当前位置:文档之家› 高碳铬铁的冶炼工艺

高碳铬铁的冶炼工艺

高碳铬铁的冶炼工艺
高碳铬铁的冶炼工艺

?原料破碎后,再筛分,经过称量配料,送到炉顶料仓,通过料管加入炉或送至加料平台。

?上料(即原料的输送)设备与称量必须简单可靠,目前采用的上料方式有以下两种:

?一种是用皮带运输机将料达到料仓,然后按配料比在配料车(又称作称量车)将料配好卸人炉顶料仓。配料车上装有可开式料斗和称料用的弹簧秤,配料车挂在电葫芦上。电葫芦沿着炉子周围的单轨运行,配料工借电钮装置开动料仓的给料机,依次将炉料按要求配比称好,送至一定的料仓。

?另一种上料方式是用上料小车沿斜桥将炉科送到炉顶平台。上料小车在原料仓,用杠杆式秤配料,配好的炉料卸入上料小车,然后用卷扬机从斜桥把炉料运到炉顶平台上,再用小车把料推到炉顶料仓。在用手工加料的小电炉上,配好的炉料直接送到加科平台上。配料时,称量的准确度要求达到5kg。

?炉料的混合是靠下料和倒运时进行的。所以在称量时,应当把密度较小的料配在底部,以便下料时达到混合均匀的目的。

? 2.2.5原料的预处理

?为降低高碳铬铁生产设备的造价,各厂都趋向使用大型还原封闭电炉,这些电炉必须使用硬块铬铁矿。由于硬块铬铁矿供应困难,这就迫使各厂使用价廉的碎铬铁矿和粉矿,但这类矿必须经过预处理才能人炉。因此铬矿粉的预处理是铬铁生产厂的重要环节:

?造球工艺:铬矿资源中块矿只占总量的20%,其余80%是粉矿。有相当一部分铬矿居于易碎矿石,在开采和贮存过程中极易碎裂成细小的颗粒。即使强度高的块矿在加工过程也产生大量的细粉。粉矿直接入炉不仅会造成大量有用元素随炉渣和炉气流失,还会直接威胁电炉的运行安全。此外,生产过程产生的大量粉尘也需要造块处理。目前球团和造块工艺已经成为铬铁生产工艺流程的重要组成部分,主要球团生产工艺有冷压块(又称冷固结球团)、热压块、蒸汽养生球团、碳酸化球团、烧结球团、预还原球团等。常用造球设备有压块机、圆筒造球机、因盘造球机等。

?焙烧工艺过程:原料矿石常含有大量的高价氧化物、化合水、碳酸盐和硫化物。焙烧是在适当温度和气氛条件下,使矿石发生脱水、分解、氧化、还原过程,改善入炉矿石的物理性质和化学组成。

?烧结工艺:烧结是利用矿石出现熔化或矿石与焙剂之间的固—固反应产生液相来润湿和粘结矿石颗粒,冷却后形成多孔的具有足够强度的烧结矿的工艺过程。烧结过程是物质表面能降低的过程。粉矿具有较高的分散度,其比表面积大于相同质量的块矿。烧结后的矿物表面积减少,体系的自由能ΔG降低。

这是—个自发进行的过程。

? 2.3 高碳铬铁的冶炼

? 2.3.1冶炼基本原理

?电炉法冶炼高碳铬铁的基本原理是在电弧加热的高温区用碳还原铬矿中铬和铁的氧化物.称为电碳热法。埋弧还原电炉是电炉的一种,在铬铁生产中用于对矿石等炉料进行还原熔炼。其持点是正常熔炼过程中电弧始终埋在炉料之中。

?按炉口形式分为高烟罩敞口式、矮烟罩敞口式(将高烟罩降低后,短网由烟罩上部引入的一种改进型)、半封闭式和封闭式4种(见下图3)。前两种为早期使用的形式,日趋淘汰。目前广泛采用的是半封闭式和封闭式。

?

?

?其中半封闭式还原电炉应用最广,这种电炉(特别是中、小型的)便于观察和调整炉况,可适应不同原料条件,有利于改炼品种。电炉烟罩多为矮烟罩演变而成的半封闭罩,通常在其侧部设置若干个可调节启闭度的炉门,以便既可在需要加料、捣炉操作时开启,又可按要求控制进风量,调节炉气温度,实现烟气除尘甚至余热利用。封闭式还原电炉,亦即带炉盖的密闭电炉,炉产生的煤气由导管引出,再经净化处理后可回收利用。为便于操作检修,并保证安全运行,封闭电炉炉盖上设置若干个带盖的窥视、检修和防爆孔。这类电炉操作和控制技术要求较高。图2所示则为全封闭式还原电炉冶炼车间剖面图,主要由配料站、主厂房及辅助设施等组成。

? 2.3.2 冶炼操作

?电炉法冶炼高碳铬铁的基本原理是在电弧加热的高温区用碳还原铬矿中铬和铁的氧化物.称为电碳热法。埋弧还原电炉是电炉的一种,在铬铁生产中用于对矿石等炉料进行还原熔炼。其持点是正常熔炼过程中电弧始终埋在炉料之中。

?

?冶炼操作工艺:电炉熔剂法生产高碳铬铁采用连续式操作方法。原料按焦炭、硅石、铬矿顺序进行配料,以利混合均匀。敞口炉通过给料槽把料加到电极周围,料面呈大锥体。封闭炉由下料管直接把料加入炉。无论是敞口炉还是封闭炉,均应随着炉炉料的下沉而及时补充新料,以保持一定的料面高度。

?电炉所发生化学反应生产高碳铬铁的主要过程是:碳还原氧化铬生成Cr3C2的开始温度为1385K,生成Cr7C3的反应开始温度1453K,而还原生成铬的反应开始温度为1520 K,因而在碳还原铬矿时得到的是铬的碳化物,而不是金属铬。因此,只能得到含碳较高的高碳铬铁。而且铬铁中含碳量的高低取决于反应温度。生成含碳量高的碳化物比生成含碳量低的碳化物更容易。实际生产中,炉料在加热过程中先有部分铬矿与焦炭反应生成Cr3C2,随着炉料温度升高.大部分铬矿与焦炭反应生成Cr7C3,温度进一步升高,三氧化二铬对合金起精炼脱碳作用。

?氧化铁还原反应开始温度比三氧化二铬还原反应开始温度低,因而铬矿中的氧化铁在较低的温度下就充分地被还原出来,并与碳化铬互溶,组成复合碳化物,降低了合金的熔点。同时,由于铬与铁互相溶解,使还原反应更易进行。

1、牌号及用途

高碳铬铁(含再制铬铁)主要用途有:(1)用作含碳较高的滚珠钢、工具钢和高速钢的合金剂,提高钢的淬透性,增加钢的耐磨性和硬度;(2)用作铸铁的添加剂,改善铸铁的耐磨性和提高硬度,同时使铸铁具有良好的耐热性;(3)用作无渣法生产硅铬合金和中、低、微碳铬铁的含铬原料;(4)用作电解法生产金属铬的含铬原料;(5)用作吹氧法冶炼不锈钢的原料。

2、冶炼工艺

高碳铬铁的冶炼方法有高炉法、电炉法、等离子炉法等。使用高炉只能制得含铬在30%左右的特种生铁。目前,含铬高的高碳铬铁大都采用熔剂法在矿热炉冶炼。

电炉法冶炼高碳铬铁的基本原理是用碳还原铬矿中铬和铁的氧化物。碳还原氧化铬生成Cr2C2的开始温度为1373K,生成Cr7C3的反应开始温度1403K,而还原生成铬的反应开始温度为1523K,因而在碳还原铬矿时得到的是铬的碳化物,而不是金属铬。铬铁中含碳量的高低取决于反应温度。生成含碳量高的碳化物比生成含碳量低的碳化物更容易。

3、炼高碳铬铁的原料

冶炼高碳铬铁的原料有铬矿、焦炭和硅石。

铬矿中Cr2O3≥40%,Cr2O3/∑FeO≥2.5,S<0.05%,P<0.07%,MgO和Al2O3含量不能过高,粒度10~70mm,如是难熔矿,粒度应适当小些。

焦炭要求含固定碳不小于84%,灰分小于15%,S<0.6%,粒度3~20mm。

硅石要求含SiO2≥97%,Al2O3≤1.0%,热稳定性能好,不带泥土,粒度20~80mm。

钛渣的冶炼原理

钛渣的冶炼原理 1.钛渣冶炼的原理及工艺流程 电炉熔炼钛渣的实质是钛铁矿与固体还原剂无烟煤(或石油焦或叫焦炭)等混合加入电炉中进行还原熔炼,矿中铁的氧化物被选择性地还原为金属铁,钛的氧化物被富集在炉渣中,经渣铁分离后,获得钛渣和副产品金属铁。钛精矿的主要组成是TiO2和FeO,其余为SiO2、CaO、MgO、Al2O3和V2O5 等,钛渣冶炼就是在高温强还原性条件下,使铁氧化物与碳组分反应,在熔融状态下形成钛渣和金属铁,由于比重和熔点差异实现钛渣与金属铁的有效分离。期间可能发生的化学反应如下: Fe2O3+C=2FeO+CO (1) FeO+C=Fe+CO (2) 以钛精矿为原料,敞口电炉冶炼钛渣的工艺流程如图1所示。 钛渣 图1、工艺流程图 2. 电炉冶炼的主要特征

钛渣是一种高熔点的炉渣,钛渣熔体具有强的腐蚀性、高导电性和其粘度在接近熔点温度时而剧增的特性,而且这些性能在熔炼过程中随其组成的变化而发生剧烈的变化。 2.1钛渣的高电导率和熔炼钛渣的开弧熔炼特征 2.1.1钛渣的高电导率 钛铁矿在熔化状态具有较大的电导率,在1500℃时为2.0~2.5ks/m,在1800℃为5.5~6.0ks/m,随着还原熔炼钛铁矿过程的进行,熔体组成发生变化,FeO含量减少,而TiO2和低价钛氧化物的含量增加,因此其电导率迅速上升,如加拿大索雷尔钛渣在1750℃电导率为15~20ks/m,而一般的炉渣在1750℃电导率为100s/m,可见钛渣的电导率比普通冶金炉渣的电导率高数十倍甚至几百倍,比普通离子型电解质(如Nacl液体在900℃时的电导率约为400s/m)的电导率都高很多,且温度变化对钛渣电导率影响不大,这些都说明钛渣具有电子型导电体的特征。 2.1.2熔炼钛渣电炉的开弧熔炼特征 钛渣的高电导率决定了熔炼钛渣电炉的开弧熔炼特征,即熔炼钛渣的热量来源主要依靠电极末端至熔池表面间的电弧热,这就是所谓的“开弧冶炼”,而在高电阻炉渣的情况下,电极埋入炉渣,熔炼过程的热量来源主要是渣阻热,即所谓的“埋弧熔炼”。在敞口电炉熔炼钛渣的初期具有短期的矿热炉埋弧冶炼的特征,随着熔炼过程的深入进行,开弧冶炼的电弧特征越来越明显。熔炼过程超过1小时后,电弧热所占比例可达90%,熔炼过程的后期电弧热所占比例可达97%。 2.2.钛渣熔点和粘度特性对熔炼过程的影响 2.2.1钛渣熔点对熔炼过程的影响 钛氧化物中的钛-氧键很牢固,它们的熔点很高。钛渣主要是由钛的氧化物组成,因此它的熔点很高,按其组成其熔点在1580~1700℃之间,钛渣的熔点随其中TiO2含量的增加而升高,熔炼钛渣要在高温下进行,这就要求热量必须高度集中在还原熔炼区。 2.2.2钛渣粘度对熔炼过程的影响 钛渣具有短渣的特性,在温度高于熔点处于完全熔化的钛渣熔体具有很低的粘度,但当渣温接近其熔点时,其粘点急剧增加。这是因为钛渣的结晶温度范围很窄,温度接近熔点时少量结晶固体析出悬浮在熔体中,使熔体变得十分粘稠,造成渣流动性变坏,出炉时困难。 2.3钛渣熔体的高化学活性对电炉的影响 钛渣的主要成分是TiO2 ,但还含相当数量的低价钛氧化物,因而具有极高的化学活性,几乎能与所有的金属和非金属材料发生作用。事实上钛渣熔体能很快的腐蚀普通的耐火材料,所以钛渣的还原熔炼是在炉衬上

含钛铁水脱硫及转炉冶炼实践

含钛铁水脱硫及转炉冶炼实践 用钛矿或钛球进行高炉护炉操作已是高炉操作者常用的护炉方法。其机理是当使用钛矿护炉时,Ti(C,N)将在高炉炉缸铁浴内形成并沉积于炉缸受侵蚀部位的工作面或砖缝之中,而Ti(C,N)的沉积或团聚物被认为起到了保护炉衬的作用。 2008年以后,鞍钢股份炼铁总厂开始使用钛球进行高炉护炉,由于最初无钛球护炉经验,铁水的钛含量显著升高且控制不稳定。在未加钛球前,铁水钛稳定控制在0.05%以下,使用钛球护炉后,铁水钛提高到0.12%~0.20%,最高时甚至超过0.20%。铁水钛含量升高,对炼钢工序的操作产生诸多不利影响,主要体现在:脱硫工序扒渣铁损增加,转炉冶炼工序熔剂消耗增加,溅渣护炉效果变差。因此,研究针对含钛铁水的冶炼技术,对降低冶炼成本、减轻或消除铁水钛含量升高对炼钢操作的影响具有重要意义。 铁水钛含量升高的不利影响 对铁水预处理脱硫工序的影响。在铁水预处理脱硫时,如果钛含量较高,镁钙复合喷吹的载气氮气与铁水中的碳、钛极易结合生成Ti(C,N),且易与CaO结合,恶化钙粉的脱硫效率,并使得脱后渣黏稠,增加喷吹粉剂消耗;同时由于渣黏稠,喷吹时进入渣中的铁液被包裹在渣中,造成扒渣工序铁损增加。

对转炉炼钢的影响。在转炉冶炼过程中,钛的氧化物与石灰中的CaO 结合使得白灰利用率降低,转炉势必增加渣料消耗,造成熔剂成本增加。同时渣量增加,直接导致转炉冶炼吹损增加,并且白灰利用率的降低增加了转炉脱磷负担,冶炼终点补吹次数增加,造成终渣FeO含量高,在增加铁损的同时恶化溅渣护炉效果。 含钛铁水脱硫工序冶炼实践 目前国内外针对含钛铁水脱硫的应对策略。德国等欧洲国家钢厂对采用加钒钛矿护炉的铁水,采取的办法是将冰晶石(K3AlF6)作为铁水熔剂制作成粉末与流化石灰粉混合后,通过脱硫喷枪喷入铁水中。由于冰晶石熔点仅为600℃ ,能显著降低脱硫渣的熔点。为防止氮化物的生成,可将脱硫载气氮气用氩气代替。 由于国内冰晶石资源贫乏,进口或国内人造冰晶石的价格过高,而鞍钢的氩气资源不足,因此须要研究新的方法以降低或彻底杜绝高钛铁水对铁水脱硫的影响。 渣铁分离剂的开发和使用。为了减少扒渣铁损,鞍钢开发了一种渣铁分离材料。该材料是通过添加适量的钠盐和钾盐来改善铁渣成分,可以通过喷枪喷入铁水中,也可在喷吹前加在铁水表面或折铁前加在铁水罐底,通过喷吹或折铁的动力学作用使其与铁水渣充分反应,生成低熔点物质,从而降低脱硫渣熔点,使得渣中的铁珠顺利下落至铁水融池,最后减少扒渣铁损。采用渣铁分离料后,铁水渣流动性提高,

高碳铬铁配料计算方法

高碳铬铁配料计算方法 一、基本知识 1、元素、分子式、分子量 铬Cr —52 铁Fe —56 氧O —16 碳C —12 硅Si —28 镁—24 铝—27 三氧化二铬Cr 2O 3—152 二氧化硅SiO 2—60 氧化镁MgO —40 三氧化二铝Al 2O 3—102 2、基本反应与反应系数 Cr 2O 3+3C=2Cr+3CO 1公斤Cr 2O 3还原成Cr 6842.0163522522=?? ? ???+?? 公斤 Cr 2O 3的还原系数是 还原1公斤Cr 用C 3462.0522123=?? ? ???? 公斤 FeO+C=Fe+CO 还原1公斤Fe 用C 2143.05612=?? ? ?? 公斤 SiO 2+2C=Si+2CO 还原1公斤Si 用C 8571.028122=?? ? ??? 公斤 3、Cr/Fe 与M/A (1)Cr/Fe 是矿石中的铬和铁的重量比,Cr/Fe 越高合金中Cr 含量越高。

(2)M/A是矿石中的MgO和Al2O3的重量比,M/A表示矿石的难易熔化的程度,一般入炉矿石M/A为以上较好。 二、计算条件 1、焦炭利用率90% 2、铬矿中Cr还原率95% 3、铬矿中Fe还原率98% 4、合金中C9%,% 三、原料成份 举例说明: 铬矿含水% 焦炭固定碳%,灰份%,挥发分%,含水% 主要成分表 四、配料计算 按100公斤干铬矿(公斤铬矿)计算 (1)合金重量和成份 100公斤干铬矿中含Cr,100×=公斤 进入合金的Cr为×=公斤 进入合金中的Fe为100××=公斤

合金中铬和铁占总重量的百分比是 ()%=% 合金重量为()÷=公斤 合金成分为: (2)焦炭需要量的计算 还原26.85公斤Cr 用C :30.952212385.26=?? ? ?????公斤 还原9.93公斤Fe 用C : 13.2561293.9=?? ? ??? 公斤 还原0.2公斤Si 用C : 17.0281222.0=?? ? ???? 公斤 合金增C : 3.66 公斤 总用C 量是:+++=公斤 入炉C :÷=公斤 入炉干焦炭:÷=公斤 入炉焦炭:÷=公斤 (3)硅石配入量计算 加硅石前的炉渣成分

高碳铬铁配料计算方法修订稿

高碳铬铁配料计算方法 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

高碳铬铁配料计算方法 一、基本知识 1、元素、分子式、分子量 铬Cr —52 铁Fe —56 氧O —16 碳C —12 硅Si —28 镁—24 铝—27 三氧化二铬Cr 2O 3—152 二氧化硅SiO 2—60 氧化镁MgO —40 三氧化二铝Al 2O 3—102 2、基本反应与反应系数 Cr 2O 3+3C=2Cr+3CO 1公斤Cr 2O 3还原成Cr 6842.0163522522=?? ? ???+?? 公斤 Cr 2O 3的还原系数是 还原1公斤Cr 用C 3462.0522123=?? ? ???? 公斤 FeO+C=Fe+CO 还原1公斤Fe 用C 2143.05612=?? ? ?? 公斤 SiO 2+2C=Si+2CO 还原1公斤Si 用C 8571.028122=?? ? ??? 公斤 3、Cr/Fe 与M/A (1)Cr/Fe 是矿石中的铬和铁的重量比,Cr/Fe 越高合金中Cr 含量越高。

(2)M/A是矿石中的MgO和Al2O3的重量比,M/A表示矿石的难易熔化的程度,一般入炉矿石M/A为以上较好。 二、计算条件 1、焦炭利用率90% 2、铬矿中Cr还原率95% 3、铬矿中Fe还原率98% 4、合金中C9%,% 三、原料成份 举例说明: 铬矿含水% 焦炭固定碳%,灰份%,挥发分%,含水% 主要成分表 四、配料计算 按100公斤干铬矿(公斤铬矿)计算 (1)合金重量和成份 100公斤干铬矿中含Cr,100×=公斤 进入合金的Cr为×=公斤 进入合金中的Fe为100××=公斤 合金中铬和铁占总重量的百分比是

钛渣生产流程

薛工: 现将几个问题的意见写给你,供参考 1.钛渣在钛产业链中的地位 1.1钛产业链目前的大致走向 钛精矿---硫酸法制钛白粉 钛精矿---酸溶性钛渣---硫酸法钛白 钛精矿---高钛渣---四氯化钛---氯化法钛白 钛精矿---高钛渣---四氯化钛---海绵钛---钛合金 钛精矿---钛铁 钛精矿---钢结碳氮化钛---超硬材料 用钛精矿直接生产钛白时,铁在酸溶时生成硫酸铁,为脱Fe,需加铁粉将其还原成硫酸亚铁,再冷冻结晶后,从钛酸液中沉淀出来。才能保证钛白质量。因这一路线的酸耗大,流程长,逐渐被钛渣制钛白粉代替。 用酸溶性钛渣生产钛白,因大部分铁已在冶炼中脱出,酸溶时耗酸少,并可减少硫酸铁还原和硫酸亚铁结晶工序,可降低成本,近年来发展很快。 酸溶钛渣和高钛渣的区别在于钛品位高低,钛渣的酸溶性好坏取决于物相,在以Ti3O5为基,溶解FeO、MgO等组成的黑钛石相酸溶性最好。因此酸溶性钛渣需保存一定的FeO量,MgO存在是有益的。TiO2的还原程度也不能高。通常用指标Ti2O3/ TiO2的比值衡量。而高钛渣是做四氯化钛的原料,TiO2与氯气反应,要求Mg,Ca,Fe含量少,钛高。对钛的价位没有特别要求。 2.两段法生产钛渣,因在固相还原时,铁的金属化率可控,TiO2的还原成低价钛

也可控。因此这种工艺生产的钛渣容易满足不同用户的要求。 3.由钛精矿富集成富钛料有人造金红石法,钛渣法等,钛渣的优点是钛和铁都能应用。特别是高铁,低钛原料,铁的回收是一个重要的利润来源。 将铁只作为渣铁回收是最差的方法,只有在设计对将铁的处理一并考虑,将熔分的铁水处理成带合金元素的金属料,是提高附加值的重要方法。 4.钛铁矿固相还原的原理 ①钛铁矿的组成TiO2●FeO ②在液态还原时其中的反应 FeO●TiO2→FeO+ TiO2 FeO→Fe TiO2→Ti3O5→Ti2O3→TiO→Ti→TiCN ③钛渣一段法生产时,铁与钛的还原都能进行,铁在低温下完成还原,但要保证渣的流动性,须提高炉温。钛还原成低价钛的趋势增加,当生成较多的TiCN时,渣稠,出渣就很困难了,操作时应采用低温,但难度较大。 ④合理的方法是将Fe还原过程放在固相完成。 ⑤钛精矿中除钛铁矿外同时还有磁铁矿等物相,固相还原时,铁还原遵循逐级还原原理。 Fe2O3→Fe3O4→FeO→Fe 而TiO2还原为却与液态还原不同,为非逐级还原。其过程为: TiO2→Ti3O5→TiCN ⑥可见,两段法生产钛渣时,质量比一段法易控,可使用较低的炉温,电耗低。

钛的冶炼

金属钛的冶炼 更新时间:2013/04/25 10:57:25 浏览次数: 2957 金属钛的冶炼: 钛在地壳中的含量十分丰富,按丰度值算占第九位。解放前,我国的钛锆铪冶炼工业是空白,虽然资源丰富,但未得到利用。解放后,开始建立我国的钛锆铪冶炼和加工工业,适应了我国尖端技术和相关工业部门对这些金属和化合物的需要。现在,我国的钛锆铪工业都在积极发展中。化学性质 钛位于元素周期表中第四周期第IV副族,原子序数为22。钛的化学性质相当活泼,可与很多元素反应或形成固溶体。主要物理性质,熔点;钛的熔点为1660℃。沸点钛的沸点为3302℃。超导性,耐蚀性:不锈钢;机械性质 纯钛的机械强度比铁大一倍,比铝大5倍。钛具有可塑性,钛合金在航天航空工业上的应用,钛具有质轻、强度高,耐热、耐低温性能。钛合金在化工、冶金上的应用:钛的耐蚀性能好,日常生活领域,钛和钛合金具有质轻、强度高、耐腐蚀并兼有外观漂亮等综合性能。人造关节,假肢。超导材料,钛镍合金具有形状记忆功能,在镍含量xNi为49.5%~51.5%的组成范围内,xNi每变化0.01,相变温度约变化10℃。钛镍合金还具有超弹性,它的耐磨性能也很优异。钛铁合金具有储氢功能,FeTi合金的吸放氢气可在接近常温﹑常压条件下进行,而且,储氢容量也很大。钛铌合金具有超导性,

钛在地壳中的丰度为0.56%,按元素丰度排列居第九位,仅次于氧、硅、铝、铁、钙、钠、钾和镁。钛属于典型的亲岩石元素,存在于所有的岩浆岩中。钛的分布极广,遍布于岩石、砂土、粘土、海水、动植物,甚至存在于月球和陨石中。钛的化学活性很强,所以自然界中没有钛的单质存在,总是和氧结合在一起。在矿物中,钛以氧化物(金红石)形式和钛酸盐形式存在,钛还经常与铁共生(钛铁矿)。金红 石是一种黄色至红棕色的矿物,其主要成分是TiO2,还含有一定量的铁、铌和钽。铁是由于它与钛铁矿共生的结果。由于Ti4+与Ni+、Ta5+ 离子的相似性,铌和钽常伴生在钛矿石中。93%~98%,钛铁矿理论分子式为FeTiO3,其中TiO2理论含量为52.63%。但钛铁矿的实际组成是与其成矿原因和经历的自然条件有关。可以把自然界的钛铁矿看成是FeO-TiO2和其他杂质氧化物组成的固溶体。40%~60%。

高碳铬铁物料平衡计算.docx

一、物料平衡计算 1、基本原始数据:直接还原铁成分、燃料成分见表一、表二 (1)直接还原铁 名称 Fe Cr223CaO MgO S P O C SiO Al O %17.2240.18 5.5913.18 2.3613.790.090.00 6.05 1.54(2)焦炭成分 固定碳 (C 固)挥发分 (V)灰分 (A)S P ≥84%≤2.0 %≤15 %≤0.6 %≤0.02 %(3)白云石 白云石化学成分 MgO CaO SiO Al O 3S P 22 ≥ 40%-≤ 5%-< 0.05<0.02入炉白云石粒度20~80mm。 ( 4)硅石 入炉硅石的化学成分应符合表 4.2 ―10的规定。 表 4.2 ―10硅石化学成分 SiO2Al 2O3S P热稳定性 ≥ 97%≤ 1.0%≤ 0.01%≤ 0.01%不爆裂粉化 入炉硅石粒度20~80mm。 2、直接还原铁耗碳量计算( 以 100kg 计算 ) 假设 Cr 以 Cr2O3、Cr 形态存在 ,Fe 以 Fe?O?,Fe 形态存在,其中Cr2O3全部还原, Fe?O?98%还原为 Fe, 45%还原为 FeO, SiO 22%还原 , 成品中含 C 量为2%,加入焦炭全部用于还原氧化物,则耗碳量为: 名称反应方程式耗 C 量 /kg Cr2O3Cr2O3+3C= 2Cr+3CO40.18X20%X152/104X36/152=2.78

Fe?O?Fe?O?+3C=2Fe+3CO17.22*80%*36/112 =4.44 SiO2SiO2+2C=Si+2CO 4.18/(28.1+16*2)*12*2=1.67 铬铁水含 C量由铁水量求得6x40.18/62=3.9 合计12.79 12.79-1.54=11.25 冶炼 100kg 铁矿消耗焦炭量为 M c=耗 C 量/(Wc 固* (1-W 水) )=11.25/(84%*(1-8%))*(1+10%)=16kg 冶炼 1 吨高碳铬铁合金需要直接还原铁量为 M矿=1*w(Cr 高碳铬铁水中质量比) /W(Cr 矿中质量比) * 还原率 =1*62%/(40.18%)*98%=1.575 吨 3、冶炼 1 吨高碳铬铁合金需要焦炭量为 M焦炭 =16kg*1.575*10=252kg 4、渣铁比计算 以 100kg 直接还原铁配 16kg 焦炭,假设元素分配按下表所示 成份Cr FeO/ Fe MgO SiO2/Si Al 2O CaO 3 入渣率0210098100100 入合金率100980200物料平衡中未计算P 和 S的平衡量,按高碳铬铁合金生产状况设定P和 S的含量。 直接还原铁成渣量和成合金量见下表 质量分比名称进入渣中量 /kg质量分比 /%进入合金中量 /kg /% Cr-----------40.18*100%=40.1864 Fe?O?17.22*2%*160/112 /Fe 1.4917.22*98%=16.8827 =0.49 Al O 13.18*100%=13.1840.15-------- 2 3 MgO13.79*100%=13.7942---------SiO /Si 5.59-4.18=1.41 4.2940.18*3/62=1.953 2 CaO 2.36*100%=2.367.2--------C---------62.78*6%=3.776

浅谈高碳铬铁各种成分的影响因素及控制_论文.答案

浅谈高碳铬铁各种成分的影响因素及控制 摘要 铁合金是由一种或两种以上的金属或非金属元素与铁元素组成的,并作为钢铁和铸造业的脱氧剂、合金添加剂、还原剂等的合金。铬是钢中功能最多、应用最广泛的合金化元素之一。铬具有显著改变钢的抗腐蚀能力和抗氧化能力的作用,并有助于提高耐磨性和保持高温强度。在各种不锈钢中,铬是一种必不可少的成分。 本篇文章就当今社会高碳铬铁中碳、硅、硫和铬回收率方面进行了简要论述。主要从高碳铬铁中各种成分反应的机理和常见成分控制进行阐述,揭示了各种成分的控制方法和效果。 关键词:高碳铬铁;成分控制;铬回收率

目录 1. 前言 ........................................................ - 1 - 2. 冶炼原理 .................................................... - 1 - 2.1电炉熔池结构............................................. - 1 - 2.2铬的碳化物生成机理....................................... - 2 - 2.3影响合金含碳量的因素..................................... - 3 - 2.3.1铬矿............................................... - 3 - 2.3.2合金的含硅量....................................... - 3 - 2.3.3渣型............................................... - 4 - 2.3.4冶炼操作........................................... - 5 - 3. 高碳铬铁冶炼中的硅行为浅析 .................................. - 5 - 3.1高碳铬铁冶炼过程中合金含硅量的变化规律:................. - 5 - 3.2高碳铬铁冶炼过程中合金含硅量变化的影响因素:............. - 5 - 4. 高碳铬铁合金降硫途径探讨 .................................... - 6 - 4.1硫的来源及存在状态....................................... - 6 - 4.2降低高碳铬铁合金中硫含量主要有一下几种途径............... - 6 - 4.3原因分析................................................. - 7 - 5. 高碳铬铁冶炼中铬元素的流向分析及提高铬回收率的途径探讨 ...... - 7 - 5.1有关计算式............................................... - 7 - 5.2铬元素的流向分析......................................... - 8 - 5.3提高铬元素回收率的途径................................... - 8 - 6. 结论 ....................................................... - 10 - 后记 .......................................................... - 12 - 参考文献 ...................................................... - 13 -

烧结原理

烧结原理 所谓烧结就是将粉末压坯加热到一定温度(烧结温度)并保持一定的时间(保温时间),然后冷却下来,从而得到所需性能的材料,这种热处理工艺叫做烧结。 烧结使多孔的粉末压坯变为具有一定组织和性能的制品,尽管制品性能与烧结前的许多工艺因素有关,但是在许多情况下,烧结工艺对最终制品组织和性能有着重大的甚至是决定性的影响。 硬质合金的烧结过程是比较复杂的,但是这些基本知识又是必须掌握的。 4.1 烧结过程的分类 烧结过程的分类方法很多,按烧结制品组元的多少可以分为单元系烧结和多元系烧结,如钨、钼条烧结属于单元系烧结,硬质合金绕结则属于多元系烧结。 按烧结时组元中相的状态分为固相烧结和液相烧结,如钨钼的烧结过程中不出现液相,属于固相烧结,硬质合金制品在烧结过程中会出现液相,属于液相烧结。按工艺特征来分,可分为氢气烧结、真空烧结、活化烧结、热等静压烧结等。许多烧结方法都能用于硬质合金的烧结。此外,还可以依烧结材料的名称来分,如硬质合金烧结,钼顶头烧结。 从学习烧结过程的实质来说,将烧结过程分为固相烧结和液相烧结两大类是比较合理的,但在生产中多按烧结工艺特点来进行分类。 4.2 烧结过程的基本变化 硬质合金压坯经过烧结后,最容易观察到的变化是压块体积收缩变小,强度急剧增大,压块孔隙度一般为50%,而烧结后制品已接近理论密度,其孔隙一般应小于0.2%,压块强度的变化就更大了,烧结前压坯强度低到无法用一般方法来测定,压坯只承受生产过程中转移时所必备的强度,而烧结后制品却能达到满足各种苛刻工作条件所需要的强度值,显然制品强度提高的幅度较之密度的提高要大得多。 制品强度及其他物理机械能的突变说明在烧结过程中压块发生了质的变化。在压制过程中,虽然由于外力的作用能增加粉末体的接触面,而颗粒中表面原子和分子还是杂乱无章的,甚至还存在有内应力,颗粒间的联结力是很弱的,但烧结后颗粒表面接触状态发生了质的变化,这是由于粉末接触表面原子﹑分子进行化学反应,以及扩散、流动、晶粒长大等物理化学变化,使颗粒间接触紧密,内应力消除,制品形成了一个强的整体,从而使其性能大大提高。 4.3 烧结过程的基本阶段 硬质合金烧结过程可以分为四个基本阶段: 1.脱除成形剂及预烧阶段,在这个阶段烧结体发生如下变化: 1)成型剂的脱除,烧结初期随着温度的升高,成型剂逐渐分解或汽化,排除出烧结体,与此同时,成型剂

钛渣冶炼炉新工艺介绍

关于钛渣冶炼炉的新工艺介绍 前言 本方案瞄准国际先进技术,借鉴国内引进的成败实例,结合我团队自主研发并已成熟应用的成果而制定。 本方案所采用的各种“非常规”措施,最终将体现为: 1.节能,比常规交流电炉耗电低25%~35%,真正实现低成本运行; 2.生产环境优良,低噪音、全密闭,突显“人性化”,尾气排放可满足新国标;由于工艺上的改革,使除尘器过滤面积、烟管面积、风机及功率,与传统工艺的除尘器相比,≦1/8,并且通过新工艺,使被过滤的烟气温度有效、可靠地控制在200℃以下,促使滤袋寿命成倍地延长。 3.生产过程简化,实行计算机控制,在原编制上可大幅削减冶炼工人; 4.电炉设计上,倾向于多功能——满足冶炼多种产品(随意可调的宽幅电压); 5.产品生产的质量特别稳定、易控。 6.电炉本体故障率特低,平时只需巡视和加注润滑等基本保养。 本方案其它特点: 1.独创的底电极结构,从根本上杜绝了铜质针刺因高温频繁烧蚀的断电事故,彻底保障了导电可靠性。 2.电炉功率因数高(只考虑动力补偿);同时,在电气设计上已消除了谐波危害。 3.采用可控硅整流方式,能很方便地化解凝炉(非正常停电)、因SiC沉积造成的炉底上涨现象。 4.原料连续入炉、大容量电炉可实现产品连续出炉。 5.利用电炉产生的高温烟气烘干原料及煤气回收发电技术。烟气进入原料干燥装置降温后,再进除尘器除尘,由煤气风机送至煤气发电车间,全程安全可控。 根据国家对铁合金、电石等冶炼行业的准入限制,为适应国家可能出台的新政策,综合考虑钛渣炉性价比,建议钛渣炉的单台容量≧2万kVA。 工信部规定,容量在6300KVA以下的交流矿热炉逐步淘汰,新上的交流矿热炉容量必须≥25000KVA,直流炉容量≥12500KVA。内蒙、贵州及四川攀枝花等地已经在落实。 一台2万KVA空心电极直流密闭炉,可年产主产品钛渣67000吨左右,副产品半钢5000吨左右。与传统冶炼方式相比,生产一吨主产品可节省电能1200~1800度。 建造一台生产钛渣的2万KVA空心电极直流密闭炉,约需人民币6000~7000万元。投产后1~2年即可收回投资。 直流密闭炉节能效果显著,为国内首创。建设单位可以向国家工信部申报节能减排项目,寻求国家奖励或资助。贵州兴义某企业计划新建4台30000万KVA半密闭直流铁合金炉,已获得当地政府3亿元的贴息贷款扶植。内蒙古卓资县一铁合金企业新建一台16500KVA全密闭直流铁合金炉,已获得当地政府4百万元资助,正在向工信部申请立项。 目前,发达国家中的钛渣炉,容量都比较大,多采用全封闭,湿法除尘和回收煤气,并向干法除尘转变。这些大型电炉采用计算机进行控制,从原料准备到产品出炉全过程自动化,生产效率高,产品质量稳定,环保设施完善,有利于资源的综合利用,也是中国钛渣生产发展的方向。国内某企业从南非引进的3万kVA全密闭直流高钛渣炉,已经将高钛渣的吨产电耗从国内普遍的3500kwh/t~4500 kwh/t降至2600kwh/t~ 2800kwh/t,大大降低了生产成本(注:由于该企业对引进技术吸收消化严重不足,加之过份神秘化的保密隔绝,导致试生

一种锰铝钛铁合金生产工艺的介绍

一种锰铝钛铁合金生产工艺的介绍 作者: 所属系别:锰 关键字:锰 发布日期: 2010年01月11日 17:56 编者按: 本发明涉及一种用准沸腾钢工艺冶炼焊条钢的脱氧及合金化添加剂,特别是锰铝钛铁合金。 目前,用准沸腾钢工艺冶炼焊条钢的脱氧及合金化添加剂主要为锰铝铁合金,如中国专利92107299公开的“铝锰铁复合脱氧剂”,其组分为(重量百分比):铝20—26%,锰30—35%,铁38—48%,余量为杂质。用铝锰铁合金生产的焊条在使用时有时出现焊缝开裂现象,其原因之一是由于焊缝金属中氢、氮的溶解析出所致,特别是当钢中同时含有游离的氢、氮时,会显著增加焊缝金属的冷脆倾向。虽然可以通过对钢材的预热及严格烘烤部分消除氢的不利影响,但是氮的有害作用则难以消除。 本发明目的是提供一种锰铝钛铁合金,作为脱氧和合金化添加剂,消除氮、氢的影响,减少生产的焊条在使用时出现焊缝开裂现明,解决现有技术存在的上述问题。 本发明目的是通过如下技术方案实现的。 锰铝钛铁合金各组分的重量百分比为:锰30—40%,铝15—28%,钛1.0—4.0%,铁23—43%,其余为杂质,杂质中包括碳、硅、磷、硫等。 本发明较佳的成分范围是:锰36—40%,铝15—19%,钛1.5—3.0%,铁28—38%,其余为杂质,杂质中包括碳、硅、磷、硫等。本发明最佳的成分范围是:锰36%,铝19%,钛2.0%,铁38%,其余为杂质,杂质中包括碳、硅、磷、硫等。

采用本发明锰铝钛铁合金作为冶炼焊条钢的脱氧及合金化添加剂除具有普通锰铝铁合金的脱氧及合金化作用外,还具有如下特点: 1.由于含钛而形成的三元复合脱氧交互作用进一步提高了金属的脱氧能力。 2.由于钛和氮的亲和力高于铝与氮的亲和力(TiN和AlN二才在1500℃的生成自由能差为-10101.2J/.atom),当钢中二者含量相同时优先生成TiN。 3.由于钛和氧结合生成TiO2的能力远小于铝和氧生成Al2O3能力(二者在1600℃生成自由能之差为-205540.5J/g.atom),因此在同等条件下铝优先与氧结合形成Al2O3,Ti则残留在钢中。 4.焊条中的碳、硅、铝等的含量应尽可能低,而含Ti为0.02%时对焊条钢电阻率的不利影响要比上述元素低得多。 5.由于焊条钢中含有0.006%氮时,它与0.02%的钛达到最佳配比1.15≤Ti/N≤3.4,从而显著改善焊缝性能,这是因为钛固定了含缝金属中的氮形成的TiN,致使由氢、氮引起的冷脆性得到抑制,而TiN粒子对氢捕获有陷阱作用,亦使氢的不利作用难以发挥,TiN粒子的细化晶粒作用,使解里断裂单元得到细化,从而提高缩性和改善焊缝韧性,减少焊缝开裂。 以下结合实施对本发明作进一步叙述: 附表为本发明实施例中各组分的含量(重量百分比) 该合金由中频感应炉冶炼,所用原料为复合国家标准。有确定化学成分的锰铁、钛铁和纯铝,所用废钢为含碳量在0.3%以下的低碳钢,按各元素的吸收率严格计算各元素的加入量。开炉前,向炉辟加入少许覆盖剂,然后加入20%铝,同时加入废钢,废钢开始深溶

烧结配料模型公式

2.配料 2.1概述 烧结配料是按烧结矿的质量指标要求和原料成分,将各种原料(含铁料、溶剂、燃料等)按一定的比例配合在一起的工艺过程,适宜的原料配比可以生产出数量足够的性能良好的液相,适宜的燃料用量可以获得强度高还原性好的烧结矿。 对配料的基本要求是准确。即按照计算所确定的配比,连续稳定配料,把实际下料量的波动值控制在允许的范围内,不发生大的偏差。实践表明,当配料发生偏差,会影响烧结过程的进行和烧结矿的质量。 生产中,当烧结机所需的上料量发生变化时,须按配比准确计算各种料在每米皮带或单位时间内的下料量;当料种或原料成分发生变化时,则应按规定要求,重新计算配比,并准确预计烧结矿的化学成分。 2.2配料方法——质量配料法 此法是按原料的质量进行配料的一种方法。其主要装置是皮带电子称——自动控制调节系统——调速圆盘给料机,配料时,每个料仓配料圆盘下的皮带电子称发出瞬时送料量信号,此信号输入调速圆盘自动调节系统,调节部分即根据给定值信号与电子皮带秤测量值信号的偏差,自动调节圆盘转速,达到所要求的给料量,质量配料系统如图1所示 质量配料法可实现配料的自动化,便于电子计算机集中控制与管理,配料的动态精度可高达0.5%-1%,为稳定烧结作业和产品成分创造了良好条件,也是劳动条件得到改善。 2.3配料室(本厂) 配料室采用单列布置,15个矿槽,混匀矿槽上采用移动B=1000卸料车向各配料槽给料;无烟煤、焦粉、冷返矿矿槽上采用B=650固定可逆胶带机向各配料槽给料。生石灰用外设压缩空气将汽车罐车送来的生石灰送至配料槽。混匀矿采用¢2500圆盘给料机排料,配料电子称称重;燃料和溶剂及冷返矿直接用配料电子称拖出;生石灰的排料、称量及消化通过叶轮给料机、电子称及消化器完成。以上几种原料按设定比例经称量后给到混合料的B=800胶带机上。料槽侧壁安装振动电机,防止料槽闭塞。 调速圆盘自 动调节系统 给定值 控制量 偏差 调节部分 调节量 操作部分 (圆盘) 操作量 控制部分 (圆盘给料机) 检出部分 (电子皮带秤) 图1 质量配料系统

高钛渣生产工艺规程

高钛渣生产工艺技术规程

高钛渣生产工艺技术规程 一、总则 为了更好的落实公司对高钛渣生产、质量方针,以及更好的完成公司下达的生产计划,做到文明生产和安全生产,提高公司的经济效益和社会效益,特制定本公司的高钛渣生产工艺技术规程。 二、高钛渣生产工艺流程图(见下页) 三、生产工艺规程 1、原料 1.1严格按照配料单配料 1.2所有原材料分别准确检斤,按照配料单的比例均匀混合。 1.3混合好的原材料,按照指定的位置进行堆放,严禁与其它炉料混合 1.4如果有偏加料的炉料,指定专门的堆放位置,供冶炼偏加使用。 1.5所有原料都不得混入其它杂质,必要时,采取相关的措施。 1.5运行混料设备时,要进行工作前的相关检查,只有设备

高钛渣生产工艺流程图

工作状态良好,方可启动混料操作。 1.6所有的炉料,堆放要整齐规整,地面保持清洁,防止杂质的进入。 1.7如有配料发生变化,要及时通知冶炼车间,并告知不同料比的混合炉料的堆放地址,防止冶炼上错料 1.8所有人员,进入操作现场,都必须佩戴好劳保用品,防止不安全因素的产生。 1.9生产工具,在操作完成后,必须撤离现场,按照指定的位置整齐摆放。 2、冶炼 2.1原料主要成分: 2.2基本化学反应方程式 TeTiO3+C==TiO2+Fe+CO

2.3化学反应条件 开始反应温度1116K,所以,为了达到铁还原率95%以上,要远远高于这个温度,也就是说,冶炼要达到熔分效果,冶炼温度要达到16000C以上。 2.4高钛渣的冶炼,是阶段性连续式冶炼,也是间歇式冶炼方式,即一次性加料到出炉,再进行下一炉的冶炼。 2.5冶炼设备 矿热熔炼电炉,也就是矿石还原加热电炉。大体上分为炉体、电极、电极把持器系统、排烟系统、出铁系统,短网、变压器等。 2.6热量来源 总体上就是电阻热和电弧热两种,不同时期的热量来源是不同的,所占的比例相互变化也不同。 2.6生产工艺 2.6.1入炉原材料为原料车间按照配料通知单混合好的原料,均匀加入炉内,料面为电极根部凸起200左右,料面呈馒头状微微凸起。进入冶炼工序。 2.6.2矿热炉是高钛渣生产的主要生产设备,主要的化学反应都在这里完成。 2.6.3冶炼的是间歇式的,一次投料,一次出炉, 2.6.4随着送电的时间加长,炉料逐渐熔化,熔池也加大,此时的化学反应也在逐步进行。

钛铁冶炼工艺

钛铁冶炼工艺 一、钛铁简介 钛铁合金是中间合金的一种,根据含钛量的不同可分为三种:含钛量为25%~35%的是低钛铁,含钛量为35%~45%的是中钛铁,含钛量为65%~75%的是高钛铁。 二、钛铁用途 钛铁合金具有改善结晶组织、提高钢的强度、固定间隙元素、储氢的功能。 三、钛铁冶炼工艺 钛铁冶炼的主要方法有重熔法、金属热还原法、电解法。 1、重熔法 重熔法是目前制备高钛铁的主要方法,它是以废钛材或海绵钛为原料加铁重熔,主要使用感应炉和电炉。

钛氧化物还原反应△F0一T关系图 特点:采用适量的脱氧剂和碱性四元熔渣操作,工艺技术可行,且得到的高钛铁合金产品化学成分稳定,杂质含量低,但是其成本过高,而且受市场价格影响很大。 2、金属热还原法 (1)铝热法 根据自由焓图可知,只有以生成的氧化物比钛的氧化物更稳定的金属还原剂才能生产出钛及其合金来。金属热还原法可在常压下进行,也可在真空下进行。该法具有原料广、生产成本低等有点,国内外对该方法进行了大量的研究,又由热力学 计算可知,金属铝、镁、钙、钡、钠、锂都是二氧化钛理想的

还原剂,考虑到还原剂成本的问题,主要采用铝为还原剂。 理论上,在高温范围内,铝能将TiO2还原成金属钛。实际上TiO2还原过程非常复杂。一部分TiO2被还原成金属钛,另一部分TiO2被还原成TiO,还生产一些其它的氧化物,使得用铝热法在生产钛铁的过程中,氧的残留量,过高的问题。因而严重影响产品的回收率及纯度。分析其热力学过程的出,提高钛的回收率,和降低氧含量主要有俩个方向,一是增加铝的含量。二是降低氧化铝的活度。 (2)复合还原剂法 为了得到低成本低氧的高钛铁,有研究人员采用复合还原剂来制备高钛铁。复合还原剂主要有AI-Mg,AI-Ca,AI-Mg-Ca等,采用复合还原剂有如下好处:Mg,Ca都属于强还原剂,同时其生成物MgO,CaO都属于强碱性氧化物,较易与氧化铝结合,降低了氧化铝的活性,可以保证TiO2被充分还原。 3、电解法 电解法是通过熔盐电解制备钛铁合金,是将钛的氧化物与铁及氧化物混合烧结制电极,在熔盐中进行电解还原制备合金。 综上所述

高碳铬铁的冶炼工艺设计

高碳铬铁生产工艺 一、矿热炉 ?高碳铬铁的生产方法有电炉法、竖炉(高炉)法、等离子法和熔融还原法。竖炉法现在只生产低 铬合金(Cr<30 %),较高铬含量(例如Cr>60 %)的竖炉法生产工艺尚处在研究阶段;后两种方法是正在探索中的新兴工艺;因此,绝大多数的商品高碳铬铁和再制铬铁均采用电炉(矿热炉)法生产。电炉冶炼具有以下特点: ?(1)电炉使用电这种最清洁的能源。其他能源如煤、焦炭、原油、天然气等都不可避免地将伴生 的杂质元素带入冶金过程。只有采用电炉才能生产最清洁的合金。 ?(2)电是唯一能获得任意高温条件的能源。 ?(3)电炉容易实现还原、精炼、氮化等各种冶金反应要求的氧分压、氮分压等热力学条件。 1.1主要技术参数 ?根据生产的品种和年产量,首先确定炉用变压器的额定容量,选择变压器的类型(三相或三台单相)、工作电压和工作电流。然后确定电炉的几何参数,包括电极直径,电极极心圆直径(或电极中心距), 炉膛直径,炉膛深度,护壳直径,炉完高度等。所有这些参数,通常采用经验公式计算,并参照国内外生产实践进行选定。部分冶炼高碳铬铁的还原电炉主要技术参数列于表1。 ?表1部分还原电炉主要技术参数 1.2组成结构 *埋弧式还原电炉由炉体、供电系统、电极系统、烟罩(或炉盖)、加料系统、检测和控制系统、水冷却系统等组成。 二、工艺流程 2.1原料的选取 *冶炼高碳烙铁的原料有铬矿、焦炭和硅石。其中焦炭以及硅石作为还原剂。 (1)铬矿 *世界铬铁矿矿床主要分布在东非大裂谷矿带、欧亚界山乌拉尔矿带、阿尔卑斯一喜马拉雅矿带和 环太平洋矿带。近南北向褶皱带中的铬铁矿资源量,占世界总量的90%以上。其中南非、哈萨克斯坦和津 巴布韦占世界已探明铬铁矿总储量的85%以上,占储量基础的90%以上,仅南非就占去了约3/4的储量基 础。

钛铁矿富集方法评述

第5期1998年10月  矿产综合利用 Multipurpose Utilization of Mineral Resources  No.5 Oct.1998钛铁矿富集方法评述 邱冠周 郭宇峰 中南工业大学,湖南 长沙 410083 [摘要]系统介绍了钛铁矿的各种富集方法,阐明了各种富集方法的相对优缺点及应用前景,并对我国钛铁矿富集技术的发展提出了建议。 关键词:钛铁矿 富集方法 评述 分类号:T D951 文献标识码:A 论文编号:1000-6532(1998)05-0029-33 钛铁矿至少占世界钛原料来源的85%,是一种重要的矿藏资源[1]。随着天然金红石的短缺和价格上涨,供应稳定、价格低廉的钛铁矿正在成为钛的一种重要的生产原料。由于钛铁矿含T iO2的理论量为52.63%,T iO2品位低,一般还含有其他杂质。因而钛铁矿的富集在矿物加工和提取冶金领域方面受到了极大的重视,澳大利亚、美国、加拿大和日本等国从50年代都开始了富集钛铁矿的研究, 60年代以来,多种方法应运而生,并竞相发展,这些方法从冶金角度大致可以分为火法和湿法两大类,每种方法都各有其特点。正确和全面掌握国际动态,从各种方法中取长补短,紧密结合我国实际情况,因地制宜地、创 [5] Beeby Julie P.Recov er y o f g old fr om g old- bear ing o res by ex posing t o micro w ave ener g y fo llo wed by lcaching C.A.118,25417 [6] S.Ko cakusak at al.M icro wav e pr ccessing of bo ric acid t o pro duce g ranular bo ro n ox ide, Pr og ress in M ineral Pr ocessing T echno lo gy. 1994,487—490 Application and Prospects of Microwave Energy in Mining and Metallurgical Engineering ZHANG Xing ren (Institute of M ultipupose Utilization of M ineral Reso urces,M GMR, Cheng du,Sichuan,China) Abstract: Fundament of mierow ave energ y and its major adv antages were descr ibed briefly.T he interaction betw een m icrow ave and minerals w as analy zed.Som e potential appli-cations and pr ospects o f m icrow ave energ y in mining and m etallurgical eng ineering(especial-ly in ex tractive metallurgy)have been discussed. Key words: M icrow ave energy;Mining and metallurg ical engineering;Application 收稿日期:1998-04-13。 ? 29 ?

低钛高碳铬铁的冶炼工艺的制作技术

本技术介绍了一种低钛高碳铬铁的冶炼工艺,包括如下步骤:(1)使用中频感应炉熔化高碳铬铁合金;(2)将铁水导入转炉,由转炉上安装的顶底复吹系统对铁水进行降钒处理。所述顶底复吹系统包括安装在转炉顶部和底部的氧枪;其中,底部氧枪持续喷吹惰性气体,顶部持续喷吹氧化性气体。本技术一种低钛高碳铬铁的冶炼工艺,有效地降低了高碳铬铁中的钛含量,避免了钛在特种钢中出现坚晶点,改善了高温、高强度下的抗疲劳性能及耐磨性,提高了高碳铬铁的机械强度、耐磨性和抗疲劳性能。 技术要求 1.一种低钛高碳铬铁的冶炼工艺,其特征在于,包括如下步骤: (1)使用中频感应炉熔化高碳铬铁合金; (2)将铁水导入转炉,由转炉上安装的顶底复吹系统对铁水进行降钒处理。 2.根据权利要求1所述的一种低钛高碳铬铁的冶炼工艺,其特征在于,所述顶底复吹系统包括安装在转炉顶部和底部的氧枪;其中,底部氧枪持续喷吹惰性气体,顶部持续喷吹 氧化性气体。 3.根据权利要求2所述的一种低钛高碳铬铁的冶炼工艺,其特征在于,所述顶部氧枪喷吹粉末状氧化剂。 4.根据权利要求3所述的一种低钛高碳铬铁的冶炼工艺,其特征在于,所述粉末氧化剂包括二氧化锰、氧化铁或氧化铬中的一种或以上。 技术说明书 一种低钛高碳铬铁的冶炼工艺 技术领域 本技术涉及金属冶炼领域,具体是一种低钛高碳铬铁的冶炼工艺。 背景技术

在轴承钢生产过程中钛与溶解在钢液中的氮结合生成几乎不溶于钢液中的氮化钛。氮化钛的熔点高达2930℃,在钢液冷却过程中,其呈弥漫分布而夹杂在钢锭中。由于氮化钛的硬度较大,使得轴承钢的使用寿命受到影响。轴承钢中的钛主要来源于高碳铬铁。现有技术中缺乏一种可以降低高碳铬铁中的钛含量的冶炼工艺。 技术内容 本技术的目的是提供一种低钛高碳铬铁的冶炼工艺,可以有效降低高碳铬铁中的钛含量。 本技术采用的技术方案是:一种低钛高碳铬铁的冶炼工艺,包括如下步骤: (1)使用中频感应炉熔化高碳铬铁合金; (2)将铁水导入转炉,由转炉上安装的顶底复吹系统对铁水进行降钒处理。 进一步地,所述顶底复吹系统包括安装在转炉顶部和底部的氧枪;其中,底部氧枪持续喷吹惰性气体,顶部持续喷吹氧化性气体。 进一步地,所述顶部氧枪喷吹粉末状氧化剂。 优选地,所述粉末氧化剂包括二氧化锰、氧化铁或氧化铬中的一种或以上。 本技术一种低钛高碳铬铁的冶炼工艺,有效地降低了高碳铬铁中的钛含量,避免了钛在特种钢中出现坚晶点,改善了高温、高强度下的抗疲劳性能及耐磨性,提高了高碳铬铁的机械强度、耐磨性和抗疲劳性能。 具体实施方式 下面结合实施例对本技术作进一步详细说明。 实施例 冶炼一批高碳铬铁,包括如下步骤: (1)使用中频感应炉熔化高碳铬铁合金;

相关主题
文本预览
相关文档 最新文档