当前位置:文档之家› 蛋白溶解度的测定

蛋白溶解度的测定

蛋白溶解度的测定
蛋白溶解度的测定

蛋白溶解度的测定

一、定义

蛋白溶解度是根据蛋白质在一定含量的KOH溶解PRO的质量。

二、分析结果

生大豆的PS达100%,在日常分析中,当PS大于85%则认为大豆粕过生。当PS小于75%则认为大豆粕过熟。PS在80%左右时大豆粕加工适度。

三、试剂

2g/l氢氧化钾:2g氢氧化钾溶于1000ml水中。

四、测定方法

称取粉细(防止过热)后的豆粕1.5g与250ml烧杯中。加75ml氢氧化钾,在磁力搅拌器上搅拌20min,将溶液转至离心管中,用2700r·min速度离心10min后过滤。吸取滤液15ml,放入消化管中,用凯氏定氮法测定其中的PRO的含量,此含量相当于0.3g试样中溶解的蛋白质量。加入12ml硫酸和催化剂进行消化。(后面的步骤与粗蛋白的方法一样)

五、公式

V-空白*C*0.014*6.25

PS= ————————————

0.3/粗蛋白结果

V——消耗盐酸的体积

C——盐酸浓度

0.3——吸取15ml上清液中相当与0.3g粗蛋白75ml/15=5,1.5g/5=0.3。

水质--溶解性总固体的测定-生活饮用水标准检验方法-(GBT-5750.4-2006-8.1)-称量法-方法确认

水质溶解性总固体的测定生活饮用水标准检验方法(GB/T 5750.4-2006 8.1) 称量法方法确认 1 目的 通过精密度测试来验证水样中的溶解性总固体GB/T 5750.4-2006 8.1,判断本实验室的检测方法是否合格。 2适用范围 本标准试用于饮用水及水源水中溶解性总固体。 3 方法原理 3.1水样经过过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过滤器的不溶性微粒等。 3.2 烘干温度一般采用105℃+3℃。但105℃的烘干温度不能彻底除去高矿化水样中盐类所含的结晶水。采用180℃+3℃的烘干温度,可得到较为准确的结果。 3.3 当水样的溶解性总固体中含有多量氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸湿性使称量不能恒定质量。此时可在水样中加入适量碳酸钠溶液而得到改进。 4分析方法 4.1 测量方法简述 溶解性总固体(在105℃+3℃烘干) 4.1.1将蒸发皿洗净,放在105℃+3℃烘箱内30min。取出,于干燥器内冷却30min。

4.1.2 在分析天平上称量,再次烘烤、称量,直至恒定质量(两次称量相差不超过0.0004 g ) 4.1.3 将水样上清液用滤器过滤。用无分度吸管吸取过滤水样100ml 于蒸发皿中,如水样的溶解性总固体过少时可增加水样体积。 4.1.4 将蒸发皿置于水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入105℃+3℃烘箱内,1h 后取出。干燥器内冷却30min ,称量。 4.1.5将称过质量的蒸发皿再放入105℃+3℃烘箱内30min ,干燥器内冷却30min ,称量,直至恒定质量。 4.2 溶解性总固体(在180℃+3℃烘干) 4.2.1按( 5.1)步骤将蒸发皿在180℃+3℃烘干并称重至恒定质量。 4.2.2吸取100mL 水样于蒸发皿中,精确加入2 5.0mL 碳酸钠溶液于蒸发皿内,混匀。同时做一个只加25.0mL 碳酸钠溶液的空白。计算水样结果时应减去碳酸钠空白的质量。 5. 计算 5.1 溶解性总固体的计算公式 V m m TDS 10001000)()(01??-=ρ 公式中: )(TDS ρ—水样中溶解性总固体的质量浓度,单位为毫克每升(mg/L ) ; 0m —蒸发皿的质量,单位为克(g ); 1m —蒸发皿和溶解性总固体的质量,单位为克(g ); V —水样体积,单位为毫升(ml ) 。

影响蛋白质水合和溶解性的因素有哪些

1.影响蛋白质水合和溶解性的因素有哪些?这两方面的影响因素有何异同? 答:(1)蛋白质的水合性质(PropertiesHydration of Proteins) A.蛋白质水合性质:蛋白质分子中带电基团、主链肽基团、Asn、 Gln的酰胺基、Ser、Thr和非极性残基团与水分子相互结 合的性质。 B. 蛋白质水合能力:当干蛋白质粉与相对湿度为90-95%的水蒸汽 达到平衡时,每克蛋白质所结合的水的克数。 α=?C +0.4 ?P+0.2 ?N (α:水合能力,g水/g蛋白质;?C, ?P , ?N:带电的、极性和非极性的分数) C.影响蛋白质结合水的环境因素: 1.pH 当pH=pI时,蛋白质的水合能力最低 2.温度温度升高,氢键作用和离子基团的水合作用减弱,水合能力下降。 3.氨基酸组成极性氨基酸越多,水合能力越高 4,离子强度低浓度的盐能提高蛋白质的水合能力。 5.盐的种类 (2)蛋白质的溶解度(SolubilityofProteins) 影响蛋白质溶解性质的主要的相互作用: A 疏水相互作用能促进蛋白质—蛋白质相互作用,使蛋白质溶解度降低; B离子相互作用能促进蛋白质—水相互作用,使蛋白质溶解度增加。 1.pH 当pH高于或低于等电点时,蛋白质带净的负电荷或净的正电荷, 水分子能同这些电荷相互作用并起着稳定作用 U-形曲线,最低溶解度出现在蛋白 2.①“盐溶”(salted in)中性盐的离子在0.1-1M能提高蛋白质的溶 解度。 ②“盐析”(salted out)中性盐的离子大于1M,蛋白质的溶解 度降低,并可能导致蛋白质沉淀。 ③当离子强度<0.5时,离子中和蛋白质表面的电荷。 电荷掩蔽效应对蛋白质的溶解度的影响取决于蛋白质的表面性质。如果蛋白质含 有高比例的非极性区域,那么此电荷掩蔽效应使它的溶解度下降,反之, 溶解度提高。 当离子强度>1.0时,盐对蛋白质溶解度具有特殊的离子效应。 硫酸盐和氟化物(盐)逐渐降低蛋白质的溶解度。在相同的μ,各种离子对蛋 白质溶解度的相对影响(提高溶解度)的能力。Hofmeister系列 阴离子(提高蛋白质溶解度的能力): SO42-<F-

氢氧化钾蛋白质溶解度的测定

氢氧化钾蛋白质溶解度 的测定 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

氢氧化钾蛋白质溶解度的测定 1、原理 氢氧化钾蛋白质溶解度可以反映蛋白质变性的情况。不同的蛋白质品种,氢氧化钾蛋白质溶解度不同。蛋白质变性越大,氢氧化钾蛋白质溶解度越小。 用一定浓度的氢氧化钾溶液提取试样中的可溶性蛋白质,在催化剂作用下用浓硫酸将提取液中可溶性蛋白质的氮转化为硫酸铵。加入强碱进行蒸馏使氨逸出,用硼酸吸收后,再用盐酸滴定测出试样中可溶性蛋白质含量;同时,测定原始试样中粗蛋白质含量,计算出试样的蛋白溶解度。 2、试剂 a)??氢氧化钾(分析纯),无水硫酸钾、五水硫酸铜、氢氧化钠、硼酸、甲基红、溴甲酚绿、硫酸铵; b)??浓硫酸、盐酸(分析纯)、95%乙醇、蒸馏水。 3、仪器和设备 a)??感量为 g分析天平; b)??磁力搅拌器; c)??离心机(带离心管),转速为2700r/min以上; d)??样品粉碎机; e)??60目分析筛; f)??电炉;

g)??100 mL或250 mL凯氏烧瓶; h)??凯氏蒸馏装置; i)??250 mL锥形瓶; j)??1000 mL容量瓶; k)??微量滴定管。 4、试剂的制备 a)??%氢氧化钾溶液 称取 g氢氧化钾,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 b)??混合催化剂 称取6 g硫酸钾和 g硫酸铜,磨碎混匀。 c)??氢氧化钠溶液 称取400 g氢氧化钠,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 d)??硼酸溶液 称取20 g硼酸,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 e)??盐酸标准溶液 量取 mL浓盐酸,注入1000 mL水中混匀,按GB 601-88要求进行标定即可。 f)??混合指示剂

溶解度的测定

硝酸钾溶解度得测定(方法1:结晶析出法) 实验原理: 先设计好不同溶质与溶剂得量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时得温度,即所得溶液为该温度下得饱与溶液,计算该温度下得溶解度。实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品就是否齐全、完好。 二、硝酸钾得称取与溶解。 1、用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、2.0g、2.5g,称量过程详见分组实验三得步骤二。将称好得5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取得3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾得结晶。 1.自水浴中取出大试管,插入一支干净得温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计得读数。当刚开始有晶体析出时,立即记下此时得温度t1,并填入下表中。 2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤得操作,分别测定开始析出晶体时得温度t2、t3。将读数填入表格。 四、溶解度曲线得绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤得操作,并将晶体开始析出时得温度读数填人表格。

氢氧化钾蛋白质溶解度的测定

氢氧化钾蛋白质溶解度 ---参照GB/T 19541-2004 1适用范围:豆粕、菜籽粕、棉籽粕。 2 氢氧化钾蛋白质溶解度 大豆粕样品在规定的条件下,可溶于0.2%氢氧化钾溶液中的粗蛋白质含量占样品中总的粗蛋白质含量的质量百分数。 3氢氧化钾蛋白质溶解度的测定 3.1 方法原理 氢氧化钾蛋白质溶解度可以反映大豆粕产品加热过度的情况。不同加热程度的大豆粕,氢氧化钾蛋白质溶解度不同。先测定大豆粕样品在规定的条件下,可溶于氢氧化钾溶液中的粗蛋白质含量;再测定同一大豆粕样品中总的粗蛋白含量,计算出氢氧化钾蛋白质溶解度。 3.2 试剂 所用试剂均为分析纯,所用的水为按GB/T 6682中规定的三级水。 3.2.1 0.2%的氢氧化钾溶液:2.44g氢氧化钾(含量:≥82%)溶解于水中,稀释并定容至1L。 3.3 仪器设备 3.3.1实验室用样品粉碎机。 3.3.2样品筛:孔径0.25mm。 3.3.3分析天平:感量0.0001g。 3.3.4 磁力搅拌器。 3.3.5离心机:转速为2700 r/min以上。 3.3.6 TECATOR装置:消化管、消化系统、蒸馏系统。 3.4 样品的制备 取具有代表性的大豆粕样品,用四分法缩减分取200g左右,粉碎过0.25mm 孔径的样品筛,充分混匀,装入磨口瓶中备用。 3.5 测定步骤

称取大豆粕式样1.0g,精确到0.1mg,置于250mL高型烧杯中,加入50.00mL 氢氧化钾溶液,在磁力边搅拌器上搅拌20min,将溶液转移至离心管中,以2700 r/min离心10min,小心移取清液10.00ml,放入消化管中,加入6.4g混合催化剂和10mL浓硫酸,消化,蒸馏,测其粗蛋白,同时测定同一式样总的粗蛋白质含量。 3.6 结果计算 氢氧化钾蛋白质溶解度X,数值以质量分数表示,按式计算: X = W1 / W2 ×K × 100 公式中: W1 —大豆粕式样溶于氢氧化钾溶液中的粗蛋白质含量,%。 W2 —大豆粕式样总的粗蛋白质含量(以两次平行测定结果的算术平均值为测定结果),%。 K —稀释倍数。 计算记过表示到小数点后一位。 3.7 精密度 3.7.1重复性 在同一实验室,由同一操作人员完成的两个平行测定结果,相对偏差不大于2%;以两次平行测定结果的算术平均值为测定结果。 3.7.2 再现性 再不同实验室,由不同操作人员用不同的仪器设备完成的两个测定结果,相对偏差不大于4%。

氢氧化钾蛋白质溶解度的测定

氢氧化钾蛋白质溶解度的测定 1、原理 氢氧化钾蛋白质溶解度可以反映蛋白质变性的情况。不同的蛋白质品种,氢氧化钾蛋白质溶解度不同。蛋白质变性越大,氢氧化钾蛋白质溶解度越小。 用一定浓度的氢氧化钾溶液提取试样中的可溶性蛋白质,在催化剂作用下用浓硫酸将提取液中可溶性蛋白质的氮转化为硫酸铵。加入强碱进行蒸馏使氨逸出,用硼酸吸收后,再用盐酸滴定测出试样中可溶性蛋白质含量;同时,测定原始试样中粗蛋白质含量,计算出试样的蛋白溶解度。 2、试剂 a)??氢氧化钾(分析纯),无水硫酸钾、五水硫酸铜、氢氧化钠、硼酸、甲基红、溴甲酚绿、硫酸铵; b)??浓硫酸、盐酸(分析纯)、95%乙醇、蒸馏水。 3、仪器和设备 a)??感量为g分析天平; b)??磁力搅拌器; c)??离心机(带离心管),转速为2700r/min以上; d)??样品粉碎机; e)??60目分析筛; f)??电炉;

g)??100 mL或250 mL凯氏烧瓶; h)??凯氏蒸馏装置; i)??250 mL锥形瓶; j)??1000 mL容量瓶; k)??微量滴定管。 4、试剂的制备 a)??%氢氧化钾溶液 称取g氢氧化钾,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 b)??混合催化剂 称取6 g硫酸钾和g硫酸铜,磨碎混匀。 c)??氢氧化钠溶液 称取400 g氢氧化钠,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 d)??硼酸溶液 称取20 g硼酸,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 e)??盐酸标准溶液 量取mL浓盐酸,注入1000 mL水中混匀,按GB 601-88要求进行标定即可。 f)??混合指示剂 称取1 g甲基红和5 g溴甲酚绿,加入乙醇溶解后,转移至1000 mL

实训5 药物溶解度测定

实训5 药物溶解度测定 一、目的要求 1.了解药典对药物近似溶解度的规定。 2.理解药物结构特点(极性)与溶解性的关系。 3.了解CTC的形成对药物溶解度的影响及CTC在药剂学中的应用。 二、实验原理 药物的溶解度是指在一定的温度下,在一定体积的溶剂中药物形成饱和溶液时的浓度。溶解度的大小,表明一种药物在某一种溶剂中被分散的难易程度。药物溶解时,药物的分子结构不会改变,是一种物理性质。 溶剂一般分为三类:以水为代表的极性溶剂、以甲醇和乙醇为代表的亲水性有机溶剂和以苯、石油醚为代表的亲脂性有机溶剂。溶解的经验规则:相似相溶。 为了适应某种制剂的要求而将药物制成盐或加入助溶剂形成电子转移复合物(CTC),这是增加药物在水中溶解度的常用方法。 三、实验方法 (一)不同药物在水中的溶解度测定 1.“极易溶”药物的溶解:称取1.50克的药物于合适的试管中,加入纯化水1.0~1.5毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 2.“易溶”药物的溶解:称取1.0克的药物于合适的试管中,加入纯化水1.0~10毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 3.“溶解”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水1.0~3.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 4.“略溶”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水3.0~10.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 5.“微溶”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水10.0~100.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 (注:以上实验是根据药典对药物溶解度定义设计的,药物在所加的溶剂范围内均可溶解,实验时原则上加入最小溶剂量即可,如果出现不溶的现象,则可能是药物的纯度差、药物的称量和溶剂的取量不准确等因素引起。将实验结果折算为标准溶解度。) (二)同一种药物在不同溶剂中的溶解度测定 1.取三支试管,一支加入0.01克的维生素C,加入乙醚10.0毫升,另两支均加入0.1克的维生素C,再分别加入10.0毫升乙醇和1.0毫升纯化水,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 2.取三支试管,一支加入0.1克的水杨酸,加入纯化水10.0毫升,另两支均加入0.1克的水杨酸,再分别加入1.0毫升乙醇和1.0毫升丙酮,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 思考题: 1.药物的极性与药物在水中的溶解性有什么关系? 2.什么是药物溶解度? 3.简述药典对药物近似溶解度的规定和溶解度的实验方法。 1

实验三 蛋白质的两性反应和等电点的测定

实验三蛋白质的两性反应和等电点的测定 一、目的和要求 1.了解蛋白质的两性解离性质。 2.初步学会测定蛋白质等电点的方法。 二、原理 蛋白质由许多氨基酸组成,虽然绝大多数的氨基与羧基成肽键结合,但是总有一定数量自由的氨基与羧基,以及酚基等酸碱基团,因此蛋白质和氨基酸一样时两性电解质。调节溶液的酸碱度达到一定的氢离子浓度时,蛋白质分子所带的正电荷和负电荷相等,以兼性离子状态存在,在电场内该蛋白质分子既不向阴极移动,也不向阳极移动,这时溶液的PH值称为该蛋白质的等电点(PI)。当溶液的PH低于蛋白质等电点时,即在氢离子较多的条件下,蛋白质分子带正电荷成为阳离子;当溶液的PH高于蛋白质等电点时,即在氢氧根离子较多的条件下,蛋白质分子带负电荷成为阴离子。 在等电点时蛋白质溶解度最小,容易沉淀析出。 三、试剂和器材 1.试剂 0.5%酪蛋白溶液;酪蛋白醋酸钠溶液;0.04%溴甲酚绿指示剂;0.02N盐酸; 0.1N醋酸溶液;0.01N醋酸溶液;1N醋酸溶液;0.02N氢氧化钠溶液 2.器材 试管及试管架;滴管;吸量管(1、5ml) 四、操作方法 1.蛋白质的两性反应

(1)取1支试管,加0.5%酪蛋白溶液20滴和0.04%溴甲酚绿指示剂5-7滴,混匀。观察溶液呈观的颜色,并说明原因。 (2)用细滴管缓慢加入0.02N盐酸溶液,随滴随摇,直至有明显的大量沉淀发生,此时溶液的PH接近与酪蛋白的等电点。观察溶液颜色的变化。(3)继续滴入0.02N盐酸溶液,观察沉淀和溶液颜色的变化,并说明原因。(4)再滴入0.02N氢氧化钠溶液进行中和,观察是否出现沉淀,解释其原因。 继续滴入0.02N氢氧化钠溶液,为什么沉淀又会溶液?溶液的颜色如何 变化?说明了什么问题? 2.酪蛋白等电点的测定 (1)取9支粗细相近的干燥试管,编号后按下表的顺序准确地加入各种试剂。 加入每种试剂后应混合均匀。 (2)静置约20分钟,观察每支试管内溶液的混浊度,以—,+,++,+++,++++符号表示沉淀的多少。根据观察结果,指出哪一个PH是酪蛋白的 等电点?

溶解度的测定

硝酸钾溶解度的测定(方法1:结晶析出法)实验原理: 先设计好不同溶质和溶剂的量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时的温度,即所得溶液为该温度下的饱和溶液,计算该温度下的溶解度。 实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品是否齐全、完好。 二、硝酸钾的称取和溶解。 1. 用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、 2.0g、 2.5g,称量过程详见分组实验三的步骤二。将称好的5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取的3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾的结晶。 1.自水浴中取出大试管,插入一支干净的温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计的读数。当刚开始有晶体析出时,立即记下此时的温度t1,并填入下表中。

2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤的操作,分别测定开始析出晶体时的温度t2、t3。将读数填入表格。 四、溶解度曲线的绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾 5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤的操作,并将晶体开始析出时的温度读数填人表格。 2.根据所得数据,以温度为横坐标,溶解度为纵坐标,绘制溶解度曲线图。 五、整理实验用品。 1.用试管刷清洗玻璃仪器。 2.整理实验用品,恢复实验前的摆放位置。 注意事项: 1.为了使测量结果准确,称取硝酸钾晶体的质量和量取倒入试管的蒸馏水的体积应尽量准确。 2.水浴加热时,烧杯里的水面不能低于试管里的液面。温度计应插在溶液的中部,使所示的温度具有代表性。 3.使试管里的液体升温时应采用水浴加热,而不能用酒精灯直接加热。

溶解度的测定

实验2 溶解度的测定 37 一 目的 藉由不同温度下测定物质的溶解度,以了解温度与溶解度之间的关系,并以图形表达之。 二 实验原理 溶质的溶解度会受到许多因素的影响,如溶质的本性、溶剂的种类、温度…等。即使是在同一种溶剂中,如图E2-1所示,不同的溶质在水中的溶解度也各不相同,硝酸钾在约22℃以下,其溶解度小于氯化钠,但高于此温度时,其溶解度则远大于氯化钠。大部分的固体溶质,其溶解度随着温度的增高而变大,但是如下图所示有些变化较大,有些则变化较小。 图E2-1中的各条曲线是如何画出来的?我们可以在高温下配制数支不同浓度的不饱和溶液,然后依序让试管内溶液的温度徐徐降低,直至溶液中有碎屑开始出现时,记录当时的温度,将其浓度换算即可得知该温度的溶解度,将数点不同温度下的溶解度在图形中相连,即可得相似的曲线。 三 实验器材 每組 器材(规格) 数量 器材(规格) 数量 天平 共享 中型试管(18 mm 口径) 4支 试管夹 1支 烧杯(600 mL ) 1个 量筒(25 mL ) 1个 电热板和磁搅拌子(或其他加热装置) 1组 温度计 1支 末端有环的铁丝(可自制) 1支 试管架 1座 溶解度的测定 如何使更多的固体溶到水中? 2 连结课本P.116 图E2-1 各种固体溶解度与温度关系

36高中化学(全)实验活动手册 四实验试药 每組 药品份量药品份量 水约20 mL 硝酸钾(KNO3)约14 g 五实验步骤 1 取600 mL烧杯,装热水 半满并置于电热板上,开 启电源,把火力调至最 小,加热烧杯内的水。 2 称取质量为2.0 g、3.0 g、 4.0 g和 5.0 g的硝酸钾倒入 四支试管。 3 再各加入5.0 g水于四支 试管。 4 将4支试管放入装水烧 杯中,以水浴法加热。 5 注意观察各试管内固体。 6 依序用试管夹将固体已 溶解的试管取出(其先后 顺序应为加了2.0 g、3.0 g、4.0 g和5.0 g硝酸钾 固体的试管),先进行下 一步骤,直到所有试管均 取出为止,关闭电热板的 电源。

溶解度的测定

硝酸钾溶解度的测定(方法1:结晶析出法) 实验原理: 先设计好不同溶质和溶剂的量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时的温度,即所得溶液为该温度下的饱和溶液,计算该温度下的溶解度。 实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品是否齐全、完好。 二、硝酸钾的称取和溶解。 1. 用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、 2.0g、2.5g,称量过程详见分组实验三的步骤二。将称好的5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取的3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾的结晶。 1.自水浴中取出大试管,插入一支干净的温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计的读数。当刚开始有晶体析出时,立即记下此时的温度t1,并填入下表中。 2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤的操作,分别测定开始析出晶体时的温度t2、t3。将读数填入表格。 四、溶解度曲线的绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤的操作,并将晶体开始析出时的温度读数填人表格。

1蛋白质化学(答案)

1 蛋白质化学 一、名词解释 1、氨基酸的等电点(pI):在某一pH 的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH 值称为该氨基酸的等电点。 2、a-螺旋:多肽链沿长轴方向通过氢键向上盘曲所形成的右手螺旋结构称为α-螺旋。 3、b-折叠:两段以上折叠成锯齿状的多肽链通过氢键相连而并行成较伸层的片状结构。 4、分子病:由于基因突变导致蛋白质一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病。 5、电泳:蛋白质在溶液中解离成带电颗粒,在电场中可以向电荷相反的电极移动,这种现象称为电泳。 6、变构效应:又称变构效应,是指寡聚蛋白与配基结合,改变蛋白质构象,导致蛋白质生物活性改变的现象. 7、盐析:在蛋白质溶液中加入高浓度的中性盐,可有效地破坏蛋白质颗粒的水化层。同时又中和了蛋白质表面的电荷,从而使蛋白质颗粒集聚而生成沉淀,这种现象称为盐析(salting out )。 8、分段盐析:不同蛋白质析出时需要的盐浓度不同,调节盐浓度以使混合蛋白质溶液中的几种蛋白质分段析出,这种方法称为分段盐析。 9、盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 二、填空 1、不同蛋白质的含(N )量颇为相近,平均含量为(16)%。 2、在蛋白质分子中,一个氨基酸的α碳原子上的(羧基)与另一个氨基酸α碳原子上的(氨基)脱去一分子水形成的键叫(肽键),它是蛋白质分子中的基本结构键。 3、蛋白质颗粒表面的(水化层)和(电荷)是蛋白质亲水胶体稳定的两个因素。 4、赖氨酸带三个可解离基团,它们Pk 分别为2.18,8.95,10.53,其等电点为(9.74)。 <碱性氨基酸;PI= ()R k p k p '+'22 1> 5、氨基酸的结构通式为( )。 6、组成蛋白质分子的碱性氨基酸有(赖氨酸)、(精氨酸)和(组氨酸)。酸性氨基酸有(天冬氨酸)和(谷氨酸)。 7、氨基酸在等电点时,主要以(兼性或偶极)离子形式存在,在pH>pI 的溶液中,大部分以(阴)离子形式存在,在pH

豆粕蛋白溶解度和尿酶值

大豆蛋白是家禽日粮中最为重要的,也是质量最好的植物蛋白饲料,除蛋氨酸略缺乏外,其它各种氨基酸都接近理想平衡。如同其它蛋白质饲料一样,豆粕质量受各种营养素含量的影响,如能量、蛋白质、纤维素和氨基酸等,例如普通豆粕与去皮豆粕间在以上指标方面就有很大的差别(见表1)。去皮豆粕由于纤维素含量低而有较高的能量水平。但是蛋白质水平高的豆粕不一定保证低纤维和高能量水平,例如某些未去皮中国豆粕的蛋白质含量可高达48%甚至50%,而仍然含有6%至7%的纤维素。因此高蛋白水平豆粕的代谢能水平仍然可能因纤维素含量高而下降,尚未见到这些高蛋白质“高纤维素”豆粕的代谢能测定值。但一般可以估计:在去皮豆粕纤维素正常含量3.5%以上时,每增加1%纤维素使每公斤猪饲料的代谢能下降32至42大卡,而每公斤禽饲料则下降将近60大卡。另一方面,豆粕质量在很大程度上受加工方面问题的影响而使它的氨基酸含量和氨基酸消化率以致于能量受到影响。本文主要讨论由加工不足或加热过度所引起的豆粕质量变异以及对生产性能的影响,同时介绍目前可行的鉴定豆粕质量的方法—尿酶活性(pH变化值)与0.2%氢氧化钾蛋白溶解度,并加以评估。 一、生大豆——抗胰蛋白酶与尿酶 众所周知,豆粕必须经过适度热加工以破坏大豆中所含的数种抗营养物质。其中对畜禽影响最大者为抗胰蛋白酶(Tripsin Inhibitor),有幸的是这些抗营养因子在加热后都会遭到破坏。适度加热是豆粕加工的关键,因为加热不足或过度都会降低豆粕的营养价值。 抗胰蛋白酶是生大豆中的一种蛋白酶抑制物,它在消化道内能使胰蛋白酶和凝乳酶失活,从而降低蛋白质的消化率,并引起胰脏代偿性增大,由于胰酶富含硫氨基酸,因此,大量分泌消化酶可能加剧大豆蛋白含硫氨基酸的缺乏现象。抗胰蛋白酶的测定方法很耗时也很昂贵,因此需要寻找一种简易而快速的测定方法。 生大豆中含不等量尿酶(Urease)。尿酶本身无营养意义,但它与抗胰蛋白酶的含量接近,而且遇热变性失活的程度与抗胰蛋白酶相似(图1),因此可用尿酶活性作为豆粕加工适宜度的间接估测指标。 抗胰蛋白和尿酶(UA)活性不仅受到加热的温度影响,而且还受加热时间及水分含量的影响(图2,图3)。由图可见,在水分含量很低时,抗胰蛋白酶和尿酶活性的破坏程度不大。

蛋白质的起泡性测定方法

一.蛋白质的起泡性测定方法 1.配制l0ml 1%蛋白分散液(pH 8. 05的0.05mo1/L Tris-HC1缓冲液),在室 温的条件下,利用高速分散机均质l min,快速转移到25m1的量筒中,,每30min记录一次泡沫体积。每个样品重复三次,取平均值。 2.采用搅打发泡测定法[29]:将蛋清蛋白溶于pH7.0的磷酸盐缓冲溶液中,配 成3%的蛋清蛋白溶液。取200ml3%的蛋清蛋白溶液,在A-88组织捣碎匀浆机中,以8000r/min的转速打泡3min,测其泡沫体积,记录为V0,按下式计算起泡度(FAI): FAI(%)=(V0-200/200) ×100 静置30分钟后,测泡沫体积,记录为V1,按下式计算泡沫稳定性(FS):FS(%)= (V1-200/200 )×100 3.参照Hammershoj 等介绍的方法[36]。首先将全蛋液稀释到5%(v/v),然后 取100mL的稀释液,10000r/min速度搅拌1min。记录均质停止时和停止后30min的泡沫体积与液体体积,起泡力与泡沫稳定性分别用OR与FS表示,计算公式如下: 起泡性(OR)=Vf0 /Vli 2-3 泡沫稳定性(FS)=Vf30/Vf0 2-4 式2-3 与2-4中:Vf0—零时刻时泡沫的体积(mL);Vli—初始阶段的液体体积(100mL);Vf30—静置 30min后的泡沫体积。 Hammershoj, M., Qvist, K. B. Importance of hen age and egg storage time for egg albumen foaming [J]. Lebensmittel-Wissenschaft-Technologie, 2001, 34: 118–120. 4. 二.乳化性及乳化稳定性的测定方法 用0.05 mol/L Tris-HCl缓冲液(pH 7.5)配制1%的蛋白样品,取1 mL色拉油与3 mL待测溶液于均质机中均质剪切1min,分别于0min和10min时从底部取50 μL用0.1% SDS 25 mL稀释后测OD500 乳化活性指数(EA I)=(2.303 × 2 × OD 500 )/(C × Φ ×L) 乳状液稳定指数(ES)=OD 500× Δt/ΔOD 500 式中: EAl ——每克蛋白质的乳化面积,m2/g; Φ——油相所占的分数,在本实验中油相占1/4; C——蛋白质的浓度,1%; L——比色池光径,10mm。

有机溶剂蛋白质沉淀

蛋白质纯化方法 蛋白质浓缩有多种方法,有盐析,超滤,离子交换,有机溶剂沉淀等方法。 有机溶剂沉淀法:有机溶剂能降低溶液的电解常数,从而增加蛋白质分子上不同电荷的引力,导致溶解度的降低;另外,有机溶剂与水的作用,能破坏蛋白质的水化膜,故蛋白质在一定浓度的有机溶剂中的溶解度差异而分离的方法,称“有机溶剂分段沉淀法”,它常用于蛋白质或酶的提纯。使用的有机溶剂多为乙醇和丙酮。高浓度有机溶剂易引起蛋白质变性失活,操作必须在低温下进行,并在加入有机溶剂时注意搅拌均匀以避免局部浓度过大。由此法析出的沉淀一般比盐析容易过滤或离心沉降,分离后的蛋白质沉淀,应立即用水或缓冲液溶解,以降低有机溶剂浓度。操作时的pH值大多数控制在待沉淀蛋白质的等电点附近,有机溶剂在中性盐存在时能增加蛋白质的溶解度,减少变性,提高分离的效果,在有机溶剂中添加中性盐的浓度为0.05mol/L左右,中性盐过多不仅耗费有机溶剂,可能导致沉淀不好。沉淀的条件一经确定,就必须严格控制,才能得到可重复的结果。医学教育`网搜集整理有机溶剂浓度通常以有机溶剂和水容积比或用百分浓度表示。有机溶剂沉淀蛋白质分辨力比盐析法好,溶剂易除去;缺点是易使酶和具有活性的蛋白质变性。故操作时要求条件比盐析严格。对于某些敏感的酶和蛋白质,使用有机溶剂沉淀尤其要小心。 可与水混合的有机溶剂,如酒精、甲醇、丙酮等,对水的亲和力很大,能破坏蛋白质颗粒的水化膜,在等电点时使蛋白质沉淀。在常温下,有机溶剂沉淀蛋白质往往引起变性。例如酒精消毒灭菌就是如此,但若在低温条件下,则变性进行较缓慢,可用于分离制备各种血浆蛋白质。

蛋白质浓缩技术是免疫学中常用的手段,现介绍几种常用的浓缩技术。 (一)透析袋浓缩法 利用透析袋浓缩蛋白质溶液是应用最广的一种。将要浓缩的蛋白溶液放入透析袋(无透析袋可用玻璃纸代替),结扎,把高分子(6 000-12 000)聚合物如聚乙二醇(碳蜡)、聚乙烯吡咯、烷酮等或蔗糖撒在透析袋外即可。也可将吸水剂配成30%-40%浓度的溶液,将装有蛋白液的透析袋放入即可。吸水剂用过后,可放入温箱中烘干或自然干燥后,仍可再用。 (二)冷冻干燥浓缩法 这是浓缩蛋白质的一种较好的办法,它既使蛋白质不易变性,又保持蛋白质中固有的成分。它是在冰冻状态下直接升华去除水分。具体做法是将蛋白液在低温下冰冻,然后移置干燥器内(干燥器内装有干燥剂,如NaOH、CaCl2和硅胶等)。密闭,迅速抽空,并维持在抽空状态。数小时后即可获得含有蛋白的干燥粉末。干燥后的蛋白质保存方便,应用时可配成任意浓度使用。也可采用冻干机进行冷冻干燥。 (三)吹干浓缩法 将蛋白溶液装入透析袋内,放在电风扇下吹。此法简单,但速度慢,且温度不能过高,最好不要超过15℃。 (四)超滤膜浓缩法 此法是利用微孔纤维素膜通过高压将水分滤出,而蛋白质存留于膜上达到浓缩目的。有两种方法进行浓缩:一种是用醋酸纤维素膜装入高压过滤器内,在不断搅拌之下过滤;另一种是将蛋白液装入透析袋内置于真空干燥器的通风口上,负压抽气,而使袋内液体渗出。 (五)凝胶浓缩法 选用孔径较小的凝胶,如SephadexG25或G50,将凝胶直接加入蛋白溶液中。根据干胶的吸水量和蛋白液需浓缩的倍数而称取所需的干胶量。放入冰箱内,凝胶粒子吸水后,通过离心除去。 (六)浓缩胶浓缩法 浓缩胶是一种高分子网状结构的有机聚合物,具有很强的吸水性能。每克干胶可吸水120ml~150ml。它能吸收低分子量的物质,如水、葡萄糖、蔗糖、无机盐等,适宜浓缩10 000分子量以上的生物大分子物质。浓缩后,蛋白质的回收率可达80%~90%。比浓缩胶应用方便,直接加入被浓缩的溶液中即可。必须注意,浓缩溶液的pH值应大于被浓缩物质的等电点,否则在浓缩胶表面产生阳离子交换,影响浓缩物质的回收率。 选择材料及预处理 以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。

蛋白质提取常用试剂及操作方法

蛋白质提取常用试剂及操作方法 一、原料选择和前处理 (一)原料的选择 早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,因而对提取要求更复杂一些。原料的选择主要依据实验目的定。从工业生产角度考虑,注意选含量高、来源丰富及成本低的原料。尽量要新鲜原料。但有时这几方面不同时具备。含量丰富但来源困难,或含量来源均理想,但分离纯化操作繁琐,反而不如含量略低些易于获得纯品者。一般要注意种属的关系,如鲣的心肌细胞色素C 较马的易结晶,马的血红蛋白较牛的易结晶。要事前调查制备的难易情况。若利用蛋白质的活性,对原料的种属应几乎无影响。如利用胰蛋白酶水解蛋白质的活性,用猪或牛胰脏均可。但若研究蛋白质自身的性质及结构时,原料的来源种属必须一定。研究由于病态引起的特殊蛋白质(本斯.琼斯氏蛋白、贫血血红蛋白)时,不但使用种属一定的原料,而且要取自同一个体的原料。可能时尽量用全年均可采到的原料。对动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。 (二)前处理 1.细胞的破碎 材料选定通常要进行处理。要剔除结缔组织及脂肪组织。如不能立即进行实验,则应冷冻保存。除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先将细胞破碎,使其充分释放到溶液中。不同生物体或同一生物体不同的组织,其细胞破坏难易不一,使用方法也不完全相同。如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即可,肌肉及心组织较韧,需预先绞碎再制成匀桨。 ⑴机械方法 主要通过机械切力的作用使组织细胞破坏。常用器械有:①高速组织捣碎机(转速可达10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间隔只有十分之几毫米,对细胞破碎程度较高速捣碎机高,机械切力对分子破坏较小。小量的也可用乳钵与适当的缓冲剂磨碎提取,也可加氧化铝、石英砂及玻璃粉磨细。但在磨细时局部往往生热导致变性或pH 显著变化,尤其用玻璃粉和氧化铝时。磨细剂的吸附也可导致损失。 ⑵物理方法 主要通过各种物理因素的作用,使组织细胞破碎的方法。 Ⅰ.反复冻融法 于冷藏库或干冰反复于零下15~20℃使之冻固,然后缓慢地融解,如此反复操作,使大部分细胞及细胞内颗粒破坏。由于渗透压的变化,使结合水冻结产生组织的变性,冰片将细胞膜破碎,使蛋白质可溶化,成为粘稠的浓溶液,但脂蛋白冻结变性。 Ⅱ.冷热变替法 将材料投入沸水中,于90℃左右维持数分钟,立即置于冰浴中使之迅速冷却,绝大部分细胞被破坏。 Ⅲ.超声波法 暴露于9~10 千周声波或10~500 千周超声波所产生的机械振动,只要有设备该法方便且效果也好,但一次处理量较小。应用超声波处理时应注意避免溶液中气泡的存在。处理一些

QBHHS JC004-2013 豆粕中氢氧化钾蛋白质溶解度的检测办法

1原理 氢氧化钾蛋白质溶解度可以反映大豆粕产品加热过度的情况。不同加热成度的大豆粕,氢氧化钾蛋白质溶解度不同。先测定大豆粕样品在规定的条件下,可溶于氢氧化钾溶液中的粗蛋白质含量;再测定同一大豆粕样品中总的粗蛋白含量,计算出氢氧化钾蛋白质溶解度。 2 试剂2.1 除非另有说明,分析中仅使用确认为分析纯的试剂,所用的水为按GB/T 6682中规定的三级水。 2.20.2%的氢氧化钾溶液:2.44g 氢氧化钾溶解于水中,稀释并定容至1L。 3 仪器设备3.1 实验室用样品粉碎机3.2 样品筛(孔径0.25mm)3.3 分析天平(感量0.0001g)3.4 磁力搅拌器3.5离心机(转速为2700r/min 以上) 4样品的制备 取具有代表性的大豆粕(发酵豆粕)样品,用四分法缩减分取200g 左右,粉碎过0.25mm 孔径的样品筛,充分混匀,装入磨口瓶中备用。 5 测定步骤5.1称取大豆粕(发酵豆粕)试样1.0g,精确到0.1mg,置于250ml 高型烧杯中,加入50.00ml 氢氧化钾溶液,在磁力边搅拌器上搅拌20min,将溶液转移至离心管中,以2700r/min (3.5)离心10min,小心移取清液15.00ml,放入消化管中,按GB/T 6432的规定测定粗蛋白质含量,同时测定同一试样总的粗蛋白质含量。 6结果计算检测技术规范与标准方法 编号:QB/HHS JC004-2013修订:第1版第1次修改豆粕中氢氧化钾蛋白质溶解度的测定起草:赵丽霞 审核:刘永垒 批准: 执行日期:2013年6月15日

氢氧化钾蛋白质溶解度X,数值以质量分数表示,按式计算:X=W1/W2×100% 公式中: W1-------大豆粕试样溶于氢氧化钾溶液(4.7.2.1)中的粗蛋白质含量,% W2-------大豆粕试样总的粗蛋白质含量(以两次平行测定结果的算术平均值为测定结果),%计算记过表示到小数点后一位。 7精密度 7.1重复性 在同一实验室,由同一操作人员完成的两个平行测定结果,相对偏差不大于2%;以两次平行测定结果的算术平均值为测定结果。 7.2再现性 再不同实验室,由不同操作人员用不同的仪器设备完成的两个测定结果,相对偏差不大于4%。

相关主题
文本预览
相关文档 最新文档