当前位置:文档之家› 【教育专用】高中数学第二章推理与证明2.3数学归纳法课后训练新人教B版选修2_2

【教育专用】高中数学第二章推理与证明2.3数学归纳法课后训练新人教B版选修2_2

【教育专用】高中数学第二章推理与证明2.3数学归纳法课后训练新人教B版选修2_2
【教育专用】高中数学第二章推理与证明2.3数学归纳法课后训练新人教B版选修2_2

2.3 数学归纳法

课后训练

1.用数学归纳法证明1+12+13+…+121

n -<n (n ∈N +,n >1)时,第一步应验证不等式( ).

A .11+

<22 B .11

1+<223+ C .111+<323+ D .1111+<3234

++

2.利用数学归纳法证明不等式1+12+13+…+1

21

n -<f (n )(n ≥2,n ∈N +)的过程中,

由n =k 到n =k +1时,左边增加了( )项.

A .1

B .k

C .2k -1

D .2

k

3.观察下列式子:2131+22<,221151+233+<,2

221117

1+2344

++<,…,则可归纳出1+

21

2+2

13+…+211n (+)小于( ).

A .

1n n + B .21

1n n -+ C .211n n ++ D .21

n n +

4.已知f (n )=(2n +7)·3n

+9,存在自然数m ,使得对任意n ∈N +,都能使m 整除f (n ),

则最大的m 的值为( ).

A .30

B .26

C .36

D .6

5.设f (x )是定义在正整数集上的函数,且f (x )满足“当f (k )≥k 2

成立时总可推出f (k

+1)≥(k +1)2

成立.”那么下列命题总成立的是( ).

A .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2

成立

B .若f (5)≥25成立,则当k ≤5时,均有f (k )≥k 2

成立

C .若f (7)<49成立,则当k ≥8时,均有f (k )<k 2

成立

D .若f (4)=25成立,则当k ≥4时,均有f (k )≥k 2

成立

6.观察下列不等式:11>

2,111+>123+,11131+2372

+++>, 1111>22315?++++,11151>23312

?++++,…,由此猜测第n 个不等式为________.

7.用数学归纳法证明“当n ∈N +时,求证:1+2+22

+23

+…+25n -1

是31的倍数”,当n =1时,原式为________________,从n =k 到n =k +1时需增添的项是________________.

8.用数学归纳法证明34n +2+52n +1能被14整除的过程中,当n =k +1时,34(k +1)+2+52(k

+1)+1应变形为________________________.

9.是否存在常数a,b使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+1)对于一切n∈N+都成立?若存在,求出a,b,并证明;若不存在,说明理由.

10.已知在数列{a n}中,a1=2,a n+1=

-1)(a n+2),n=1,2,3,….

(1)求{a n}的通项公式;

(2)若数列{b n}中,b1=2,b n+1=34

23

n

n

b

b

+

+

,n=1,2,3

<b n≤a4n-3,n=

1,2,3,….

参考答案

1. 答案:B n N +,n >1,∴n 取的第一个自然数为2,左端分母最大的项为

2

11

213

=-. 2. 答案:D 1+

12+13+…+1121k +--11111232k -??+++ ?

??=12k +1

21

k ++…+1

12

1

k +-,共增加了2k

项.

3. 答案:C 所猜测的分式的分母为n +1,分子恰好是第n +1个正奇数,即2n +1.

4. 答案:C ∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36, ∴f (1),f (2),f (3)能被36整除,猜想f (n )能被36整除.

证明:当n =1,2时,由上得证,设当n =k (k ≥2)时,f (k )=(2k +7)·3k

+9能被36整除,则当n =k +1时,f (k +1)-f (k )=(2k +9)·3k +1-(2k +7)·3k =(6k +27)·3k -(2k

+7)·3k =(4k +20)·3k =36(k +5)·3k -2

(k ≥2)f (k +1)能被36整除.

∵f (1)不能被大于36的数整除,∴所求的最大的m 的值等于36. 5. 答案:D 由数学归纳法原理可得,

若f (3)≥9成立,则当k ≥4时,均有f (k )≥k 2

成立,故A 不正确.

若f (5)≥25成立,则当k ≥5时,均有f (k )≥k 2

成立,故B 不正确.

若f (7)<49成立,则当k ≤6时,均有f (k )<k 2

成立,故C 不正确.

若f (4)=25>42成立,则当k ≥4时,均有f (k )≥k 2

成立. 6. 答案:1+12+13+…+121n ->2

n 由3=22-1,7=23-1,15=24

-1,可猜测第n 个不等 式为1+

12+13+…+121n ->2

n . 7. 答案:7.1+2+22

+23

+24

25k

+25k +1

+25k +2

+25k +3

+25k +4

当n =1时,原式应加到25×1-1=24

∴原式为1+2+22+23+24

从n =k 到n =k +1时需添25k +25k +1+…+25(k +1)-1

.

8. 答案:25(34k +2+52k +1)+56·34k +2 当n =k +1时,34(k +1)+2+52(k +1)+1=81×34k +2

+25×52k +1=25(34k +2+52k +1)+56×34k +2

.

9. 答案:分析:令n =1,2解方程组求得a ,b 的值,再用数学归纳法证明a ,b 的值对一切n N +等式都成立.

解:假设存在a ,b 使12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2

+1)对于一切

n N +都成立,令n =1,2,得11,413a b a b (+)=??(+)=?解得1,32.

a b ?=?

??=?

下面用数学归纳法证明a =1

3

,b =2时等式对一切n N +都成立. (1)当n =1时,已证.

(2)假设当n =k (k N +)时等式成立,即

12+22+32+…+k2+(k-1)2+…+22+12=1

3

k(2k2+1);

则当n=k+1时,12+22+…+k2+(k+1)2+k2+(k-1)2+…+22+12

=1

3

k(2k2+1)+(k+1)2+k2=

1

3

k(2k2+3k+1)+(k+1)2

=1

3

k(2k+1)(k+1)+(k+1)2=

1

3

(k+1)(2k2+4k+3)=

1

3

(k+1)[2(k+1)2+1].

∴当n=k+1时,等式也成立.

由(1)和(2),知存在a=1

3

,b=2,使等式对一切n N+都成立.

10.答案:解:(1)由题设a n+1=

-1)(a n+2)

-1)(a n

)+

-1)(2

)

-1)(a n

)

所以a n+1

-1)(a n

).

所以数列{a n

}是首项为2

-1的等比数列.则a n

1)n,

即a n的通项公式为a n

-1)n+1],n=1,2,3,….

(2)用数学归纳法证明.

①当n=1

2,b1=a1=2,

<b1≤a1,结论成立.

②假设当n=k

<b k≤a4k-3,

也即0<b k

≤a4k-3

.

则当n=k+1时,b k+1

34

23

k

k

b

b

+

+

34

23

k

k

b

b

(-+(-

+

3

23

k

k

b

b

(-

+

>0,

1

23

k

b

<

+

=3-,

所以b k+1

3

23

k

k

b

b

(-

+

<(3

-2·(b k

-1)4(a4k-3-

)=a4k+1,

也就是说,当n=k+1时,结论成立.

<b n≤a4n-3,n=1,2,3,….

高中数学推理与证明.doc

高中数学推理与证明 高中数学推理知识点 1、归纳推理:顾名思义,一个归纳的过程。比如,一个篮子里有苹果梨葡萄草莓等等,那么你发现苹果是水果、梨是水果、葡萄是水果、草莓是水果,然后你猜想:篮子里装的是水果。这个推理是由特殊推到一般的过程,可能正确也可能不正确,如果篮子里确实都是水果,那么你就猜对了;如果篮子里有一根胡萝卜,那你就猜错了。所以才会有证明。 2、类比推理:同样顾名思义,一个类比的过程。例如,你知道苹果水分多又甜、梨水分多又甜、葡萄水分多又甜,所以你推理出同样作为水果,香蕉水分多又甜,那这个结论显然是不对的,香蕉并没有什么水分。但如果你推导出荔枝水分多又甜,这就是正确的。(这个例子中指的都是正常水果)显然,这个推理方式是一个由特殊推特殊的过程,也不一定正确。 3、演绎推理:一般推特殊,一定对。例如,f(x)=1,那么f(1)=1 高中数学证明知识点 1、综合法:即我们正常的证明过程,由条件一直往下推。 例如,1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量,证明:2菠萝重量=160葡萄重量。 证明:因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量 ____________所以1菠萝的重量=4*20葡萄重量=80葡萄重量 ____________所以2菠萝重量=160葡萄重量。 2、分析法:由结论推出等价结论,去证明这个等价结论成立。

同样上面的例子的证明:要证明2菠萝重量=160葡萄重量,即证明2*1菠萝重量=2*80葡萄重量,即证明1菠萝重量=80葡萄重量。 因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量 所以1菠萝的重量=4*20葡萄重量=80葡萄重量,原式即证。 3、反证法:先假设结论相反,然后根据已知推导,最后发现和已知不符,收!这是一个战胜自己的过程! 4、数学归纳法: 解题过程: A.命题在n=1(或n0)时成立,这是递推的基础; B.假设在n=k时命题成立; C.证明n=k+1时命题也成立 高中数学推理与证明 一、公理、定理、推论、逆定理: 1.公认的真命题叫做公理。 2.其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。 3.由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。 4.如果一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理。 二、类比推理: 一道数学题是由已知条件、解决办法、欲证结论三个要素组成,这此要求可以看作是数学试题的属性。如果两道数学题是在一系列属性上相似,或一道是由另一道题来的,这时,就可以运用类比推理的方法,推测其中一道题的属性在另一道题中也存在相同或相似的属性。

高二数学 归纳推理演绎推理

3月5日 高二理科数学测试题 1.由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是 ( ) A .归纳推理 B .演绎推理 C .类比推理 D .传递性推理 2.下列正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是由特殊到一般的推理 C .归纳推理是由个别到一般的推理 D .合情推理可以作为证明的步骤 3.下面几种推理中是演绎推理.... 的序号为( ) A .半径为r 圆的面积2S r π=,则单位圆的面积S π=; B .由金、银、铜、铁可导电,猜想:金属都可导电; C .由平面三角形的性质,推测空间四面体性质; D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= . 4.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等”,补充以上推理的大前提是 ( ) A .正方形都是对角线相等的四边形 B .矩形都是对角线相等的四边形 C .等腰梯形都是对角线相等的四边形 D .矩形都是对边平行且相等的四边形 5.设 f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x)=f ′1(x ),…,f n (x )=f ′n -1(x ),n ∈N ,则f 2009(x )=( ) A .sin x B .-sin x C .cos x D .-cos x 6.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命 题,推理错误的原因是( ) A .使用了归纳推理 B .使用了类比推理 C .使用了“三段论”,但大前提使用错误 D .使用了“三段论”,但小前提使用错误 7.观察下列等式: 1- ; 1- ;1- ...... 据此规律,第n 个等式可为______________________. 8.观察下列等式:,……,根据上述规律, 第五个等式为 ______________________. 1122=1111123434+-=+1111111123456456+-+-=++332123,+=3332 1236,++=33332123410+++=

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学证明方法高中数学证明

高中数学证明方法高中数学证明 一、 现在正在学数学选修4-1《几何证明选讲》,做几何大题的时候,总是想不出来该怎么画辅助线,所以总是不会写,我数学不算差,可是面对这种证明题就老是蒙。求练习方法,要怎么办 首先你要熟知的几何中的所有定理!在做几何题的时候你就会熟练地运用!对于怎么画辅助线,当你看到一个几何题目的时候,自己要把题目中的已知摆出来!这样有助于你利用定理解决问题!的那个你确定用哪个定理时,你就判断还需要什么,这个时候画辅助线就变得简单啦!比如题目中有告诉你中点,你就会联想到中位线,30°所对直角边是斜边的一半,想到梯形,等等! 总之做这种几何题目时,要善于将已知信息联系定理,在看定理缺什么,然后就画辅助线使定理能使用!!! 直角三角形ABC中,∠ACB=45°,∠BAC=90°,AB=AC,D是AB中点,AF⊥CD于H,交BC于F,BE∥AC,交AF延长线于E,求证BC垂直平分DE。 ∵BE∥AC,∠BAC=90° ∴∠ABE=∠BAC=90° 由AF⊥CD易证 ∠ACD=∠BAE 由题AB=AC 得三角形ABE,CAD全等 易证BD=BE ∵∠ABE=90° ∴BDE为等腰Rt 易证BC为∠ABE角平分线 等腰三角形三线合一 ∴BC垂直平分DE 二、

遇到较难的,应该怎么入手哦, 我证明的不太好,有什么办法可以提高点吗? 或者提供几道证明题,最好附答案, 谢谢啦! 答案:可以利用反证法数学证明题的常用做法 定义:证明定理的一种方法,先提出和定理中的结论相反的假定,然后从这个假定 中得出和已知条件相矛盾的结果来,这样就否定了原来的假定而肯定了定理。也叫归谬法。事实上,反证法就是去证明一个命题的逆否命题是正确的,这与直接证明是等价的,但是 可能其逆否命题比较容易证明。上述的得出了矛盾,事实上就是得出了“假设与题设不相融”这个结论,所以我们不能接受这个假设,所以这个假设的反面就是正确的,从而命题 得证。适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而否定则比较浅显。证明:素数有无穷多个。这个古老的命题最初是由古希腊数学家欧几里德Euclid of Alexandria,生活在亚历山大城,约前330~约前275,是古希腊最享有盛名的数 学家在他的不朽著作《几何原本》里给出的一个反证法:假设命题不真,则只有有限多个 素数,设所有的素数是2=a1aii=1,2……n.无论是哪种情况,都将和假设矛盾。这个矛盾 就完成了我们的证明,所以确实有无穷多个素数。 感谢您的阅读,祝您生活愉快。

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

(推荐)高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k+1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k 这一步,当n=k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k+1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n},使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+n an =n(n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来{a n },然后再证明一般性. 解:将n=1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a1+2a 2+3a3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k+1)(k +2) 那么当n=k +1时, a1+2a 2+3a 3+…+ka k +(k+1)ak +1 = k(k +1)(k +2)+ (k +1)[3(k+1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n=k +1时,也存在一个等差数列an =3n +3使a 1+2a 2+3a 3+…+n an=n (n +1)(n+2)成立. 综合上述,可知存在一个等差数列an =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n=n(n+1)(n +2)都成立.

最新数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

新课标高中数学《推理与证明》知识归纳总结

《推理与证明》知识归纳总结 第一部分 合情推理 学习目标: 了解合情推理的含义(易混点) 理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点) 了解合情推理在数学发展中的作用(难点) 一、知识归纳: 合情推理可分为归纳推理和类比推理两类: 归纳推理: 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理. 2.归纳推理的一般步骤: 第一步,通过观察个别情况发现某些相同的性质; 第二步,从已知的相同性质中推出一个明确表述的一般命题(猜想). 思考探究: 1.归纳推理的结论一定正确吗? 2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? 题型1 用归纳推理发现规律 1、观察 < < ;….对于任意正实数,a b , ≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a

2、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图 有7个蜂巢,第三个图有19个蜂巢,按此规律,以 ()f n 表示第n 幅图的蜂巢总数.则(4)f =_____;()f n =___________. 【解题思路】找出)1()(--n f n f 的关系式 [解析],1261)3(,61)2(,1)1(++=+==f f f 37181261)4(=+++=∴f 133)1(6181261)(2+-=-+++++=∴n n n n f 总结:处理“递推型”问题的方法之一是寻找相邻两组数据的关系 类比推理 1.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理. 2.类比推理的一般步骤: 第一步:找出两类对象之间可以确切表述的相似特征; 第二步:用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想. 思考探究: 1.类比推理的结论能作为定理应用吗? 2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体? (2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论? 题型2 用类比推理猜想新的命题 [例]已知正三角形内切圆的半径是高的 13,把这个结论推广到空间正四面体,类似的结论是______. 【解题思路】从方法的类比入手 [解析]原问题的解法为等面积法,即h r ar ah S 3121321=??== ,类比问题的解法应为等体积法, h r Sr Sh V 4131431=??==即正四面体的内切球的半径是高4 1 总结:(1)不仅要注意形式的类比,还要注意方法的类比 (2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等

用数学归纳法证明不等式

人教版选修4—5不等式选讲 课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512,…… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n< b n,即 n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2k+1 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│

苏教版数学高二- 选修2-2试题 《合情推理—归纳推理》(1)

2.1.1 合情推理—归纳推理 同步检测 一、基础过关 1.数列5,9,17,33,x ,…中的x 等于________ 2.f(n)=1+12+13+…+1n (n ∈N *),计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>7 2, 推测当n≥2时,有________. 3.已知sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=3 2. 通过观察上述两等 式的规律,请你写出一个一般性的命题:____________________. 4.已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33=________. 5.数列-3,7,-11,15,…的通项公式是________. 二、能力提升 6.设x ∈R ,且x≠0,若x +x - 1=3,猜想x2n +x -2n (n ∈N *)的个位数字是________. 7.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为________. 8.如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________. 9.如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题. (1)按照要求填表:

n 1 2 3 4 … S n 1 3 6 … (2)S 10=________.(3)S n 10.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数: 将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测: (1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=________.(用k 表示) 11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1 S n +2=0(n≥2),计算S 1,S 2,S 3,S 4, 并猜想S n 的表达式. 12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分. (1)3条直线最多将平面分成多少部分? (2)设n 条直线最多将平面分成f(n)部分,归纳出f(n +1)与f(n)的关系; (3)求出f(n). 三、探究与拓展 13.在一容器内装有浓度r%的溶液a 升,注入浓度为p%的溶液1 4a 升,搅匀后再倒出溶 液1 4a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式.

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

归纳推理-高中数学知识点讲解

归纳推理 1.归纳推理 【知识点的认识】 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别 事实概括出一般结论的推理. 推理形式:设S={A1,A2,A3,…,A n,…}, ?1具有属性? 具有属性?} ? ? ??类事物中的每一个对象都可能具有属性? ? 2.特点: (1)归纳推理的前提是几个已知的特殊现象,归纳得出的结论是尚属未知的一般现象,该结论超越了前提所包容 的范围; (2)归纳推理得到的结论具有猜测性质,结论是否真实,需要通过逻辑证明和实践检验,不能作为数学证明的工具; (3)归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现 问题和提出问题. 3.作用: (1)获取新知,发现真理; (2)说明和论证问题. 【解题技巧点拨】 归纳推理一般步骤: (1)对有限的资料进行观察、分析、归纳、整理; (2)提出带有规律性的结论,即猜想; (3)检验猜想. 【命题方向】 归纳推理主要以填空、选择题的形式出现,比较基础,考查对归纳推理的理解,会运用归纳推理得出一般性结论. 1/ 4

(1)考查对归纳推理理解 掌握归纳推理的定义与特点,注意区分与类比推理、演绎推理的不同. 例 1:下列表述正确的是() ①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A.①②③B.②③④C.②④⑤D.①③⑤ 分析:本题考查的知识点是归纳推理、类比推理和演绎推理的定义,根据定义对 5 个命题逐一判断即可得到答案.解答:归纳推理是由部分到整体的推理, 演绎推理是由一般到特殊的推理, 类比推理是由特殊到特殊的推理. 故①③⑤是正确的 故选D 点评:判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一 个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,即是否是由一般到 特殊的推理过程. 例 2:下列推理是归纳推理的是() A.A,B 为定点,动点P 满足||PA|﹣|PB||=2a<|AB|(a>0),则动点P 的轨迹是以A,B 为焦点的双曲线 B.由a1=2,a n=3n﹣1 求出S1,S2,S3,猜想出数列{a n}的前n 项和S n 的表达式 ?2 ?2 C.由圆x2+y2=r2 的面积S=πr2,猜想出椭圆+ ?2 ?2 =1的面积 S=πab D.科学家利用鱼的沉浮原理制造潜水艇 分析:根据归纳推理的定义,对各个选项进行判断. 2/ 4

高中数学数学归纳法(1)苏教版选修2-2

数学归纳法(1) 一、教学目标: 1.了解数学归纳法的原理,理解数学归纳法的一般步骤。 2.掌握数学归纳法证明问题的方法。 3.能用数学归纳法证明一些简单的数学命题。 二、教学重点:掌握数学归纳法的原理及证明问题的方法。 难点:能用数学归纳法证明一些简单的数学命题。 三、教学过程: 【创设情境】 1.华罗庚的“摸球实验”。 2.“多米诺骨牌实验”。 问题:如何保证所摸的球都是红球?多米诺骨牌全部倒下?处了利用完全归纳法全部枚举之外,是否还有其它方法? 数学归纳法:数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数问题的有力工具。 【探索研究】 1.数学归纳法的本质: 无穷的归纳→有限的演绎(递推关系) 2.数学归纳法公理: (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 【例题评析】 例1:以知数列{a n }的公差为d,求证: 1 (1) n a a n d =+- 说明:①归纳证明时,利用归纳假设创造递推条件,寻求f(k+1)与f(k)的递推关系,是解题的关键。 ②数学归纳法证明的基本形式; (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 EX: 1.判断下列推证是否正确。 P88 2,3 2. 用数学归纳法证明 2 )1 ( )1 3( 10 3 7 2 4 1+ = + + + ? + ? + ?n n n n K 例2:用数学归纳法证明 111 1 1231 n n n ++???≥ +++ (n∈N,n≥2) 说明:注意从n=k到n=k+1时,添加项的变化。

高一数学直接证明与间接证明练习题

推理与证明综合测试题 一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 答案:A 2.结论为:n n x y +能被x y +整除,令1234n =, ,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 答案:C 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 答案:C 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述

性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 答案:B 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 答案:D 6.观察式子:213122+ <,221151233++<,2221117 12344 +++<,,则可归纳 出式子为( ) A.22211 111(2)2321n n n ++++<-≥ B.22 211111(2)2321 n n n + +++ <+≥

(完整版)数学归纳法知识点大全(综合)

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立, ②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果

① )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立; (4)双重归纳法 设 是一个含有两上独立自然数 的命题. ① 与 对任意自然数 成立; ②若由 和 成立,能推出 成立; 根据(1)、(2)可断定, 对一切自然数 均成立. 3.应用数学归纳法的技巧 (1)起点前移:有些命题对一切大于等于1的正整数正整数n 都成立,但命题本身对0=n 也成立,而且验证起来比验证1=n 时容易,

高中数学《合情推理—归纳推理》公开课优秀教学设计

《合情推理—归纳推理》教学设计 (人教A版高中课标教材数学选修1—2第二章2.1第一课时) 2016年10月

《归纳推理》教学设计 一、教学内容分析 本节课内容是《普通高中课程标准实验教科书数学》人教A版选修1—2第二章《推理与证明》2.1《合情推理与演绎推理》的第一课时《归纳推理》,归纳推理为合情推理的一个类型.本课作为本章节的起始课要了解推理的含义,通过实例进一步了解归纳推理的含义,通过对归纳推理过程的感知,了解推理过程,进而能利用归纳进行简单的推理. 归纳推理是合情推理的一个重要类型,数学发现的过程往往包含有归纳推理的成分,在人类文明、创造活动中,归纳推理也扮演了重要的角色.归纳推理是作为一种思维活动存在的,教学的内容不是学习某一具体知识,而是感悟一系列的思维过程,逐步形成一种“思维习惯”,作为起始课形成习惯是困难的,但体验“过程”是相对容易的,“体验之旅”将成为本节课的主线.归纳推理的过程我们概括为“观察—分析—归纳—猜想”,对于“证明”我们暂不做要求,因此重点感悟归纳推理的过程,证明做适当引导. 归纳推理是由部分到整体、由特殊到一般的推理,这本身就体现了特殊与一般的数学思想,由于猜想结果超出了前提界定的范围,前提与结论之间的联系不是必然的,这又体现了必然与或然的数学思想.本课中的实例在数学史中都是赫赫有名的,“四色猜想”、费马数、哥德巴赫猜想、问题4中的毕达哥拉斯平方数等,这些实例展现了一代代数学家对于数学的好奇心和想象力体现了他们不畏困难,坚持不懈的探索精神,抓住这些内容可以培养学生“勇于探究”的精神,这一精神正是新一轮课程改革强调的学生核心素养中“科学精神”的重要体现。新一轮的课程改革即将到来,作为普通教师也有必要在教学中未雨绸缪,避免大寒索裘.数学思想和数学文化将作为本课的一条暗线穿插于教学内容之中. 本节课的教学重点:了解归纳推理的含义,通过实例,掌握“观察—分析—归纳—猜想”的推理过程. 二、教学目标设置

相关主题
文本预览
相关文档 最新文档