当前位置:文档之家› 基于FTA、ETA、Bow—tie三种评价方法的结合及其应用研究

基于FTA、ETA、Bow—tie三种评价方法的结合及其应用研究

基于FTA、ETA、Bow—tie三种评价方法的结合及其应用研究
基于FTA、ETA、Bow—tie三种评价方法的结合及其应用研究

基于FTA、ETA、Bow—tie三种评价方法的结合及其应

用研究

作者:李婷婷赵姚峰

摘要:在FTA与ETA分析方法结合的基础上引入蝴蝶结分析法(Bow-tie 法)能很好的克服FTA和 ETA的局限性。本文将ETA、FTA及Bow-tie法进行结合并将其应用到燃气管道泄漏的安全评价及分析中。

Abstract: Introducing Bow-tie analytical method into the combination of FTA and ETA can well overcome the limitation of FTA and ETA. This article combines ETA, FTA and Bon-tie method and apply it into the safety evaluation and analysis of gas pipeline leakage.

关键词: FTA;ETA;Bow-tie分析法;管道燃气泄漏;定性分析;定量分析

Key words: FTA;ETA;Bow-tie analytical method;pipeline gas leakage;qualitative analysis;quantitative analysis

中图分类号:X820.4 文献标识码:A 文章编号:1006-4311(2013)27-0035-03

0 引言

随着现代社会的快速进步,我国各行各业都得到了飞速发展,但在发展的同时各种意外事故频频发生,造成重大的人员伤亡和财产损失。为了及时预防事故发生、降低事故损失,我们需要采用合理的评价方法及时找出事故发生发展原因,继而采取有效的预防措施防止事故再次发生。

由于现代工业的特殊性、复杂性和危险性,用单一评价方法很难对其进行全面分析,而采用多种评价方法结合的方式则会达到很好的效果。一般传统的分析方法包括安全检查表法、预先危险性分析(PHA)、失效模式和后果分析(FMEA)、鱼刺图、头脑风暴、事故树分析(FTA)、事件树分析(ETA)等等,其中事故树(FTA)和事件树(ETA)分析方法因其操作简单、应用广泛而受到大家普遍欢迎。FTA分析方法是以事故作为顶上事件,自上而下逐层寻找顶事件发生的直接及间接原因,并能对其进行定性、定量分析,为分析事故起因提供了依据。ETA分析法是从可能导致事故发生的起始事件开始,按时间的发展顺序考虑各个环节事件的成功与失败,通过ETA可以分析复杂系统中可能出现的各种事故模型及其后果,并能根据起始事件及环节事件的概率计算各种结果的概率。将FTA与ETA 分析方法结合可以对事故的预防、控制、发生、后果及发生的原因等事故发生全过程进行分析。但是仅仅用FTA和ETA的分析方法不能从视觉上形象直观的完整表述事故发生全过程,不能对危害事件发生的原因、后果及采取的措施是否充足等提供一个可视化的评估。所以,如果在FTA与ETA分析方法结合的基础上引入蝴蝶结分析法(Bow-tie法),就能很好的解决该问题。

1 Bow-tie方法简介

Bow-tie分析法是一种很容易使用和操作的风险评估方法,它具有高度可视化、允许在管理过程中进行处理的特点。它能够使人们非常详细的识别事故发生的起因和后果,并能帮助人们在事故发生前后分别建立有效的措施来预防及控制事故的发生。

Bow-tie分析法的基本图形犹如一个蝴蝶结,能够同时分析和描述几种不同导致事故的潜在危险因素及后果,同时提出合理的预防及控制措施。Bow-tie法原理图将被分析的事故放在图的中心,将导致事故发生的潜在危险因素放在图左侧,事故发生后导致的后果放在图右侧。同时,还允许我们在图上标出为了预防事故发生所采取的预防措施及事故发生后为减小事故损失所能采取的控制措施。Bow-tie分析法的基本原理如图1所示。

2 FTA、ETA、Bow-tie三者结合的优点

FTA、ETA、Bow-tie三者结合能提高分析结果的直观性和准确性。Bow-tie 分析法只能用图形直观表示出整个事故发生的全过程和相关的定性分析,而不易给出更为准确的定量分析,因此将ETA、FTA与Bow-tie法结合能很好的解决这一问题,对事件发展全过程有更为准确和详细的了解。

当用以上三种方法对某一具体事故做分析时,首先应当以所需要分析的事故为中心,通过事故树分析(FTA)找出导致事故发生的各种潜在危险因素,对其进行归纳总结,同时可根据需要进行定性定量分析。其次仍以事故作为起始事件进行事件树分析(ETA),通过事件树分析得到事故发生后可能导致的一系列潜在后果,在事件树分析中也可以根据需要进行定量分析。事故树和事件树的分析结果,可为Bow-tie法分析提供依据。

3 基于FTA、ETA、Bow-tie三种方法在燃气管道泄漏事故分析中的应用

3.1 燃气管道系统泄漏事故树的建立及分析近年来燃气管道泄漏事故频发,造成了严重的人员伤亡和财产损失,如何加强对燃气管道的科学管理,避免燃气泄漏已经成为了十分紧迫的问题。根据相关文献和资料总结得出燃气管道泄漏主要有以下四个方面的原因:①生产制造方面的缺陷;②安装施工缺陷;③使用过程中出现问题;④安全管理方面的原因。根据以上四个原因再进行深层分析,便可得到管道燃气泄漏的事故树图形。所得事故树图形如图2所示。

3.1.1 燃气管道泄漏事故树定性分析故障树定性分析的任务是求出故障树的全部最小割集、最小径集、结构重要度等。所谓最小割集,是指导致顶事件发生的所有可能的基本事件的最小限度的集合。当集合中的全部基本事件都已发生时,顶事件必定发生称为最小割集。所谓最小径集是指事故树某些基本事件的集合,当这些基本事件都不发生时,顶事件必然不会发生的最小集合。结构重要度是指假定各个基本事件发生概率相同的情况下,分析各个基本事件的发生对顶上时间发生所产生的影响程度,基本事件的结构重要度越大,它对顶事件影响程度就越大。

由布尔代数法得图2事故树的最小割集如下:

T=X1+X2+X3+X4+X5+X6+X7+X8+X9+X10X11X12+X13X14+X15X16;

由上式T可知,该事故树有9个一阶最小割集、2个二阶最小割集组成和1个三阶最小割集组成。一般来说,割集阶数越少,其发生的可能性就越大,在不同最小割集中重复出现的次数越多的底事件越重要。在分析系统的安全性与可靠性时,应当首先考虑那些发生概率相对较大或危害性大的一阶最小割集以及出现次数较多的底事件。该事故树中应当多加注意的基本事件为X1至X9,应当最大限度减低它们发生的可能性。

最小径集:

K1={X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X13、X15}

K2={X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X13、X16}

K3={X1、X2、X3、X4、X5、X6、X7、X8、X9、X11、X13、X15}

K4={X1、X2、X3、X4、X5、X6、X7、X8、X9、X12、X13、X15}

K5={X1、X2、X3、X4、X5、X6、X7、X8、X9、X11、X13、X16}

K6={X1、X2、X3、X4、X5、X6、X7、X8、X9、X12、X13、X16}

K7={X1、X2、X3、X4、X5、X6、X7、X8、X9、X12、X14、X15}

K8={X1、X2、X3、X4、X5、X6、X7、X8、X9、X11、X14、X15}

K9={X1、X2、X3、X4、X5、X6、X7、X8、X9、X11、X14、X16}

K10={X1、X2、X3、X4、X5、X6、X7、X8、X9、X12、X14、X16}

K11={X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X14、X15}

K12={X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X14、X16}

此题中最小径集中的基本事件较多,要想防止顶上事件的发生则应当从中选取较为合适可行的最小径集对其进行控制。

结构重要度排序:Ig(1)=Ig(2)=Ig(3)=Ig(4)=Ig(5)=Ig(6)=Ig (7)=Ig(8)=Ig(9)>Ig(13)=Ig(14)=Ig(15)=Ig(16)>Ig(10)=Ig (11)=Ig(12)

从该结构重要度分析中可以看出,基本事件X1至X9从结构上对顶上事件影响较大,应当在平时工作中多加注意防范,防止其发生。基本事件X13至X16次之,最后是基本事件X10至X12。

3.1.2 燃气管道泄漏事故树定量分析事故树的定量分析主要为顶上事件发生概率的计算。如果已知某最小割集或最小径集中各个基本事件Xi发生的概率,则可以根据相关公式计算得出顶上事件发生的概率:

已知最小割集,可用公式:

P(T)=■■q■-■(■q■)+…+(-1)■■q■(1)

其中 r—最小割集的个数;i—基本事件的序数;j,h—最小割集的序数;

已知最小径集,可用公式:

P(T)=1-■■(1-qi)+■■(1-qi)-…+(-1)s■(1-qi)(2)

其中 s—最小径集的个数;i—基本事件的序数;j,h—最小径集的序数。

一般基本事件的概率可以通过专家讨论等方法来确定,但带有一定的主观性,故本文不再分别讨论,只假设通过以上(1)、(2)计算顶上事件燃气管道

泄漏的概率为P

(T)。

以上即为燃气管道泄漏事故树分析,对以上分析结果进行总结即可得到导致燃气管道泄漏事故发生的原因,主要包括以下几个方面:①生产制造方面的原因;

②焊接及法兰连接失误的原因;③管道受到挤压;④交叉施工对管道造成损害;

⑤违章建筑占压管线;⑥人员误操作造成使用不当;⑦内壁腐蚀;⑧外壁腐蚀;

⑨安全管理滞后、缺乏日常检修工作等。以上九个原因可以为后文利用Bow-tie 蝴蝶结法画图提供依据。

3.2 燃气管道系统泄漏事件树的建立及分析

众所周知,燃气管道一旦泄露可能会导致火灾、爆炸、中毒等一系列的严重后果,然而,根据燃气本身不同的理化性质及外部环境,不同气体的泄露会造成不同的后果。在此,我们以燃气管道泄露作为事件树分析的初始事件,分析燃气泄露可能导致的不同后果。根据以上分析建立如图3所示的管道系统燃气泄漏事件树分析图。

在已知事件T1至T4发生的概率之后,可以分别计算M1-M16发生的概率,对以上事件树进行定量分析。张景林,崔国章编著的《安全系统工程》对此如何进行事件树定量分析有详细阐述,由于篇幅所限,在此不做累述。根据事件树分析的以上16种结果,可以将燃气泄漏这一事故造成的危害总结为以下几种:①失火,火灾隐患;②密闭空间爆炸;③气云爆炸;④中毒;⑤爆炸隐患,以上五种定性分析结果可以为后文利用Bow-tie蝴蝶结法画图提供依据。

3.3 基于Bow-tie的燃气管道泄漏事件风险分析实例

蝴蝶结图的实施步骤如下:①识别可能产生的危害事故,并将其作为蝴蝶结分析法的中心事件。在本例中通过事故树和事件树分析可知该蝴蝶结图的中心结为燃气管道泄漏;②列出导致中心事件发生的原因。由事故树分析已知导致事故发生原因包括:1)生产制造方面的原因;2)焊接、法兰连接失误的原因;3)管道受到挤压;4)交叉施工对管道造成损害;5)违章建筑占压管线;6)人员误操作造成使用不当;7)内壁腐蚀;8)外壁腐蚀;9)安全管理滞后、缺乏日常检修工作等;③识别导致中心事件发生的原因;④在蝴蝶结图左侧,将可能导致中心事件发生的原因和中心事件之间用线段连接;并将能够防止中心事件发生的各个预防措施用条形框表示,置于该线段上,表示这些预防措施会产生积极的影响;⑤在蝴蝶结图右侧,分析中心事件发生后将会导致的不同潜在后果,并将中心事件与潜在后果用线段连接。经过分析,在该例中以下几种为燃气管道泄漏可能的潜在结果:1)失火,失火隐患;2)密闭空间爆炸;3)气云爆炸;4)中毒;5)爆炸隐患;⑥将能够降低潜在后果危险性的控制措施用条形框表示,置于中心事件与潜在后果的线段上,用以表示控制措施将会产生的积极影响。

在每条路径独立的情况下也可以对蝴蝶结分析法进行一定的量化分析,计算中心事件、控制及预防措施、潜在后果发生的概率,但是在实际应用过程中,导致中心事件及其潜在后果发生的路径,预防及控制措施并不完全独立,存在相互

联系,所以还是用事件树、事故树分析法更加合适。通过以上分析,燃气管道泄漏Bow-tie风险分析图如图4所示。

4 总结

用FTA、ETA分析法可以对危害事故进行定性定量的分析,更为准确的表达出事故发生的可能性,以及采用哪些措施可以减少事故发生的概率。用Bow-tie 蝴蝶结分析法用可视化的图形清晰的表示问题,便于理解,同时使用时不需要较高的专业知识水平。将三者结合起来有利于对事故发生的原因、过程、结果有更为深刻的理解,是一种更行之有效的方法,可以在日常的生产工作中进行运用。

参考文献:

[1]孙殿阁,孙佳,王淼,秦康.基于Bow-Tie技术的民用机场安全风险分析应用研究[J].中国安全生产科学技术,2010,4(8):85-89.

[2]黄小美,彭世尼,李百战,杨茂华.城市燃气管道系统失效的事件树和故障树相结合[J].重庆建筑大学学报,2006,6(12):99-101.

[3]郑应钊,曾祥红,卢永强.Bow-tie风险管理法在录井作业中的应用[J].录井工程,2008,19(3):41-43.

[4]黄小美,李百战,彭世尼,杨茂华.基于事件树的天然气管道风险定量分析[J].2009,4(4):42-46.

[5]孙玉叶.易燃易爆化学品泄漏火灾爆炸事故树分析[J].安全,2009(11):5-8.

[6]杨维.事故树在管道燃气泄漏事故分析的应用[J].煤气与热力,2007(5):51-54.

[7]董玉华,余大涛,高惠临,周敬恩.油气管道的故障树分析[J].油气储运,2002,21(6):15-17.

[8]林柏泉,张景林,崔国章.安全系统工程[M].中国劳动社会保障出版社,2007.

火灾爆炸事故树分析(一)

火灾爆炸事故树分析(一) 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑

学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,是分析的方向,即用数据表示安全与否;第9步安全性评价,是目的。 3油库静电火灾爆炸故障树的建立 油库静电火花造成油库火灾爆炸的事故树的建立过程,如图1所示。(1)确定顶上事件——“油库静电火灾爆炸”(一层)。 (2)调查爆炸的直接原因事件、事件的性质和逻辑关系。直接原因事件:“静电火花”和“油气达到可燃浓度”。这两个事件不仅要同时发生,而且必须在“油气达到爆炸极限”时,爆炸事件才会发生,因此,用“条件与”门连接(二层)。 (3)调查“静电火花”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“油库静电放电”和“人体静电放电”。这两个事件只要其中一个发生,则“静电火花”事件就会发生。因此,用“或”门连接(三层)。

火灾爆炸事故树分析

火灾爆炸事故树分析(油库静电) ——引言(1) 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 火灾爆炸事故树分析(油库静电)——事故树(2) 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2 故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,是分析的方向,即用数据表示安全与否;第9步安全性评价,是目的。 3 油库静电火灾爆炸故障树的建立

(完整版)故障树分析法

什么是故障树分析法 故障树分析(FTA)技术是美国贝尔电报公司的电话实验室于1962年开发的,它采用逻辑的方法,形象地进行危险的分析工作,特点是直观、明了,思路清晰,逻辑性强,可以做定性分析,也可以做定量分析。体现了以系统工程方法研究安全问题的系统性、准确性和预测性,它是安全系统工程的主要分析方法之一。一般来讲,安全系统工程的发展也是以故障树分析为主要标志的。 1974年美国原子能委员会发表了关于核电站危险性评价报告,即“拉姆森报告”,大量、有效地应用了FTA,从而迅速推动了它的发展。 什么是故障树图(FTD) 故障树图 ( 或者负分析树)是一种逻辑因果关系图,它根据元部件状态(基本事件)来显示系统的状态(顶事件)。就像可靠性框图(RBDs),故障树图也是一种图形化设计方法,并且作为可靠性框图的一种可替代的方法。 一个故障树图是从上到下逐级建树并且根据事件而联系,它用图形化"模型"路径的方法,使一个系统能导致一个可预知的,不可预知的故障事件(失效),路径的交叉处的事件和状态,用标准的逻辑符号(与,或等等)表示。在故障树图中最基础的构造单元为门和事件,这些事件与在可靠性框图中有相同的意义并且门是条件。 故障树和可靠性框图(RBD) FTD和RBD最基本的区别在于RBD工作在"成功的空间",从而系统看上去是成功的集合,然而,故障树图工作在"故障空间"并且系统看起来是故障的集合。传统上,故障树已经习惯使用固定概率(也就是,组成树的每一个事件都有一个发生的固定概率)然而可靠性框图对于成功(可靠度公式)来说可以包括以时间而变化的分布,并且其他特点。 故障树分析中常用符号 故障树分析中常用符号见下表:

火灾爆炸事故树分析正式样本

文件编号:TP-AR-L2741 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 火灾爆炸事故树分析正 式样本

火灾爆炸事故树分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 引言 当液相与固相之间,液相与气相之间,液相与另 一不相容的液相之间以及固相和气相之间,由于流 动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、 剧烈晃动以及发泡等接触、分离的相对运动,都会在 介质中产生静电。许多石油化工产品都属于高绝缘物 质,这类非导电性液体在生产和储运过程中,产生和 积聚大量的静电荷,静电聚积到一定程度就可发生火 花放电。如果在放电空间还同时存在爆炸性气体,便 可能引起着火和爆炸。油库静电引起火灾爆炸是一种 恶性事故,因而对于油库中防静电危害具有非常重要

的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能

事故树分析法

事故树分析法(FTA) 事故树分析法就是一种既能定性又能定量的逻辑演绎评价方法,就是从结果到原因描绘事故发生的有向逻辑树,在逻辑树中相关原因事件之间用逻辑门连接,构成逻辑树图,为判明事故发生的途径及损害间关系提供一种最形象、最简洁的表达方式。 事故树法又称为故障树分析法,就是一种逻辑演绎的系统评价方法,就是安全系统工程中重要的分析方法之一。它能对各种系统的危险性进行识别评估,既适用于定性分析,又能进行定量分析。具有简明、形象的特点。其分析方法就是从要分析的特定事故或故障顶上事件开始,层层分析其发生原因(中间事件),一直分析到不能再分解或没有必要分析时为止,即分析至基本原因事件为止,用逻辑门符号将各层中间事件与基本原因事件连接起来,得到形象、简洁地表达其因果关系的逻辑树图形即故障树。通过对其简化计算得到分析评价目的的方法。 故障树分析法的主要功能 1、对导致事故的各种因素及其逻辑关系作出全面的描述 2、便于发现与查明系统内固有的或者潜在的危险因素,为安全设计、制定技术措施及 采取管理对策提供依据 3、使作业人员全面了解与掌握各项防灾要点 4、对已发生的事故进行原因分析 故障树的分析步骤 1、确定所分析的系统 2、熟悉所分析的系统 3、调查系统发生的事故 4、确定事故的顶上事件 5、调查与顶上事件有关的所有原因事件 6、故障树作图 7、故障树的定性分析 8、故障树的定量分析 9、安全性评价

事故树的主要符号 事件符号 逻辑符号 顶上事件、中间事件符号,需要进一步的分析 基本事件符号,不能进一步往下分析 正常事件,正常情况下存在的事件 省略事件,不能或者不需要分析

火灾爆炸事故树分析(新编版)

火灾爆炸事故树分析(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0676

火灾爆炸事故树分析(新编版) 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库

静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正

储罐区火灾爆炸-事故树(分析方法与重要度计算)

灌区火灾爆炸――事故树(分析方法与重要度计算) 图-1 贮罐的事故火灾爆炸事故树 将贮罐的事故火灾爆炸事故树转化为成功树如图-2

图-2 贮罐的事故火灾爆炸事故树转化为成功树 贮罐火灾爆炸事故树的分析评价 1 、结构函数式 Tˊ=AˊBˊa=a(Aˊ+Bˊ)=a(X1ˊX2ˊX3ˊX4ˊCˊ+DˊEˊ)=a(X1ˊX2ˊX3ˊX4ˊFˊX5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ)=a{X1ˊX2ˊX3ˊX4ˊ(X6ˊ+X7ˊ)X5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ}= a(X1ˊX2ˊX3ˊX4ˊX5ˊX6ˊ+X1ˊX2ˊX3ˊX4ˊX5ˊX7ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ) 2、最小径集 通过计算分析该事故树12个基本事件,可以得出下列3个最小径集:

P1={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X6ˊ} P2={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X7ˊ} P3={a,X8ˊ,X9ˊ,X10ˊ,X11ˊ,X12ˊ} 3、结构重要度分析 根据以上结果,运用结构重要度近似判别式,可以计算出12个基本事件和一个条件事件的结构重要度系数。计算结果如下:由于条件事件a存在于每一个径集中,因此其结构重要度系数I Φ(a)最大; 事件X8、X9、X10、X11、X12是3个径集中基本事件最少的一个径集中出现,其结构重要度系数IΦ(8)、IΦ(9)、IΦ(10)、IΦ(11)、I Φ(12)相等; 事件X1、X2、X3、X4、X5是3个径集中出现两次的基本事件,其结构重要度系数IΦ(1)、IΦ(2)、IΦ(3)、IΦ(4)、IΦ(5)相等; 事件X6、X7是3个径集中只出现一次的基本事件,其结构重要度系数IΦ(6)、IΦ(7)相等; 由此得出结构重要度顺序: IΦ(a)>IΦ(8)=IΦ(9)=IΦ(10)=IΦ(11)=IΦ(12)>IΦ(1)=IΦ(2)=IΦ(3)=IΦ(4)=I Φ(5)> IΦ(6)=IΦ(7) 评价结果分析及其对策措施建议 由事故树分析可知,火源与达到爆炸极限的混合物蒸气构成了液化气贮罐燃爆事故发生的要素。条件事件a(达到爆炸极限)结构重要度最大,是液化气贮罐燃爆事故发生的最重要条件,结合事故案例分析,要求采取以下针对性的措施: 1)贮罐罐体设计应采用不易产生蒸气的内浮顶罐或固定的喷淋冷却系统,最大可能地减少液化气蒸气在空气中达到爆炸极限; 2)在罐附近安装气体报警装置,对混合气浓度进行检测,一旦接

事故树法分析宿舍火灾

4.2 故障树分析法分析 4.2.1 故障树分析方法简介 故障树分析法的优点是能识别导致事故的基本事件与人为失误的组合,可为人们提供设法避免或减少导致事故基本原因的线索,从而降低事故发生的可能性;便于查明系统内固有的或潜在的各种危险因素,为设计,施工和管理提供科学的依据;并使有关人员,作业人员全面了解和掌握各项防灾要点。但是故障树步骤较多,计算复杂。广泛应用于高度重复性的系统 4.2.2 故障树分析法步骤 1.熟悉系统:要详细了解系统状态及各种参数,绘出工艺流程图或布置图。 2.调查事故:收集事故案例,进行事故统计,设想给定系统可能发生的事故。 3.确定顶上事件:要分析的对象即为顶上事件。对所调查的事故进行全面分析,从中找出后果严重且较易发生的事故作为顶上事件。 4.确定目标值:根据经验教训和事故案例,经统计分析后,求解事故发生的概率(频率),以此作为要控制的事故目标值。 5.调查原因事件:调查与事故有关的所有原因事件和各种因素。 6.画出故障树:从顶上事件起,逐级找出直接原因的事件,直至所要分析的深度,按其逻辑关系,画出故障树。 7.分析:按故障树结构进行简化,确定各基本事件的结构重要度。 8.事故发生概率:确定所有事故发生概率,标在故障树上,并进而求出顶上事件(事故)的发生概率。 9.比较:比较分可维修系统和不可维修系统进行讨论,前者要进行对比,后者求出顶上事件发生概率即可。 10.分析:原则上是上述10个步骤,在分析时可视具体问题灵活掌握,如果故障树规模很大,可借助计算机进行。目前我国故障树分析一般都考虑到第7步进行定性分析为止,也能取得较好效果。 4.2.3 事故树分析 1、事故树的建立 学生宿舍是学校人口密集型场所,针对如何科学合理应对火灾的发生这一问题,提出采用事故树一一找出了发生火灾的基本事件,然后进行定性的合理分析,了解火灾发生的基本原因后建立校园宿舍火灾事故树如下:

火灾爆炸事故树分析

编号:SM-ZD-45746 火灾爆炸事故树分析Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

火灾爆炸事故树分析 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,

故障树分析法--最新,最全

故障树分析法(Fault Tree Analysis简称FTA) 概念 什么是故障树分析法 故障树分析(FTA)技术是美国贝尔电报公司的电话实验室于1962年开发的,它采用逻辑的方法,形象地进行危险的分析工作,特点是直观、明了,思路清晰,逻辑性强,可以做定性分析,也可以做定量分析。体现了以系统工程方法研究安全问题的系统性、准确性和预测性,它是安全系统工程的主要分析方法之一。一般来讲,安全系统工程的发展也是以故障树分析为主要标志的。 1974年美国原子能委员会发表了关于核电站危险性评价报告,即“拉姆森报告”,大量、有效地应用了FTA,从而迅速推动了它的发展。目前,故障树分析法虽还处在不断完善的发展阶段,但其应用范围正在不断扩大,是一种很有前途的故障分析法。 故障树分析(Fault Tree Analysis)是以故障树作为模型对系统进行可靠性分析的一种方法,是系统安全分析方法中应用最广泛的一种自上而下逐层展开的图形演绎的分析方法。在系统设计过程中通过对可能造成系统失效的各种因素(包括硬件、软件、环境、人为因素)进行分析,画出逻辑框图(失效树),从而确定系统失效原因的各种可能组合方式或其发生概率,以计算的系统失效概率,采取相应的纠正措施,以提高系统可靠性的一种设计分析方法。 故障树分析方法在系统可靠性分析、安全性分析和风险评价中具有重要作用和地位。是系统可靠性研究中常用的一种重要方法。它是在弄清基本失效模式的基础上,通过建立故障树的方法,找出故障原因,分析系统薄弱环节,以改进原有设备,指导运行和维修,防止事故的产生。故障树分析法是对复杂动态系统失效形式进行可靠性分析的有效工具。近年来,随着计算机辅助故障树分析的出现,故障树分析法在航天、核能、电力、电子、化工等领域得到了广泛的应用。既可用于定性分析又可定量分析。 故障树分析(Fault Tree Analysis)是一种适用于复杂系统可靠性和安全性分析的有效工具,是一种在提高系统可靠性的同时又最有效的提高系统安全性的方法。当前,超大型工程的建设,对可靠性,安全性提出了更高的要求,因此,故障树分析法已经广泛的应用到宇航,核能,化工,电子,机械和采矿等各个领域。 故障树分析法(Fault Tree Analysis) 简称故障树法,记作FTA [21],[21] R G B . On the Analysis of Fault Trees ,[J] . IEEE Trans .1975 : 175 一185是一种采用逻辑推理,将系统故障形成原因由总体至部分按树枝状逐级细化,并绘出逻辑结构图(即故障树)的分析方法。其目的在于判明基本故障,确定故障的原因、影响和发生的概率。这种方法形象直观,并且能为使用单位提供明确的改进信息,所以为广大的工程技术人员所欢迎。 故障树分析法(Fault Tree Analysis,简称FTA)是在一定条件下用逻辑推理的方法,通过对可能造成系统故障的各种因素(包括硬件、软件、环境、人为因素等)进行分析,画出逻辑框图(即故障树),从而确定系统故障原因的各种可能组合方式及其发生概率,计算系统故障概率,以采取相应的纠正措施,是提高系统可靠性的一种设计分析方法。同时,故障树分析法是可靠性工程的重要分支,是目前国内外公认的对复杂系统安全性、可靠性分析的一种实用方法。该方法可以让分析者对系统有更深入的认识,对有关系统结构、功能故障及维护保障知识更加系统化,从而使在设计、制造、使用和维护过程中的可靠性的改

火灾爆炸事故树分析标准范本

解决方案编号:LX-FS-A48586 火灾爆炸事故树分析标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

火灾爆炸事故树分析标准范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要

火灾爆炸事故树分析示范文本

火灾爆炸事故树分析示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

火灾爆炸事故树分析示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 引言 当液相与固相之间,液相与气相之间,液相与另一不 相容的液相之间以及固相和气相之间,由于流动、搅拌、 沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发 泡等接触、分离的相对运动,都会在介质中产生静电。许 多石油化工产品都属于高绝缘物质,这类非导电性液体在 生产和储运过程中,产生和积聚大量的静电荷,静电聚积 到一定程度就可发生火花放电。如果在放电空间还同时存 在爆炸性气体,便可能引起着火和爆炸。油库静电引起火 灾爆炸是一种恶性事故,因而对于油库中防静电危害具有 非常重要的意义。因此,如何安全有效地管理和维修油 库,提高油库的安全可靠性,已是当前油库安全管理工作

所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。

某学校教学楼火灾事故树分析

第三教学楼火灾事故树分析 [摘要]学校教学楼一旦起火,后果将非常严重。本文主要运用事故树分析第三教学楼火灾发生的原因,找出了该事故树的最小割集和最小径集,并对基本事件进行了结构重要度分析。通过比较分析,得出了学校预防教学楼火灾的基本措施。 0前言 学校教学楼是人员非常密集的场所,一旦发生事故,人员伤亡和财产损失将特别严重。并且会给社会带来不必要的影响。但是建国以来由于各种条件的限制,许多教学楼发生了火灾事故。因此对学校教学楼火灾事故进行分析是十分必要的。本文主要通过对第三教学楼火灾进行事故树分析,得出预防火灾发生的基本措施。 1建立火灾事故树 事故树分析(Fault Tree Analysis,简称FTA)也称故障树分析。它从一个可能的事故(顶事件)开始,自上而下、一层一层地寻找顶事件的直接原因事件和间接原因事件,直到基本原因事件(基本事件),并用逻辑图把这些事件之间的逻辑关系表达出来。事故树分析是一种演绎分析方法,即从结果分析原因的方法。 通过对第三教学楼进行的火灾调查发现,导致火灾发生的因素众多。确定以第三教学楼火灾为顶事件,分析顶事件与中间事件以及基本事件的逻辑关系口。(从而得出第三教学楼火灾事故树如图1) 以上事故树中各符号代表的意义见表1: 教学楼内的空气和可燃物充分,所以未对它们再进行分析。另外引起教学楼火灾的电火源种类较多,此处指出了几种有代表性的基本事件。 2.1事故树的最小割集 根据布尔代数运算法则求出事故树的最小割集有77个,分别是:

P1={X3,X16,X1,X2};P2={X3,X14,X1,X2}; P3={X7,X14,X1,X2};p4={X5,X14,X1,X2}; P5={X6,X14,X1,X2};P6={X7,X16,X1,X2}; P7={X3,X17,X1,X2};P8={X3,X18,X1,X2); P9={X3,X19,X1,X2};P10={X3,X20,X1,X2}; P11={X3,X15,X1,X2};P12={X4,X14,X1,X2}; P13={X8,X14,X1,X2};P14={X9,X14,X1,X2}; P15={X10,X14,X1,X2};P16={X11,X14,X1,X2}; P17={X12,X14,X1,X2};P18={X13,X14,X1,X2}; P19={X5,X16,X1,X2};P20={X6,X16,X1,x2}; P21={X7,X17,X1,X2};P22={X7,X18,X1,X2}; P23={X7,X19,X1,X2};P24={X7,X20,X1,X2}; P25={X7,X15,X1,X2};P26={X4,X17,X1,X2}; P27={X4,X18,X1,X2};P28={X4,X19,X1,X2}; P29={X4,X20,X1,X2};P30={X4,X15,X1,X2}; P31={X5,X17,X1,X2};P32={X5,X18,X1,X2}; P33={X5,X19,X1,X2};P34={X5,X20,X1,X2}; P35={X5,X15,X1,X2};P36={X6,X17,X1,X2}; P37={X6,X18,X1,X2};P38={X6,X19,X1,X2}; P39={X6,X20,X1,X2};P40={X6,X15,X1,X2}; P41={X8,X17,X1,X2};P42={X9,X17,X1,X2}; P43={X10,X17,X1,X2};P44={X11,X17,X1,X2}; P45={X12,X17,X1,X2};P46={X13,X17,X1,X2}; P47={X8,X18,X1,X2};P48={X9,X18,X1,X2}; P49={X10,X18,X1,X2};P50={X11,X18,X1,X2}; P51={X12,X18,X1,X2};P52={X13,X18,X1,X2}; P53={X8,X19,X1,X2};P54={X9,X19,X1,X2}; P55={X10,X19,X1,X2};P56={X11,X19,X1,X2}; P57={X12,X19,X1,X2};P58={X13,X19,X1,X2}; P59={X8,X20,X1,X2};P60={X9,X20,X1,X2}; P61={X10,X20,X1,X2};P62={X11,X20,X1,X2}; P63={X12,X20,X1,X2};P64={X13,X20,X1,X2}; P65={X8,X15,X1,X2};P66={X9,X15,X1,X2}; P67={X10,X15,X1,X2};P68={X11,X15,X1,X2}; P69={X12,X15,X1,X2};P70={X13,X15,X1,X2}; P71={X4,X16,X1,X2};P72={X8,X16,X1,X2}; P73={X9,X16,X1,X2};P74={X10,X16,X1,X2}; P75={X11,X16,X1,X2};P76={X12,X16,X1,X2}; P77={X13,X16,X1,X2}。 2.2事故树的最小径集 根据最小径集与最小割集的对偶性,把事故树中的与门换成或门,或门换成与门,求出事故树的最小径集有4个,分别为: P1’={X3,X7,X5,X6,X4,X8,X9,X10,X11,X12,X13}; P2’={X16,X14,X17,X18,X19,X20,X15};

事故树分析汇总

2.3事故树分析法 2.3.1 方法概述 事故树(Fault Tree Analysis, FTA)也称故障树,是一种描述事故因果关系的有向逻辑“树”,是安全系统工程中重要的分析方法之一。该法尤其适用于对工艺设备系统进行危险识别和评价,既适用于定性分析,又能进行定量分析。具有简明、形象化的特点,体现了以系统工程方法研究安全问题的系统性、准确性和预测性。FTA作为安全分析评价、事故预测的一种先进的科学方法,已得到国内外的公认和广泛采用。 1962年,美国贝尔电话实验室的维森(Watson)提出此法。该法最早用于民兵式导弹发射控制系统的可靠性研究,从而为解决导弹系统偶然事件的预测问题作出了贡献。随之波音公司的科研人员进一步发展了FTA方法,使之在航空航天工业方面得到应用。20世纪60年代期,FTA由航空航天工业发展到以原子能工业为中心的其他产业部门。1974年美国原子能委员会发表了关于核电站灾害性危险性评价报告(拉斯姆逊报告),对FTA作了大量和有效的应用,引起了全世界广泛的关注。目前此法已在国内外许多工业部门得到运用。 从1978年起,我国开始了FTA的研究和运用工作。FTA不仅能分析出事故的直接原因,而且能深入提示事故的潜在原因,因此在工程或设备的设计阶段、在事故查询或编制新的操作方法时,都可以使用FTA对它们的安全性作出评价。实践证明FTA适合我国国情,适合普遍推广使用。 2.3.2 FTA方法的分析步骤 事故树分析是对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按工艺流程、先后次序和因果关系绘成程序方框图,表示导致灾害、伤害事故(不希望事件)的各种因素之间的逻辑关系。它由输入符号或关系符号组成,用以分析系统的安全问题或系统的运行功能问题,并为判明灾害、伤害的发生途径及与灾害、伤害之间的关系提供一种最为形象、简洁的表达形式。 事故树分析的基本程序如下: 1)熟悉系统。要详细了解系统状态、工艺过程及各种参数,以及作业情况、环境状况等,绘出工艺流程图及布臵图。 2)调查事故。广泛收集同类系统的事故安全,进行事故统计(包括未遂事故),设想给定系统可能要发生的事故。 3)确定顶上事件。要分析的对象事件即为顶上事件。对所调查的事故进行全面分析,分析其损失大小和发生的频率,从中找出后果严重且较易发生的事故作为顶上事件。 4)确定目标值。根据经验教训和事故案例,经统计分析后,求出事故发生的概率(频率),作为要控制的事故目标值,计算事故的损失率,采取措施,使之达到可以接受的安全指标。 5)调查原因事件。全面分析、调查与事故有关的所有原因事件和各种因素,如设备、设施、人为失误、安全管理、环境等。 6)画出事故树。从顶上事件起,按演绎分析的方法,逐级找出直接原因事件,到所要分析的深度,按其逻辑关系,用逻辑门将上下层连结,画出事故树。 7)定性分析。按事故树结构运用布尔代数,进行简化,求出最小割(径)集,确定各基本事件的结构重要度。 8)求出顶上事件发生概率。确定所有原因发生概率,标在事故树上,并进而求出顶上事件(事故)发生概率。

油库静电火灾爆炸事故树分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 油库静电火灾爆炸事故树 分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4541-59 油库静电火灾爆炸事故树分析(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 油库静电火灾爆炸事故树分析 一、引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油

库的安全可*性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可*性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 二、事故树 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2 故障树分析的基本程序 FTA法的基本程序:熟悉系统-调查事故-确定顶事件-确定目标-调查原因事件-编制故障树-定性分析

油库静电火灾爆炸事故树分析示范文本

油库静电火灾爆炸事故树分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

油库静电火灾爆炸事故树分析示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 油库静电火灾爆炸事故树分析 一、引言 当液相与固相之间,液相与气相之间,液相与另一不 相容的液相之间以及固相和气相之间,由于流动、搅拌、 沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发 泡等接触、分离的相对运动,都会在介质中产生静电。许 多石油化工产品都属于高绝缘物质,这类非导电性液体在 生产和储运过程中,产生和积聚大量的静电荷,静电聚积 到一定程度就可发生火花放电。如果在放电空间还同时存 在爆炸性气体,便可能引起着火和爆炸。油库静电引起火 灾爆炸是一种恶性事故,因而对于油库中防静电危害具有 非常重要的意义。因此,如何安全有效地管理和维修油

库,提高油库的安全可*性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可*性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 二、事故树 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。

加油站火灾爆炸故障树分析法

加油站火灾爆炸故障树分析法

————————————————————————————————作者: ————————————————————————————————日期: ?

加油站火灾爆炸故障树 此事故树的最小割集是: X2 X12 X1 事件的名称是:喷溅卸油;点火吸烟;在燃烧爆炸极限范围内; X29X12 X1 事件的名称是:油箱破裂;点火吸烟;在燃烧爆炸极限范围内; X8 X12 X1 事件的名称是:外力损坏;点火吸烟;在燃烧爆炸极限范围内; X3 X12 X1 事件的名称是:油枪有封件损坏;点火吸烟;在燃烧爆炸极限范围内;X26 X34 X1

事件的名称是:无人在场监护;卸油速度快;在燃烧爆炸极限范围内; X26 X45 X1X15 事件的名称是:无人在场监护;接地电阻大;在燃烧爆炸极限范围内;雷电发生; X26 X16 X1 事件的名称是:无人在场监护;非防爆电气;在燃烧爆炸极限范围内; X26 X19X1 事件的名称是:无人在场监护;汽车尾气冒火星;在燃烧爆炸极限范围内; X26 X22 X1 事件的名称是:无人在场监护;带钉鞋摩擦火花;在燃烧爆炸极限范围内; X4 X12 X1 事件的名称是:油箱口蒸气集聚;点火吸烟;在燃烧爆炸极限范围内; X5 X12X1 事件的名称是:油枪渗漏;点火吸烟;在燃烧爆炸极限范围内; X6 X12 X1 事件的名称是:胶管破损;点火吸烟;在燃烧爆炸极限范围内; X7X12X1 事件的名称是:加油机漏油;点火吸烟;在燃烧爆炸极限范围内; X27 X34 X1 事件的名称是:油枪有封件损坏;卸油速度快;在燃烧爆炸极限范围内; X27 X45 X1 X15 事件的名称是:油枪有封件损坏;接地电阻大;在燃烧爆炸极限范围内;雷电发生; X27X16 X1 事件的名称是:油枪有封件损坏;非防爆电气;在燃烧爆炸极限范围内; X27 X21X1 事件的名称是:油枪有封件损坏;接打手机电磁火星;在燃烧爆炸极限范围内; X29 X23 X1 事件的名称是:油箱破裂;敲打工具;在燃烧爆炸极限范围内; X9 X23 X1 事件的名称是:防腐损坏;敲打工具;在燃烧爆炸极限范围内; X10 X23 X1 事件的名称是:油罐上浮;敲打工具;在燃烧爆炸极限范围内; X11 X23 X1 事件的名称是:焊缝开裂;敲打工具;在燃烧爆炸极限范围内; X8 X14 X1

火灾事故树分析方法

第一章火灾事故树分析方法 事故树分析方法是系统安全工程中最常用的分析方法之一,是一种由事故树演绎推理事故过程和原因的评估方法,本节主要介绍该方法的基本概念和定性、定量分析的一般流程,更详细的计算分析过程可参考相关文献。 一、事故树分析法的基本概念 事故树分析是一种演绎推理法。这种方法把系统可能发生的某种事故与导致事故发生的各种原因之间的逻辑关系用一种称为事故树的树形图表示,通过对事故树的定性与定量分析,找出事故发生的主要原因,为确定安全对策提供可靠依据。 事故树评估方法是具体运用运筹学原理对事故原因和结果进行逻辑分析的方法。事故树分析方法先从事故开始,逐层次向下演绎,将全部出现的事件用逻辑关系联成整体,对能导致事故的各种因素及相互关系,作出全面、系统、简明和形象的描述。 对于火灾事故,可通过事故树分析,经过中间联系环节,将潜在原因和最终事故联系起来。这样可以调查事故原因,为采取整改措施提供依据。通过对原因的逻辑分析,可以分清导致事故原因的主次,这样控制住有限的几个关键原因,就能有效地防止重大火灾事故发生,提高管理的有效性,节约人力、物力。 二、事故树的符号及其意义 事故树采用的符号包括事件符号、逻辑门符号和转移符号三大类。 1.事件及事件符号 在事故树分析中各种非正常状态或不正常情况皆称事故事件,各种完好状态或正常情况皆称成功事件,两者均简称为事件。事故树中的每一个节点都表示一个事件。 (1)结果事件。结果事件是由其他事件或事件组合所导致的事件,它总是位于某个逻辑门的输出端。用矩形符号表示。 (2)底事件。底事件是导致其他事件的原因事件,位于事故树的底部,它总是某个逻辑门的输入事件而不是输出事件,用圆形符号表示。 (3)特殊事件。特殊事件是指在事故树分析中需要表明其特殊性或引起注意的事件,用菱形符号表示。 2.逻辑门及其符号 逻辑门是连接各事件并表示其逻辑关系的符号。 (1)与门。与门可以连接数个输入事件 E1、 E2 , … ,E n和一个输出事件 E,表示仅当所有输入事件都发生时,输出事件 E 才发生的逻辑关系。 (2)或门。或门可以连接数个输入事件 E1,E2, … ,E n 和一个输出事件 E,表示至少

相关主题
文本预览
相关文档 最新文档