求在电流强度I 为多大时,线圈中磁场的能量密度w =1 J/ m 3? (μ0=4π×10-7T ·m/A)

解:

2020)(2

1

21nI H w μμ==

∴26.1/)/2(0==n w I μ A

(21)一矩形截面的螺绕环如图11.40所示, 共有N 匝. 试求:: ①此螺绕环的自感系数;

②若导线内通有电流I , 环内磁能为多少? 解:①02NI

B r

μπ=

通过横截面的磁通为

?

=

=Φb

a

m a

b NIh

r h r NI

ln

π

2d π

200μμ 磁链a

b Ih

N N m m ln

π

220μ=

Φ=ψ m LI Φ=

∴a

b

h N I L m ln π220μ=ψ= ②∵2

2

1LI W m = ∴a

b h

I N W m ln π

4220μ=

(22)一无限长圆柱形直导线,其截面各处的电流密度相等, 总电流为I . 求:导线内部单位长度上所储存的磁能. 解:在R r <时 2

0π2R

Ir

B μ=

∴ 4

222002

π82R

r I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ?

?

=

==

R

R

m m I R r

r I r r w W 0

2

04

320π

16π4d d 2μμπ

大学物理第一章质点运动学习题解(详细、完整)

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 解:匀速率;直线;匀速直线;匀速圆周。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。 解:此沟的宽度为 m 345m 10 60sin 302sin 220=??==g R θv 1–4 一质点在xoy 平面运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 解:将s t 1=代入t x 2=,229t y -=得 2=x m ,7=y m s t 1=故时质点的位置矢量为 j i r 72+=(m ) 由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为 m/s 2d d ==t x x v ,m/s 4d d t t x y -==v s t 2=时该质点的瞬时速度为 j i 82-=v (m/s ) 质点在任意时刻的加速度为 0d d ==t a x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2 。

大学物理下册选择题练习题

( 1 ) 边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O处的场 强值和电势值都等于零,则:(C) (A)顶点a、b、c、d处都是正电荷. (B)顶点a、b处是正电荷,c、d处是负电荷. (C)顶点a、c处是正电荷,b、d处是负电荷. (D)顶点a、b、c、d处都是负电荷. (3) 在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将 (B) (A)向下偏. (B)向上偏. (C)向纸外偏. (D)向纸内偏. (4) 关于高斯定理,下列说法中哪一个是正确的? (C) (A)高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B)高斯面上处处D 为零,则面内必不存在自由电荷. (C)高斯面的D 通量仅与面内自由电荷有关. (D)以上说法都不正确. (5) 若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:(A) (A)该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B)该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C)该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直. (D)该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直. (6) 关于电场强度与电势之间的关系,下列说法中,哪一种是正确的? (C)

(A)在电场中,场强为零的点,电势必为零 . (B)在电场中,电势为零的点,电场强度必为零 . (C)在电势不变的空间,场强处处为零 . (D)在场强不变的空间,电势处处相等. (7) 在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则 在一个侧面的中心处的电势为: (B) (A)a Q 04πε. (B)a Q 02πε. (C)a Q 0πε. (D)a Q 022πε. (8) 一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会 发生? (A) (A)在铜条上a、b两点产生一小电势差,且Ua >Ub . (B)在铜条上a、b两点产生一小电势差,且Ua <Ub . (C)在铜条上产生涡流. (D)电子受到洛仑兹力而减速. : (9) 把A,B两块不带电的导体放在一带正电导体的电场中,如图所示.设无限远处为电势 零点,A的电势为UA ,B的电势为UB ,则 (D) (A)UB >UA ≠0. (B)UB >UA =0. (C)UB =UA . (D)UB <UA .

大学物理第一章 习题

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m /s 102=g 。 1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m /s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。 1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。则当t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________;法向加速度为__________。 1–7 下列各种情况中,说法错误的是[ ]。 A .一物体具有恒定的速率,但仍有变化的速度 B .一物体具有恒定的速度,但仍有变化的速率 C .一物体具有加速度,而其速度可以为零 D .一物体速率减小,但其加速度可以增大 1–8 一个质点作圆周运动时,下列说法中正确的是[ ]。 A .切向加速度一定改变,法向加速度也改变 B .切向加速度可能不变,法向加速度一定改变 C .切向加速度可能不变,法向加速度不变 D .切向加速度一定改变,法向加速度不变 1–9 一运动质点某瞬时位于位置矢量),(y x r 的端点处,对其速度大小有四种意见: (1)t r d d (2)t d d r (3)t s d d (4)2 2d d d d ?? ? ??+??? ??t y t x 下述判断正确的是[ ]。 A .只有(1),(2)正确 B .只有(2),(3)正确 C .只有(3),(4)正确 D .只有(1),(3)正确 1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作[ ]。 A .匀速直线运动 B .变速直线运动 C .抛物线运动 D .一般曲线运动 1–11 一小球沿斜面向上运动,其运动方程为S =5+4t –t 2(SI ),则小球运动到最高点的时刻是[ ]。

精选新版2019年大学物理实验完整考试题库200题(含标准答案)

2019年《大学物理》实验题库200题[含参考答案] 一、选择题 1.用电磁感应法测磁场的磁感应强度时,在什么情形下感应电动势幅值的绝对值最大 ( ) A :线圈平面的法线与磁力线成?90角; B :线圈平面的法线与磁力线成?0角 ; C :线圈平面的法线与磁力线成?270角; D :线圈平面的法线与磁力线成?180角; 答案:(BD ) 2.选出下列说法中的正确者( ) A :牛顿环是光的等厚干涉产生的图像。 B :牛顿环是光的等倾干涉产生的图像。 C :平凸透镜产生的牛顿环干涉条纹的间隔从中心向外逐渐变密。 D :牛顿环干涉条纹中心必定是暗斑。 答案:(AC ) 3.用三线摆测定物体的转动惯量实验中,在下盘对称地放上两个小圆柱体可以得到的结果:( ) A :验证转动定律 B :小圆柱的转动惯量; C :验证平行轴定理; D :验证正交轴定理。 答案:(BC) 4.测量电阻伏安特性时,用R 表示测量电阻的阻值,V R 表示电压表的内阻,A R 表示电流表的内阻,I I ?表示内外接转换时电流表的相对变化,V V ?表示内外接转换时电压表的相对变化,则下列说法正确的是: ( ) A:当R <?时宜采用电流表内接;

D :当V V I I ?>?时宜采用电流表外接。 答案:(BC ) 5.用模拟法测绘静电场实验,下列说法正确的是: ( ) A :本实验测量等位线采用的是电压表法; B :本实验用稳恒电流场模拟静电场; C :本实验用稳恒磁场模拟静电场; D :本实验测量等位线采用电流表法; 答案:(BD ) 6.时间、距离和速度关系测量实验中是根据物体反射回来的哪种波来测定物体的位置。 ( ) A :超声波; B :电磁波; C :光波; D :以上都不对。 答案:(B ) 7.在用UJ31型电位差计测电动势实验中,测量之前要对标准电池进行温度修正,这是 因为在不同的温度下:( ) A :待测电动势随温度变化; B :工作电源电动势不同; C :标准电池电动势不同; D :电位差计各转盘电阻会变化。 答案:(CD ) 8.QJ36型单双臂电桥设置粗调、细调按扭的主要作用是:( ) A:保护电桥平衡指示仪(与检流计相当); B:保护电源,以避免电源短路而烧坏; C:便于把电桥调到平衡状态; D:保护被测的低电阻,以避免过度发热烧坏。 答案:(AC ) 9.声速测定实验中声波波长的测量采用: ( ) A :相位比较法 B :共振干涉法; C :补偿法; D :;模拟法 答案:(AB ) 10.电位差计测电动势时若检流计光标始终偏向一边的可能原因是: ( ) A :检流计极性接反了。 B :检流计机械调零不准

大学物理上册期末考试重点例题

大学物理上册期末考试 重点例题 Document number:PBGCG-0857-BTDO-0089-PTT1998

第一章 质点运动学习题 1-4一质点在xOy 平面上运动,运动方程为 x =3t +5, y = 2 1t 2 +3t -4.(SI ) (式中t 以 s 计,x ,y 以m 计.) (1)以时间t 为变量,写出质点位置矢量的表示式; (2)求出t =1 s 时刻和t =2s 时刻的位置矢量,并计算这1秒内质点的位移; (3)计算t =0 s 时刻到t =4s 时刻内的平均速度; (4)求出质点速度矢量表示式,并计算t =4 s 时质点的速度; (5)计算t =0s 到t =4s 内质点的平均加速度; (6)求出质点加速度矢量的表示式,并计算t =4s 时质点的加速度。 (请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式). 解:(1)质点位置矢量 21 (35)(34)2r xi yj t i t t j =+=+++-m (2)将1=t ,2=t 代入上式即有 211 [(315)(1314)](80.5)2t s r i j m i j m ==?++?+?-=- 221 [(325)(2324)](114)2 t s r i j m i j ==?++?+?-=+m 21(114)(80.5)(3 4.5)t s t s r r r i j m i j m i j m ==?=-=+--=+ (3) ∵ 20241 [(305)(0304)](54)2 1 [(345)(4344)](1716)2 t s t s r i j m i j m r i j m i j m ===?++?+?-=-=?++?+?-=+ ∴ 1140(1716)(54)(35)m s 404 t s t s r r r i j i j v m s i j t --==-?+--= ==?=+??-

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理 第一章练习及答案

一、判断题 1. 在自然界中,可以找到实际的质点. ···················································································· [×] 2. 同一物体的运动,如果选取的参考系不同,对它的运动描述也不同. ···························· [√] 3. 运动物体在某段时间内的平均速度大小等于该段时间内的平均速率. ···························· [×] 4. 质点作圆周运动时的加速度指向圆心. ················································································ [×] 5. 圆周运动满足条件d 0d r t =,而d 0d r t ≠ . · ··············································································· [√] 6. 只有切向加速度的运动一定是直线运动. ············································································ [√] 7. 只有法向加速度的运动一定是圆周运动. ············································································ [×] 8. 曲线运动的物体,其法向加速度一定不等于零. ································································ [×] 9. 质点在两个相对作匀速直线运动的参考系中的加速度是相同的. ···································· [√] 10. 牛顿定律只有在惯性系中才成立. ························································································ [√] 二、选择题 11. 一运动质点在某时刻位于矢径(),r x y 的端点处,其速度大小为:( C ) A. d d r t B. d d r t C. d d r t D. 12. 一小球沿斜面向上运动,其运动方程为2 54SI S t t =+-() ,则小球运动到最高点的时刻是: ( B ) A. 4s t = B. 2s t = C. 8s t = D. 5s t = 13. 一质点在平面上运动,已知其位置矢量的表达式为22 r at i bt j =+ (其中a 、b 为常量)则 该质点作:( B ) A. 匀速直线运动 B. 变速直线运动 C. 抛物线运动 D. 一般曲线运动 14. 某物体的运动规律为2d d v kv t t =-,式中的k 为大于0的常数。当0t =时,初速为0v ,则速 度v 与时间t 的关系是:( C ) A. 0221v kt v += B. 022 1 v kt v +-= C. 021211v kt v += D. 0 21211v kt v +-= 15. 在相对地面静止的坐标系中,A 、B 二船都以2m/s 的速率匀速行驶,A 沿x 轴正方向,B

大学物理选择题大全

第一章 质点运动学 习题(1) 1、下列各种说法中,正确的说法是: ( ) (A )速度等于位移对时间的一阶导数; (B )在任意运动过程中,平均速度 2/)(0t V V V +=; (C )任何情况下,;v v ?=? r r ?=? ; (D )瞬时速度等于位置矢量对时间的一阶导数。 2、一质点作直线运动,某时刻的瞬时速度 m/s 2=v ,瞬时加速度2m/s 2-=a ,则一秒钟后质点的速度为: ( ) (A)等于0m/s ; (B)等于 -2m/s ; (C)等于2m/s ; (D)不能确定。 3、 一物体从某一确定高度以 0V 的速度水平抛出(不考虑空气阻力),落地时的速 度为t V ,那么它运动的时间是: ( ) (A) g V V t 0 -或g V V t 2 02- ; (B) g V V t 0 -或 g V V t 2202- ; (C ) g V V t 0 - 或g V V t 202- ; (D) g V V t 0 - 或g V V t 2202- 。 4、一质点在平面上作一般曲线运动,其瞬 时速度为 V ,瞬时速率为v ,某一段时间内的平均速度为V ,平均速率为V , 它们之间的关系必定是 ( ) (A) V V V V == ,;(B) V V V V =≠ ,;(C)V V V V ≠= ,;(D) V V V V ≠≠ ,。 5、下列说法正确的是: ( ) (A )轨迹为抛物线的运动加速度必为恒 量; (B )加速度为恒量的运动轨迹

可能是抛物线; (C )直线运动的加速度与速度的方向一 致; (D )曲线运动的加速度必为变量。 第一章 质点运动学 习题(2) 1、 下列说法中,正确的叙述是: ( ) a) 物体做曲线运动时,只要速度大小 不变,物体就没有加速度; b) 做斜上抛运动的物体,到达最高点 处时的速度最小,加速度最大; (C )物体做曲线运动时,有可能在某时刻法向加速度为0; (D )做圆周运动的物体,其加速度方向一定指向圆心。 2、质点沿半径为R 的圆周的运动,在自然 坐标系中运动方程为 22 t c bt s -=,其中 b 、 c 是常数且大于0,Rc b >。其切向加速度和法向加速度大小达到相等所用 最短时间为: ( ) (A) c R c b + ; (B) c R c b - ; (C) 2cR c b -; (D) 22cR cR c b +。 3、 质点做半径为R 的变速圆周运动时的加 速度大小为(v 表示任一时刻质点的速率) ( ) (A ) t v d d ; (B )R v 2 ; (C ) R v t v 2 +d d ; (D ) 2 22)d d (??? ? ??+R v t v 。 第二章 牛顿定律 习题 1、水平面上放有一质量m 的物体,物体与水平面间的滑动摩擦系数为μ,物体在图示 恒力F 作用下向右运动,为使物体具有最大的加速度,力F 与水平面的夹角θ应满 足 : ( ) (A )cosθ=1 ; (B )sinθ=μ ; (C ) tan θ=μ; (D) cot θ=μ。

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间内合力作功 为A 1,32t t →时间内合力作功为A 2,43t t → (C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间内,其平 均速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D )T R π2, 0 5、质点在恒力F ρ作用下由静止开始作直线运动。已知在时间1t ?内,速率由0增加到υ; 在2t ?内,由υ增加到υ2。设该力在1t ?内,冲量大小为1I ,所作的功为1A ;在2t ?内, 冲量大小为2I ,所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直 线运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力 F 的大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理题库之近代物理答案

大学物理题库------近代物理答案 一、选择题: 01-05 DABAA 06-10 ACDBB 11-15 CACBA 16-20 BCCCD 21-25 ADDCB 26-30 DDDDC 31-35 ECDAA 36-40 DACDD 二、填空题 41、见教本下册p.186; 42、c ; 43. c ; 44. c , c ; 45. 8106.2?; 46. 相对的,相对运动; 47. 3075.0m ; 48. 181091.2-?ms ; 49. 81033.4-?; 51. s 51029.1-?; 52. 225.0c m e ; 53. c 23, c 2 3; 54. 2 0) (1c v m m -= , 202c m mc E k -=; 55. 4; 56. 4; 57. (1) J 16109?, (2) J 7105.1?; 58. 61049.1?; 59. c 32 1; 60. 13108.5-?, 121004.8-?; 61. 20 )(1l l c -, )( 02 0l l l c m -; 62. 1 1082.3?; 63. λ hc hv E ==, λ h p = , 2 c h c m νλ = = ; 64. V 45.1, 151014.7-?ms ; 65. )(0v c e h -λ ; 66. 5×1014,2; 67. h A /,e h /)(01νν-; 68. 5.2,14 100.4?; 69. 5.1; 70. J 261063.6-?,1341021.2--??ms kg ; 71. 21E E >, 21s s I I <; 72. 5.2,14100.4?; 73. π,0; 74. 负,离散; 75. 定态概念, 频率条件(定态跃迁); 76. —79. 见教本下册p.246--249; 80. (1)4,1;(2)4, 3; 81. J m h E k 21 2 210 29.32?== λ;

大学物理典型例题分析

大学物理典型例题分析 第13章光的干涉 例13-1如图将一厚度为l ,折射率为n 的薄玻璃片放在一狭缝和屏幕之间,设入射光波长为λ,测量中点C处的光强与片厚l 的函数关系。如果l =0时,该点的强度为 0I ,试问: (1)点C的光强与片厚l的函数关系是什么; (2)l 取什么值时,点C 的光强最小。 解 (1)在C 点来自两狭缝光线的光程差为nl l δ=- 相应的相位差为 22(1)n l π π ?δλ λ ?= = - 点C 的光强为: 2 14cos 2I I ??= 其中:I1 为通过单个狭缝在点C 的光强。 014I I = (2)当 1(1)()2 n l k δλ =-=-时 点C 的光强最小。所以 1() 1,2,3, 21l k k n λ=-=- 例13-2如图所示是一种利用干涉方法测量气体折射率的干涉示意图。其中T 1 ,T 2 为一对完全相同的玻璃管,长为l ,实验开始时,两管中为空气,在 P 0 处出现零级明纹。然后在T 2 管中注入待测气体而将空气排除,在这过程中,干涉条纹就会移动,通过测定干涉条纹的移 动数可以推知气体的折射率。 设l =20cm ,光波波长589.3nm λ=,空气的折射率1.000276,充一某种气体后,条纹 移动200条,求这种气体的折射率。 解当两管同为空气时,零级明纹出现在P 0处,则从S 1和S 2射出的光在此处相遇时,光程差为零。T 2管充以某种气体后,从S2射出的光到达屏处的光程就要增加,零级明纹将要向下移动,出现在o P ' 处。如干涉条纹移动N条明纹,这样P 0 处将成为第N 级明纹,因此,充气后两 光线在P 0 处的光程差为 S 1 L 1 L 2 T 2 T 1 S 2 S E P 0 P 0 ' 例13-2图 例13-1图

大学物理考试题库-大学物理考试题

马文蔚( 112 学时) 1-9 章自测题 第 1 部分:选择题 习题 1 1-1 质点作曲线运动,在时刻t质点的位矢为r ,速度为 v ,t 至 t t 时间内的位移为r ,路程为s,位矢大小的变化量为r (或称r ),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有() (A )r s r (B )(C)(D )r s r ,当t0 时有 dr ds dr r r s ,当t0 时有 dr dr ds r s r ,当t0 时有 dr dr ds (2)根据上述情况,则必有() (A )(C)v v, v v( B)v v, v v v v, v v(D )v v, v v 1-2 一运动质点在某瞬间位于位矢r ( x, y) 的端点处,对其速度的大小有四种意见,即 (1)dr ;( 2) dr ;(3) ds ;(4)( dx )2( dy )2 dt dt dt dt dt 下列判断正确的是: (A )只有( 1)(2)正确(B )只有( 2)正确 (C)只有( 2)(3)正确(D )只有( 3)( 4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度, a 表示加速度,s表示路程,a t表示切向加速度。对下列表达式,即 (1)dv dt a ;(2) dr dt v ;(3) ds dt v ;(4)dv dt a t。 下述判断正确的是() (A )只有( 1)、( 4)是对的(B )只有( 2)、(4)是对的 (C)只有( 2)是对的( D)只有( 3)是对的 1-4 一个质点在做圆周运动时,则有() (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C)切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变 1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边

大学物理习题答案第一章

[习题解答] 1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。求汽车行驶的总路程和总位移。 解汽车行驶的总路程为 ; 汽车的总位移的大小为 ?r = 位移的方向沿东北方向,与 方向一致。 1-4 现有一矢量R是时间t的函数,问 与 在一般情况下是否相等?为什么? 解 与 在一般情况下是不相等的。因为前者是对矢量R的绝对值(大小或长度)求导, 表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。 1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 -2t 3 ,r和t的单位分别是m和s。求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度; (3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。 (1)第二秒内的平均速度 m?s-1; (2)第三秒末的速度 因为,将t = 3 s 代入,就求得第三秒末的速度,为 v3 = - 18 m?s-1; 用同样的方法可以求得第四秒末的速度,为 v4 = - 48 m?s-1; (3)第三秒末的加速度 因为,将t = 3 s 代入,就求得第三秒末的加速度,为 a3 = - 24 m?s-2; 用同样的方法可以求得第四秒末的加速度,为 v4 = - 36 m?s-2 . 1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明: (1) v d v = a d s; (2)当a为常量时,式v 2 = v02 + 2a (s-s0 )成立。

大学物理典型例题分析

大学物理典型例题分析 第13章光的干涉 例13-1如图将一厚度为I,折射率为n的薄玻璃片放在一狭缝和屏幕之间, I (k 1k 1,2,3,川 2 n 1 种利用干涉方法测量气体折射率的干涉示意图。其中 对完全相同的玻璃管,长为I,实验开始时,两管中为空气,在P0处出现零级明纹。然后 在T2管中注入待测气体而将空气排除,在这过程中,干涉条纹就会移动,通过测定干涉条纹的移动数可以推知气体的折射率。 设l=20cm,光波波长589.3nm,空气的折射率1.000276,充一某种气体后,条纹移动 200条,求这种气体的折射率。 解当两管同为空气时,零级明纹出现在P。处,则从S和S2射出的光在此处相遇时, 光程差为零。T2管充以某种气体后,从s射出的光到达屏处的光程就要增加,零级明纹将要向下移动,出现在 FO 处。如干涉条纹移动N条明纹,这样P。处将成为第N级明纹,因此, 充气后两光线在P0处的光程差为 n2l n1l ,测量中点C处的光强与片厚I的函数关系。如果1=0时,该点的强度为 (1) 点C的光强与片厚I的函数关系是什么; (2) I取什么值时,点C的光强最小。 解(1)在C点来自两狭缝光线的光程差为 相应的相位差为 长为 nl Io ,试问: I M1 C 点C的光强为: 2 I 2 其中:h为通过单个狭缝在点 I 411 cos 例13-1图 ⑵当 —(n 1)I C的光 强。 I i (n 1)l 1 (k 2)时 设入射光波 点C的光强最小。所以 例13-2如图所示是

所以 n 2l nj N 即 代入数据得 n 2 N l n 1 n 2 200 589.3 103 1.0002 7 6 1.000865 0.2 例13-3.在双缝干涉实验中,波长 =5500?的单色平行光垂直入射到缝间距 a=2 10 -4 m 的双缝上,屏到双缝的距离 D = 2m .求: (1 )中央明纹两侧的两条第 10级明纹中心的间距; (2)用一厚度为e=6.6 10-6 m 、折射率为n=1.58的玻璃片覆盖一缝后,零级明纹将移到 原来的 第几级明纹处 ? D 解:(1)因为相邻明(暗)条纹的间距为 T ,共20个间距 x 20— 0.11m 所以 a (2)覆盖玻璃后,零级明纹应满足: r 2 (r 1 e) ne 0 设不盖玻璃片时,此点为第k 级明纹,则应有 r 2 r 1 k 所以 (n 1)e k (n 1)e k 6.96 7 零级明纹移到原第 7级明纹处. 例13-4薄钢片上有两条紧靠的平行细缝,用波长 =5461?的平面光波正入射到钢片 上。屏幕距双缝的距离为 D =2.00m ,测得中央明条纹两侧的第五级明条纹间的距离为 x =12.0mm., (1) 求两缝间的距离。 (2) 从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离? (3) 如果使光波斜入射到钢片上,条纹间距将如何改变? 2kD x --------- 解(1) d 2kd d x 此处 k 5 10D d 0.910mm x (2)共经过20个条纹间距,即经过的距离

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理力学题库及答案

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. [ D ] 2、一质点沿x 轴作直线运动,其v -t 曲 线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ B ] 3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分 别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ D ] 4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=, 则一秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ D ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中 a 、 b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运 动. [ B ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x [ D ] 1 4.5432.52-112 t (s) v (m/s) O c b a p

最新大学物理例题

例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。如图3-4所示。求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。 解:建立如右下图所示的坐标,时刻头顶影子的坐标为 ,设头顶影子的坐标为,则 由图中看出有 则有 所以有 ; 例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A被人拉着沿水平方向匀速运动,其速率。A离地高度保持为h,h =1.5m。运动开始时,重物放在地面B0处,此时绳C在铅直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求: (1) 重物B上升的运动方程; (2) 重物B在时刻的速率和加速度; (3) 重物B到达C处所需的时间。 解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为

因绳长为 由上式可得重物的运动方程为 (SI) (2)重物B的速度和加速度为 (3)由知 当时,。 此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。 例3一质点在xy平面上运动,运动函数为x = 2t, y = 4t2-8(SI)。 (1) 求质点运动的轨道方程并画出轨道曲线; (2) 求t1=1s和t2=2s时,质点的位置、速度和加速度。

解:(1) 在运动方程中消去t,可得轨道方程为 , 轨道曲线为一抛物线如右图所示。 (2) 由 可得: 在t1=1s 时, 在t2=2s 时, 例4质点由静止开始作直线运动,初始加速度为a0,以后加速度均匀增加,每经过τ秒增加a0,求经过t秒后质点的速度和位移。 解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。 由题意可知,加速度和时间的关系为: 根据直线运动加速度的定义

大学物理考试试题

一、选择题 (每小题2分,共20分) 1. 关于瞬时速率的表达式,正确的是 ( B ) (A) dt dr =υ; (B) dt r d = υ; (C) r d =υ; (D) dr dt υ= r 2. 在一孤立系统内,若系统经过一不可逆过程,其熵变为S ?,则下列正确的是 ( A ) (A) 0S ?>; (B) 0S ?< ; (C) 0S ?= ; (D) 0S ?≥ 3. 均匀磁场的磁感应强度B 垂直于半径为r 的圆面,今以该圆面为边界,作以半球面S ,则通过S 面的磁通量的大小为 ( B ) (A )2πr 2B; (B) πr 2B; (C )0; (D )无法确定 4. 关于位移电流,有下面四种说法,正确的是 ( A ) (A )位移电流是由变化的电场产生的; (B )位移电流是由变化的磁场产生的; (C )位移电流的热效应服从焦耳—楞次定律; (D )位移电流的磁效应不服从安培环路定律。 5. 当光从折射率为1n 的介质入射到折射率为2n 的介质时,对应的布儒斯特角b i 为 ( A ) 2 1 1 2 (A)( );(B)( );(C) ;(D)02 n n arctg arctg n n π 6. 关于电容器的电容,下列说法正确..的是 ( C ) (A) 电容器的电容与板上所带电量成正比 ; (B) 电容器的电容与板间电压成反比; (C)平行板电容器的电容与两板正对面积成正比 ;(D) 平行板电容器的电容与两板间距离成正比 7. 一个人站在有光滑转轴的转动平台上,双臂水平地举二哑铃。在该人把二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统 ( C ) (A )机械能守恒,角动量不守恒; (B )机械能守恒,角动量守恒; (C )机械能不守恒,角动量守恒; (D )机械能不守恒,角动量也不守恒; 8. 某气体的速率分布曲线如图所示,则气体分子的最可几速率v p 为 ( A ) (A) 1000 m ·s -1 ; (B )1225 m ·s -1 ; (C) 1130 m ·s -1 ; (D) 1730 m ·s -1 得分

大学物理习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

相关主题
文本预览
相关文档 最新文档