当前位置:文档之家› HSJ08电机驱动芯片数据手册_V1.2

HSJ08电机驱动芯片数据手册_V1.2

HSJ08电机驱动芯片数据手册_V1.2
HSJ08电机驱动芯片数据手册_V1.2

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

电机驱动芯片

自动0701 李欢20074998 LMD18200是美国国家半导体公司(NS)推出的专用于直流电动机驱动的H桥组件。同一芯片上集成有CMOS控制电路和DMOS功率器件,利用它可以与主处理器、电机和增量型编码器构成一个完整的运动控制系统。LMD18200广泛应用于打印机、机器人和各种自动化控制领域。 内部机构和引脚说明: 注释:光电编码器是通过读取光电编码盘上的图案或编码信息来表示与光电编码器相连的电机转子的位置信息的,即判断方位。 LMD18200工作原理:

内部集成了四个DMOS管,组成一个标准的H型驱动桥。通过充电泵电路为上桥臂的2个开关管提供栅极控制电压,充电泵电路由一个300kHz左右的工作频率。可在引脚1、11外接电容形成第二个充电泵电路,外接电容越大,向开关管栅极输入的电容充电速度越快,电压上升的时间越短,工作频率可以更高。引脚2、10接直流电机电枢,正转时电流的方向应该从引脚步到引脚10;反转时电流的方向应该从引脚10到引脚2。电流检测输出引脚8可以接一个对地电阻,通过电阻来输出过流情况。内部保护电路设置的过电流阈值为10A,当超过该值时会自动封锁输出,并周期性的自动恢复输出。如果过电流持续时间较长,过热保护将关闭整个输出。过热信号还可通过引脚9输出,当结温达到145度时引脚9有输出信号 LMD18200提供双极性驱动方式和单极性驱动方式。双极性驱动是指在一个PWM周期里,电动机电枢的电压极性呈正负变化。双极性可逆系统虽然有低速运行平稳性的优点,但也存在着电流波动大,功率损耗较大的缺点,尤其是必须增加死区来避免开关管直通的危险,限制了开关频率的提高,因此只用于中小功率直流电动机的控制。本文中将介绍单极性可逆驱动方式。单极性驱动方式是指在一个PWM周期内,电动机电枢只承受单极性的电压。 该应用电路是Motorola 68332CPU与LMD18200接口例子,它们组成了一个单极性驱动直流电机的闭环控制电路。在这个电路中,PWM控制信号是通过引脚5输入的,而转向信号则通过引脚3输入。根据PWM控制信号的占空比来决定直流电机的转速和转向。采用一个增量型光电编码器来反馈电动机的实际位置,输出AB两相,检测电机转速和位置,形成闭环位置反馈,从而达到精确控制电机。

步进电机驱动芯片类型

随着工业和家电领域、玩具马达及机器人市场的需求持续稳定成长,步进电机驱动控制芯片得到越来越广泛的应用。步进电机驱动芯片是集成有CMOS 控制电路和DMOS 功率器件的芯片,利用它可以与主处理器、电机和增量型编码器构成一个完整的运动控制系统。可以用来驱动直流电机、步进电机和继电器等感性负载。 步进电机驱动分电压型和电流型两种,那它们之间有什么区别呢?如何判断驱动芯片是电压型的还是电流型的? 1、电压型 直流电路采用电容器滤波。在波峰(电压较高)时,由电容器储存电场能,在波谷(电压较低)时,电容器将释放电场能来进行补充,从而使直流电压保持平稳。直流电路是一个电压源,故称为电压型。 2、电流型 直流电路采用电抗器滤波。在波峰(电流较大)时,由电抗器储存磁场能,在波谷(电流较小)时,电抗器将释放磁场能来进行补充,从而使直流电流保持平稳。直流电路是一个电流源,故称为电流型。 步电机系统解决方案

由于负载一般都是感性的,它和电源之间必有无功功率传送,因此在中间的直流环节中,需要有缓冲无功功率的元件。 如果采用大电容器来缓冲无功功率,则构成电压源型变频器;如采用大电抗器来缓冲无功功率,则构成电流源型变频器。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓(SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、减速步进电机、带刹车步进电机、直线步进电机、空心轴步进电机、防水步进电机以及步进驱动器、减振垫、制振环、电机引线、拖链线、齿轮、同步轮、手轮等专业配套产品。我们还供应德国TRINAMIC驱动芯片和日本NPM运动控制芯片。根据客户配套需要,我们还可以提供其他种类及其他品牌微电机产品的配套服务。也提供NPM的线性磁轴电机(直线电机)及技术支持和服务。 步电机系统解决方案

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

L298电机驱动芯片资料

L298 Jenuary 2000DUAL FULL-BRIDGE DRIVER Multiwatt15 ORDERING NUMBERS :L298N (MultiwattVert. L298HN (MultiwattHoriz. L298P (PowerSO20 BLOCK DIAGRAM . OPERATING SUPPLY VOLTAGE UP TO 46V . TOTAL DC CURRENT UP TO 4A . LOW SATURATION VOLTAGE . OVERTEMPERATURE PROTECTION . LOGICAL ”0”INPUT VOLTAGE UP TO 1.5V (HIGHNOISE IMMUNITY DESCRIPTION The L298is an integrated monolithic circuit in a 15-lead Multiwatt and PowerSO20packages. It is a high voltage, high current dual full-bridge driver de-signedto acceptstandardTTL logic levels anddrive inductive loads such as relays, solenoids, DC and steppingmotors. Two enableinputs are provided to enableor disablethe deviceindependentlyof thein-put signals. The emitters of the lower transistors of each bridge are connected togetherand the corre-sponding external terminal can be used for the con-nectionof an externalsensing resistor.Anadditional supply input is provided so that the logic works at a lower voltage. PowerSO20

基于MC33035芯片的无刷直流电机驱动系统设计

基于MC33035的无刷直流电机驱动控制系统设计 摘要 随着社会的发展和人民的生活水平提高,人们对交通工具的需求也在不断发展和提高。电动自行车作为一种“绿色产品”已经在全国各省市悄然兴起,进入千家万户,成为人们,特别是中老年人和女士们理想的交通工具,受到广大使用者的喜爱。 MC33035的典型控制功能包括PWM开环速度控制、使能控制(起动或停止) 、正反转控制和能耗制动控制。此芯片具有过流保护、欠压保护、欠流保护、又因此芯片低成本、高智能化、从而简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。 设计的直流无刷电机控制器是采用 MC33035 芯片控制的,以本次设计结果表明,MC33035的典型控制功能带有可选时间延迟锁存关断模式的逐周限流特性以及内部热关断等特性。电动自行车作为一种新型交通工具已经在社会上引起很大的影响并受到广大使用者的喜爱。 关键词:电动自行车,无刷直流电机,MC33035,位置传感器

THE BRUSHLESS DC MOTOR DRIVE SYSTEM DESIGN BASED ON MC33035 CHIP ABSTRACT With the rapid development of technology, new energy technologies in recent years have been widely used. For example, the small size, light weight, high efficiency, low noise, large capacity and high reliability features such as permanent magnet brushless DC motor-driven bike. MC33035 Typical control functions include open loop PWM speed control so that it can control (start or stop), reversing control and braking control. This chip is overcurrent protection, undervoltage protection, under current protection, and therefore chip cost, high intelligence, which simplifies the system structure, lower system costs, increase system performance to meet the needs of more applications. The design of the brushless DC motor controller is controlled by MC33035 chip to this design results show that, MC33035 typical time delay control with an optional latch-by-week shutdown mode current limiting characteristics, and internal thermal shutdown characteristics. Electric bicycles as a mode of transportation has caused a great impact on society and loved by the majority of users. KEY WORDS: electric-bicycle, brushless DC motor, MC33035, position sensors

较大功率直流电机驱动电路的设计方案

1 引言 直流电机具有优良的调速特性,调速平滑、方便、调速围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。 许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。 2 H 桥功率驱动电路的设计 在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速围不大,一般都是配合变压调速使用。因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。 2.1 H 桥驱动原理 要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。

电机驱动芯片资料全

A4954 双路全桥式DMOS PWM 电动机驱动器 特点 ?低R DS(on)输出 ?过电流保护(OCP) 电动机短路保护 o o电动机引脚接地短路保护 o电动机引脚电池短路保护 ?低功耗待机模式 ?可调PWM 电流限制 ?同步整流 ?部欠压锁定(UVLO) ?交叉电流保护 描述 通过脉宽调制(PWM) 控制两个直流电动机,A4954 能够承受峰值输出电流达±2 安培,并使电压达到40 伏特。 输入端通过应用外部PWM 控制信号以控制直流电动机的速度与方向。部同步整流控制电路用来降低脉宽调制(PWM) 操作时的功率消耗。 部电路保护包括过电流保护、电动机接地或电源短路、因滞后引起的过热关机、V BB欠压监视以及交叉电流保护。 A4954 采用带有外置散热板的16 引脚TSSOP 小型封装(后缀LP)。该封装为无铅封装,且引脚框采用100% 雾锡电镀。 ?功能方框图

A4950 全桥式DMOS PWM 电动机驱动器特点 ?低R DS(开)输出 ?过电流保护(OCP) o电动机短路保护 o电动机引脚接地短路保护 o电动机引脚电池短路保护 ?低功耗待机模式 ?可调PWM 电流限制 ?同步整流 ?部欠压锁定(UVLO) ?交叉电流保护

描述 通过脉宽调制(PWM) 控制直流电动机,A4950 能够提供±3.5 安培的峰值输出电流,工作电压为40 伏特。 该产品可提供输入端子,通过外部施加的PWM 控制信号控制直流电动机的速度与方向。采用部同步整流控制电路降低脉宽调制(PWM) 操作时的功率消耗。 部电路保护包括过电流保护、电动机引脚接地短路或电源短路、带时延的过热关机、V BB欠压监视以及交叉电流保护。 A4950 采用带有外露散热板的8 引脚SOICN 小型封装(后缀LJ)。该封装为无铅封装,且引脚框采用100% 雾锡电镀。 ? 功能方框图 A4938 三相无刷直流电动机预驱动器 功能及优点 ?驱动6 N-通道MOSFET ?同步整流,减少功率耗散

直流电机驱动电路设计

应用越来越广泛的直流电机,驱动电路设计 Source:电子元件技术| Publishing Date:2009-03-20 中心论题: ?在直流电机驱动电路的设计中,主要考虑功能和性能等方面的因素 ?分别介绍几种不同的栅极驱动电路并比较其性能优缺点 ?介绍PWM调速的实现算法及硬件电路 ?介绍步进电机的驱动方案 解决方案: ?根据实际电路情况以及要求仔细选择驱动电路 ?使用循环位移算法及模拟电路实现PWM调速 ?对每个电机的相应时刻设定相应的分频比值,同时用一个变量进行计数可实现步进电机的分频调速 直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1。输出电流和电压围,它决定着电路能驱动多大功率的电机。 2。效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3。对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4。对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5。可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 三极管-电阻作栅极驱动 1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2。7V 基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。

19 IR_IRMCK F171-灵活易用的电机控制芯片

IRMCK/F171-灵活易用的电机控制芯片 IRMCK/F171 灵活易用的电机控制芯片
国际整流器公司 2012-1-11

内容
? 概述 概 ? 传统方案存在的问题 ? IR的解决方案:简单易用的电机控制 芯片IRMCF171 ? 方案辅助工具和测试结果 ? 结论

概述
? 全球能源短缺导致越来越严格的政府节能规章出 台 ? 在中国 能效标签制度的实施以及能效标准的不 在中国,能效标签制度的实施以及能效标准的不 断提高使很多电器转向变频控制 ? 变频空调已经完全确立了市场的主导地位 ? 家电的变频化趋势也越来越明确,电机调速市场 竞争将更加激烈,产品更新的周期越来越短。随 之而来的新产品研发风险也越来越大 之而来的新产品研发 险也越来越大 ? 节能热点:
– – – – 高效率永磁电机 无位置传感正弦波控制 宽的调速范围 低的振动和噪声

传统方案存在的问题
? ? ? ? 大容量存储单元的高速DSP或32位单片机 软件算法复杂,控制器计算任务繁重 软件算法复杂 控制器计算任务繁重 对于传统的软件编程控制方案,完成电机控制算法已经很复杂, 对于系统设计人员的要求很高
1. 2. 3. 熟悉实时的FOC控制算法,熟悉相关的外设; 熟悉DSP或32位RISC的C或汇编语言编程; 熟悉各种数模混合电路,高压电路和功率开关电路.
?
?
开发周期长,开发成本和开发风险都很高
后续的软件维护成本高

电机控制系统框图
IR电机控制IC-IRMCF171

无刷直流电机驱动电路 dsp

基于 DSP 的无刷直流电机控制系统的设计
2010-1-13 22:24:00 来源:
摘 要:介绍了以高性能 TMS320F2812 DSP 芯片为核心的无刷直流电机控制系统的设 计和实现,主要包括系统硬件电路的主要构成,电机的控制策略及软件结构。 实验 表明,该系统结构简单紧凑,控制精度高,具有良好的静态和动态性能。 关键词:无刷直流电机;TMS320F2812;控制系统 Design of Control System of Brushless DC Motor Based on DSP WANG Chen-yang, ZHANG Qi, XIONG Jiu-long Abstract: The design and implementation of brushless DC motor control system based on high performance DSP TMS320F2812 is introduced in this paper, it is made up of three aspects, the main structure of system hardware, the strategy of motor controlling and software structure。 Experimental results show that the system has a simple and compact structure,high control precision and good dynamic and static characteristics. Key Words:brushless DC motor;TMS320F2812;control system 1. 引言 无刷直流电机利用电子换向器取代了传统直流电机中的机械电刷和机械换向器, 因此不仅保留了直流电动机运行效率高和调速性能好等优点, 又具有交流电动机的结 构简单、运行可靠、维护方便等优点。由于不受机械换向限制,易于做到大容量、高 转速,目前在航天、军工、数控、冶金、医疗器械等领域已得到大量应用。 TMSF2812 DSP 是 TI 公司新推出的基于 TMS320C2xx 内核的定点数字信号处理器。器件上集成了 多种先进的外设,具有灵活、可靠的控制和通信模块,完全可以采用单芯片实现电机 控制系统的控制和通信功能,使得电机控制系统简单化、模块化,为电机及其他运动 控制领域应用的实现提供了良好的平台。 本文设计和实现了基于 TI 公司 TMS320F2812 DSP 芯片的无刷直流电机控制系统,整个系统结构紧凑,功能完善。 2. 系统硬件设计 系统的硬件框图如图 1 所示,可以看出基本上包括一个以 TMS320F2812 DSP 为核 心的 DSP 控制板,一块配套的功率驱动板和一台无刷直流电机。

直流电机驱动控制电路_NMosfet

1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。 2 直流电机驱动控制电路总体结构 直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图一 由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。 在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。 3 H桥功率驱动原理 直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。

步进电机驱动芯片THB6064

THB6064H大功率、高细分两相混合式 步进电机芯片式驱动器

一. 特性: ● 双全桥MOSFET驱动,低导通电阻导通Ron = 0.4 Ω (上桥+下桥) ,大电流4.5V(峰值) ● 高耐压50V DC ● 多细分可选(1/2,1/8,1/10, 1/16, 1/20, 1/32, 1/40, 1/64) ● 自动半流锁定 ● 衰减方式连续可调 ● 内置温度保护及过流保护 重量:9.86 g (typ.) 二. 框图

三. 管脚说明:

管脚 编号 输入/ 输出 符号 功 能 描 述 1 输出 ALERT 温度波爱护及过流保护输出端(常态为1,过流保护时为0) 2 —— SGND 信号地外部与电源地相连 3 —— OSC1B B相斩波频率控制端 4 输入 PFD 衰减方式控制端 5 输入 V ref 电流设定端(0——3V) 6 输入 VMB 电机驱动电源 B相电源 与A相电源相连 7 输入 M1 细分数选择端(详见附表) 8 输入 M2 细分数选择端(详见附表) 9 输入 M3 细分数选择端(详见附表) 10 输出 OUT2B B相功率桥输出端2 11 —— NFB B相电流检测端 应连接大功率检测电阻,典型值0.15Ω 12 输出 OUT1B B相功率桥输出端1 13 —— PGNDB B相驱动电源地与A相电源地及信号地相连 14 输出 OUT2A A相功率桥输出端2 15 —— NFA A相电流检测端 应连接大功率检测电阻,典型值0.15Ω 16 输出 OUT1A A相功率桥输出端1 17 —— PGNDA A相驱动电源地与B相电源地及信号地相连 18 输入 ENABLE 使能端ENABLE=0所有输出为0,ENABLE=1正常工作 19 输入 RESET 上电复位端 20 输入 VMA 电机驱动电源A相电源 与B相电源相连 21 输入 CLK 脉冲输入端 22 输入 CW/CCW 电机正反转控制端 23 —— OSC1A A相斩波频率控制端 24 输入 V DD 5V电源 芯片工作电源要求稳定 25 输出 Down 半流锁定控制端 四. 电气参数: 最高额定值Absolute Maximum Ratings(Ta =25℃)

直流电机驱动电路的设计

直流电机驱动电路的设计 驱动电路的性能很大程度上影响整个系统的工作性能。有许多问题需要慎重设计,例如,导通延时、泵升保护、过压过流保护、开关频率、附加电感的选择等。 1.开关频率和主回路附加电感的选择 力矩波动也即电流波动,由系统设计给定的力矩波动指标为ΔI/IN,对有刷直流电动机而言,通常在(5~10)%左右。为了便于分析可认为 ΔI/IN=ΔI/(Us/Rd) (1) 式中Rd为电枢回路总电阻。代入前面各种驱动控制方式的ΔI 表达式中,消去Us,可求出: 对于单极性控制 &nbs p; Ld/Rd≥5T~2.5T(可逆或不可逆) (2) 对于双极性控制 Ld/Rd≥10T~5T (3) 式中T为功率开关的开关周期。 对于有刷直流电动机,电磁时间常数Ld/Rd一般在10ms至几十毫秒。若采用GTR,开关频率可取2KHz左右,T=0.5ms。若采用IGBT,开关频率可取18KHz以上,所以上式均能满足。若采用GTO或可控硅功率器件,由于工作频率只有100Hz左右,此时应考虑在主回路附加电抗器,且Ld="Lf"+La (4)

对不可逆系统还应进一步检查临界电流,IaL=UsT/8Ld≤Ia0应小于电机空载电流,防止空载失控。对于低惯量电机、力矩电动机,由于电磁时间常数很小(几个毫秒或更小),此时应考虑采用开关频率高的IGBT功率开关器件。 2. 功率驱动电路的选择 图1 H桥开关电路(Ⅰ) & nbsp; 图2 H桥开关电路(Ⅱ) 小功率驱动电路可以采用如图1所示的H桥开关电路。UA和UB 是互补的双极性或单极性驱动信号,TTL电平。开关晶体管的耐压应大于1.5倍Us以上。由于大功率PNP晶体管价格高,难实现,所以这个电路只在小功率电机驱动中使用。当四个功率开关全用NPN晶体管时,需要解决两个上桥臂晶体管(BG1和BG3)的基极电平偏移问题。图2中H桥开关电路利用两个晶体管实现了上桥臂晶体管的电平偏移。但电阻R上的损耗较大,所以也只能在小功率电机驱动中使用。 当驱动功率比较大时,一般桥臂电压也比较高,例如直接取工频电压,单相220V,或三相380V。为了安全和可靠,希望驱动回路(主回路)与控制回路绝缘。此时,主回路必须采用浮地前置驱动。图3所示的浮地前置驱动电路都是互相独立的,并由独立的电源供电。由

电机驱动IC UCC3626手册

UCC2626UCC3626 PRELIMINARY FEATURES ?Two Quadrant and Four Quadrant Operation ?Integrated Absolute Value Current Amplifier ?Pulse-by-Pulse and Average Current Sensing ?Accurate, Variable Duty Cycle Tachometer Output ?Trimmed Precision Reference ?Precision Oscillator ?Direction Output Brushless DC Motor Controller BLOCK DIAGRAM DESCRIPTION The UCC3626motor controller IC combines many of the functions re-quired to design a high performance,two or four quadrant,3-phase,brushless DC motor controller into one package.Rotor position inputs are decoded to provide six outputs that control an external power stage.A precision triangle oscillator and latched comparator provide PWM mo-tor control in either voltage or current mode configurations.The oscilla-tor is easily synchronized to an external master clock source via the SYNCH input.Additionally,a QUAD select input configures the chip to modulate either the low side switches only,or both upper and lower switches,allowing the user to minimize switching losses in less de-manding two quadrant applications. The chip includes a differential current sense amplifier and absolute value circuit which provide an accurate reconstruction of motor current,useful for pulse by pulse over current protection as well as closing a current control loop.A precision tachometer is also provided for imple-menting closed loop speed control.The TACH_OUT signal is a variable duty cycle,frequency output which can be used directly for digital con-trol or filtered to provide an analog feedback signal.Other features in-clude COAST,BRAKE,and DIR_IN commands along with a direction output, DIR_OUT.

JY01A无刷电机驱动IC

直流无刷电机 驱动IC 版本号:V1.0 日期:2013年5月28日

一.特色: 三.封装形态 二.简介: ● 军工品质,工作稳定 ● 用于有霍尔/无霍尔无刷电机驱动 ● 正/反转控制,软切换功能 ● 转速线性调节 ● 过流保护 ● 短路保护 ● 欠压保护 ● DSP 核H_PWM 驱动低噪音 ● JYKJ 特有技术,保证了在任何工况下电机都能正常运转 ● 有霍尔与无霍尔应用自动识别功能 ● 外围电路简单,使用方便 JY01A 是一款多功能的无刷电机驱动IC ,可用于有霍尔、无霍尔无刷电机驱动。具备调速,正反转,过流保护,短路保护,欠压保护等功能,军工级品质,工作稳定,防干扰能力强等特点。

四.电气特性: (一)绝对最大额定值 V DD………………………………………………………………………………相对于GND+5.5V 所有输入电压…………………………………………………………GND-0.5V—VDD+0.5V 所有吸入输出电流………………………………………………………… IOL/8mA,IOH/5mA 工作温度…………………………………………………………………………………-40℃~85℃储存温度…………………………………………………………………………………-50℃~125℃ (二)直流特性 符号符号描述最小值典型值最大值单位条件 V DD电源 4.55 5.5V正常工作环境下 V IL 输入IO低电平00.3V TTL电平 V IH 输入IO高电平35 5.5V TTL电平 IOL低电平吸入电流58mA TTL电平 IOH高电平输出电流35mA TTL电平 Vjd模拟输入电平05V模拟输入电平范围 Ijd模拟输入电流100nA模拟输入电流值

几种电机驱动的比较

智能车竞赛中直流电机调速系统的设计与比较 王名发,江智军,邹会权 时间:2009年12月04日 字 体: 大中小关键词:直流电机调速系统MC33886VNH3SP30BTS7960BDT340IIRF3205 摘 要:针对大学生智能车竞赛中直流电机的驱动设计了6种方案,经过实验比较分析了各种方案的优缺点,最后确立了一套驱动能力强、体积小、性能稳定的驱动方法,可广泛应用于40 V以下的大功率直流电机驱 动的场合。 关键词:直流电机;调速系统; MC33886; VNH3SP30; BTS7960B; DT340I; IRF3205 目前大电流直流电机多采用达林顿管或MOS管搭制H桥PWM脉宽调制,因此体积较大;另一方面,由于分立器件的特性不同,使得驱动器的特性具有一定的离散性;此外,由于功率管的开关电阻比较大,因此功耗也很大,需要功率的散热片,这无疑进一步加大了驱动器的体积。随着技术的迅猛发展,基于大功率MOS管的H桥驱动芯片逐渐显现出其不可替代的优势。但目前能提供较大电流输出的集成芯片不是很多。例如飞思卡尔半导体公司推出的全桥驱动芯片MC33886和33887、意法半导体公司推出的全桥驱动芯片VNH3SP30、英飞凌公司推出的高电流PN半桥驱动芯片BTS7960。ST微电子公司推出的TD340驱动器芯片是一种用于直流电机的控制器件,可用于驱动N沟道MOSFET管。 本文在第三、四届大学生智能车大赛中分别尝试了上面提到的5块电机驱动芯片设计的驱动电路,通过现场调试发现它们的优缺点,确定了驱动能力强、性能稳定的驱动方案,并得到了很好的应用。 1 直流电机驱动原理 目前直流电机的驱动方式主要有2种形式:线性驱动方式和开关驱动方式。其中线性驱动方式可以看成一个数控电压源。该驱动方式的优点是驱动电机的力矩纹波很小,可应用于对电机转速要求非常高的场合;缺点是该方式通常比较复杂,成本较高,尤其是要提高驱动的功率时,相应的电路成本将提升很多[1]。本文针对H桥驱动电路在智能车竞赛中的应用加以分析。 目前的H桥驱动主要有3种方式。图1(a)中H桥的4个桥臂都使用N沟道增强型MOS管;图1(b)中H 桥的4个桥臂都使用P沟道增强型MOS管;图1(c)中上H桥臂分别使用P沟道增强型MOS管和N沟道增强MOS管。由于P沟道MOS管的品种少、价格较高,导通电阻和开关速度等都不如N沟道MOS管,因此最理想的情况应该是在H桥的4个桥臂都使用N沟道MOS管。但是在如图1(a)中可以看到,为了使电机正转,Q1和Q4应该导通,因此S4电压应该高于Q4的源极电压,S1电压应该高于Q1的源极电压,由于此时Q1的源极电压近似等于Vcc,因此就要求S1必须大于(Vcc+Vgs)。在很多电路中除非作一个升压电路否则是比较困难得到的,因此图1(a)这种连接方式比较少见。同理,图1(b)中为了使电机正转,S4电压就必须低于0V- VGS,在使用时也不方便。因此最常用的是图1(c)的电路,该电路结合了上述2种电路各自的优点,使用方便。本文针对3种形式电路进行设计,并进行实验比较分析。

几种用于IGBT驱动的集成芯片汇编

几种用于I G B T驱动的集成芯片

几种用于IGBT驱动的集成芯片 2. 1 TLP250( TOSHIBA公司生产) 在一般较低性能的三相电压源逆变器中,各种与电流相关的性能控制,通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。同时,这一检测结果也可以用来完成对逆变单元中IGBT实现过流保护等功能。因此在这种逆变器中,对 IGBT驱动电路的要求相对比较简单,成本也比较低。这种类型的驱动芯片主要有东芝公司生产的 TLP250,夏普公司生产的 PC923等等。这里主要针对 TLP250做一介绍。 TLP250包含一个 GaAlAs光发射二极管和一个集成光探测器, 8脚双列封装结构。适合于 IGBT或电力 MOSFET栅极驱动电路。图 2为 TLP250的内部结构简图,表 1给出了其工作时的真值表。 TLP250的典型特征如下: 1)输入阈值电流(IF): 5 mA(最大); 2)电源电流(ICC): 11 mA(最大);

3)电源电压(VCC): 10~ 35 V; 4)输出电流(IO): ± 0.5 A(最小); 5)开关时间(tPLH /tPHL):0.5 μ s(最大); 6)隔离电压:2500 Vpms(最小)。 表2给出了TLP250的开关特性,表3给出了TLP250的推荐工作条件。 注:使用 TLP250时应在管脚 8和 5间连接一个0.1 μ F的陶瓷电容来稳定高增益线性放大器的工作,提供的旁路作用失效会损坏开关性能,电容和光耦之间的引线长度不应超过 1 cm。 图 3和图 4给出了 TLP250的两种典型的应用电路。

相关主题
文本预览
相关文档 最新文档