当前位置:文档之家› 频率精确测量方法研究

频率精确测量方法研究

频率精确测量方法研究
频率精确测量方法研究

频率响应测量的方法

频率响应测量的方法 频率响应测量的方法很多,一般同使用的测试信号有关。 可分为:i. 点测法:完全按定义设计的测量方法,逐个频率输入振幅恒定的正弦信号,逐个点测量相应频率扬声器输出声压级,在频率响应坐标纸上绘出相应的点,把这些不连续的点的平滑连线即为频率响应曲线。测量耗时、测量有限的非连续频率点,过渡点是推测的。 ii. 扫频自动记录法:使用机械传动的方法改变振荡电路中的电容,使信号的频率连续改变,输出电压恒定,这叫扫频信号,记录仪上记录纸的频率刻度与信号源同步,记录扬声器的输出声压级随频率的变化,即为频率响应曲线,这方法叫扫频自动记录法。后来,机械扫频信号改成电压控制频率的压控振荡器,改进了机械传动的麻烦。这是60~80年代丹麦B&K 公司为代表的测量技术。扫频自动测量原理大约已有40年的历史,其测量原理没有变化,改变的只是使用的技术,譬如扫频信号的产生方法,测量传声器测得的数据的采集、处理、运算和输出数据和曲线都可以由计算机完成。其中需要特别一提的是:对扫频信号的理解和生成技术,连续扫频信号过去理解为点频信号随时间变化,但点频信号是一个连续周期信号,从示波器看到的是一个按周期重复的正弦波形,而扫频信号没有一个频率是经历时间周期的,随扫频时间变化的是它的瞬时频率。瞬时频率数学上是相位对时间的微分。可以这样理解:譬如f=100Hz正弦信号的周期是T=0.01秒,其走过的相位φ= 2π弧度(360°),而f=200Hz时,T=0.005秒,其走过的相位仍然是φ= 2π弧度,这样,一个微小时间内的相位变化(等效于相位对时间的微分)同周期成反比,相当于稳态频率。同稳态信号不同的是它引入扫频速率(S:Hz/s)的概念,瞬时频率fi =S t +f0;t为扫频时间;f0为扫频初始频率。t和f0确定扫频频率范围。稳态单频信号的公式是u(t)=Acos(2πft);f为稳态单频信号的频率。而扫频信号的公式是u(t)=ACos(πSt2),B&K公司的2012音频分析仪的TSR(时选响应)技术中使用的测试信号,就是采用该数学模型生成的信号。 iii. 阶步步进的猝发声测量。猝发声是若干个周期的正弦信号脉冲,或称正弦波列。它由连续周期信号加一时间控制电路组成,当测量声压级的时间窗正好在猝发声的稳定部分时,它更接近点频测量。由一个个不同频率的猝发声组成一个阶步步进的猝发声,用对应的跟踪滤波器跟踪每一个猝发声,类似点频测量得到扬声器的频率响应。美国ATI公司的扬声器测量系统LMS使用的正是这种信号源,它最多可以在一个十进制频率范围内设置200个猝发声频率点,即频率阶步的间隔是1/60倍频程。 iv. 多频音(Muiti-tone Burst也叫多频猝发声)它是数字生成的M个纯音信号的叠加的一个短时间间隔的信号,该时间间隔对M个频率来说正好都是整周期的,并且这由低到高M个频率之间没有谐波关系,即2个频率相除(大数除小数)的商不会是整数。例如:14.5,31.9,37.7,49.3,55.1……Hz;可以排列成一个数列,选择适当的频率间隔,组成M个频率的多频音。其M个频率的同步FFT即为基频即幅频响应,由其谐波可以实现其谐波失真测量。该技术使用在AP公司的“系统1”和“系统2”的仪器上。 v. 脉冲数字测量技术上面所有的方法都离不开正弦信号,只是频率的连续变化、频率的阶步变化和有限频率成分的合成信号,脉冲信号和MLS信号需要进行时域(时间波形)和频域(频率响应和频率分析)之间的变换,从中可以得到更多信息,它作用于被测系统后的输出响应,经过变换和运算可以得到被测系统的许多信息,这需要对测试信号有充分了解,涉及信号与系统的基本理论,又要借助数字信号处理技术进行变换运算。单脉冲信号的性质,

直线度测量方法

直线度测量方法 1、光电法测量 光电法测量是以三台测径仪为基础进行检测的,可以用于测量运动中的 线、棒、管的外轮廓的直线度。 布置上图的的设备3台,三台设备同一时刻测量被测工件的位置数据左边和右边两台采集的位置连线,计算出中间设备的在直线度为0时的理论位置,与中间一台所获的的位置数据比较,差值即为被测工件在当前位置的直线偏差如下图所示。

测量单元的测量频率为500-1000HZ,采用电子同步控制单元实现3 台设备的同步采样,可连续检测,根据检测数据模拟出整根线、棒(管)材的直线度,左、右两台的距离可根据具体情况确定安装位置。 2、自准直法 自准直法直线度检测仪可用于圆管外径的直线度检测。平行光仪器是 将和准直望远镜结合为一体的一台仪器。 光源将位于物镜焦平面(物镜焦距二f)的分划板投射至无穷远(准直 光出射),经过平面反射镜返回的准直光经物镜后再次成像于同样位

于物镜焦平面(共焦系统)的光电传感器的探测面上,当反射镜发生了a 角度的偏转后,返回的分划板在光电传感器上的像会产生AS的位移,通过精确测量出AS值,即可准确计算出平面反射镜的偏转角度。 检测内孔直线度时,将平面反射镜伸入孔内,利用胀套保证反射镜与内孔垂直。当内孔有弯曲时反射镜将偏转一定的角度,通过反射镜的偏转角度可以计算出内孔的直线度。 3、PSD芯片激光测量法 激光器安装在激光器座上,激光器座的尾部有4个螺钉可以对激光的 照射角度进行微调。其头部与定心套连接后插入炮管孔内。位置检测单元

的激光位敏传感器安装在传感器座内,传感器座的头部与定心套连接,尾部与推杆连接。通过手动推动推杆可以使位置检测单元在炮管内孔内移动。 激光器定心去 工作时激光器发射1束激光射向激光位敏传感器,传感器内的PSD 芯片监测接收到的激光能量中心位置。定心套用来保证传感器一直处于炮管内孔的中心位置。当炮管在检测位置出现弯曲时,PSD芯片上的激光能量中心坐标值将发生变化。位置检测单元的电源线和数据线通过推杆中心孔与控制柜连接。

固有频率测定方式

实验三振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: 方程式的解由21X X +这两部分组成: ) sin cos (211t w C t w C e X D D t +=-ε 21D w w D -= 式中1C 、2C 常数由初始条件决定: t w A t w A X e e sin cos 212+= 其中 ,, 1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。 自由振动周期: D D T ωπ 2= 强迫振动项周期: e e T ωπ 2= 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: 通过变换可写成

)sin(?-=t w A X e 式中 4 2 22222 2 2214)1(/ωωεωωωe e q A A A +- = += 设频率比 ω ωμe = ,Dw =ε 代入公式 则振幅 2 2 2 22 4)1(/D q A μμω+-= 滞后相位角: 2 12μμ ?-=D arctg 因为 xst K F m K m F q === 02 //ω为弹簧受干扰力峰值作用引起的静位移, 所以振幅A 可写成:st st x x D A .4)1(1 2 2 2 2βμμ=+-= 其中β称为动力放大系数: 2 2 2 2411 D μμβ+-= )( 动力放大系数β是强迫振动时的动力系数即动幅值与静幅值之比。这个数值对拾振器和单自由度体系的振动的研究都是很重要的。 当1=μ,即强迫振动频率和系统固有频率相等时,动力系数迅速增加,引起系统共振,由式: )sin(?-=t w A X e 可知,共振时振幅和相位都有明显变化,通过对这两个参数进行测量,我们可以判别系统是否达到共振动点,从而确定出系统的各阶振动频率。 (一)幅值判别法 在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过示波器,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有频率。这种方法简单易行,但在阻尼较大的情况下,不同的测量方法的出的共振动频率稍有差别,不同类型的振动量对振幅变化敏感程度不一样,这样对于一种类型的传感器在某阶频率时不够敏感。 (二)相位判别法 相位判别是根据共振时特殊的相位值以及共振前后相位变化规律所提出来的一种共振判别法。在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法,而且共振是

直线度测量计算方法

1引言 在工程实际中,评定导轨直线度误差的方法常用两端点连线法和最小条件法。两端点连线法,是将误差曲线首尾相连,再通过曲线的最高和最低点,分别作两条平行于首尾相连的直线,两平行线间沿纵坐标测量的数值,通过数据处理后,即为导轨的直线度误差值;最小条件法,是将误差曲线的“高、高”(或“低、低”)两点相连,过低(高)点作一直线与之相平行,两平行线间沿纵标坐测量的数值,通过数据处理后,即为导轨的直线误差值。 最小条件法是仲裁性评定。两端点连线法不是仲裁性评定,只是在评定时简单方便,所以在生产实际中常采用,但有时会产生较大的误差。本文讨论这两种评定方法之间产生误差的极限值。 2误差曲线在首尾连线的同侧 测量某一型号液压滑台导轨的直线度误差,得到直线度误差曲线,如图1所示。由图可知,该误差曲线在其首尾连线的同侧。下面分别采用最小条件法和两端点连线法,评定该导轨直线度误差值。 (1)最小条件法评定直线度误差 根据最小条件法,图1曲线的首尾分别是低点1和低点2(低点1与坐标原点重合),用直a1a1线相连,如图2所示。通过最高点3作a1a1直线的平行线a2a2。

在a1a1和a2a2两平行线包容的区域,沿y轴测量的数值,经数据处理,即为该导轨的直线度误差值

δ最小法。 (2)两端点连线法评定直线度误差 根据两端点连线法,图1曲线的首尾也分别是曲线的两端点1和2,如图3所示。将曲线端点1和端点2,用直线b1b1相连,再通过高点作b1b1的平行线b2b2。在b1b1和b2b2两平行线包容的区域,沿y轴测量的数值,经数据处理,即为该导轨的直线度误差值δ两端点。 (3)求解两种评定方法产生的误差极限 由于是对同一导轨误差曲线求解直线度误差,图2中的“低点1”、“低点2”和“高点3”分别对应图3中的“端点1”、“端点2”和“高点3”,即直线 a1a1与直线b1b1重合,直线a2a2与直线b2b2重合,因此两种评定方法产生的误差值为零

平行度检测仪的设计方法

第28卷第4期长春理工大学学报 Vo l 128No 142005年12月 J ou rnal of Changchun Un i versit y of Science and T echnology Dec .2005 收稿日期:2005-08-12 基金项目:振兴东北老工业基地项目(04-02GG156) 作者简介:张立颖,女(1976-),硕士研究生,主要从事光学仪器装调方面的研究。 平行度检测仪的设计方法 张立颖 刘德尚 王文革 (中国科学院长春光学精密机械与物理研究所,长春 130031) 摘 要:国内现有的平行度检测方法和检测设备都是用于检测可见光的平行度。对于激光和红外平行度的精密检测,还没有一个好的检测方法。本文介绍了一种既可以检测可见光又可以检测激光、红外平行度的检测仪,并且论述了设计原理、装调方法以及精度的验证,其检测精度可以达到?2d 。关键词:平行度;激光;红外 中图分类号:TH74512 文献标识码:A 文章编号:1672-9870(2005)04-0033-03 Design of t he L ight Parallelis m Detector Z HANG L i y ing LIU D es hang WANG W enge (Changchun Instit u te o f Op tics ,F i n eM echanics and Phy sics ,Chinese Acade my of Siences ,Changchun 130031)Abst ract :In our nation ,w e have l o ts o f m ethods and equ i p m ents to detect the parallelis m of v isible li g h.t But w e don t 'kno w how to detect the paralle lis m of laser and i n frared ,This paper descri b es briefly the desi g n idea,asse m b l y techn i q ue and ho w to test and verify its accuracy .A t las,t we get the conclu -si o n that the accuracy of the ne w detecto r is less than ?2d ,and the dectctor can be used i n v isi b l e ligh.t K ey w ords :Pa ra lle lis m;Laser ;Infrared 随着激光与红外技术的发展,红外跟踪器和激光测距机已被广泛应用在现代化的光电经纬仪上。 然而令人遗憾是,对于激光、红外系统的平行度的标校却一直没有一个令人满意的方法,无奈人们只能在几十公里外制造一个红外目标,并把这个目标假设为无穷远光源来标校激光、红外系统的平行度,这个方法测量误差大,实现也困难。本文设计的平行度检测仪(以下简称检测仪)从根本上解决了这个难题,它的结构简单、成本低,既可以在实验室使用,又可以直接安装在红外跟踪车上,在外场随时标校激光、红外的平行度,同时它又可兼做红外目标模拟器,因此具有良好的市场前景。 1 检测仪的结构及检测原理 111 检测仪的结构 用于检测激光、红外平行度的检测仪的组成包括,光学部分:(1)衰减片;(2)平面镜组;(3)分光镜;(4)平行光管;(5)红外光源;(6)特 制耙面。机械部分:(1)导轨;(2)可移动支架。用于可见光测量时,只需把红外光源更换为普通光源,将特制耙面更换为普通星点板即可。112 检测仪的检测原理11211 检测仪的光学系统 检测仪的光学系统如图1所示。检测仪由A 、B 两个光路组成。激光经过(光路A )衰减片衰减后,从平面镜2的周围入射到分光镜上,经过平行光管汇聚到特制耙面上,使耙面发热形成红外光源,发射出的光经过平行光管后变成平行光,经过分光镜把光分成两束,一束(光路A )原路返回,一束(光路B)进入红外接收系统。11212 检测仪的工作过程 ①红外光源发射出的光经过特制耙面(此时耙面可以视为一个星点)通过平行光管变成平行光,再经过分光镜进入光路B ,并呈像在红外成像器的光轴中心。 ②激光测距机发出的激光通过光路A 最终汇

测量距离的方法

肯定能测。原理与望远镜测量距离相同,只是测量距离精度远低于经纬仪。 用望远镜测量距离的方法是: 拿起望远镜,先调整一下目镜的间隔和焦距,便能清晰地看到:在右镜筒的玻璃片上,刻有十字分划。从十字交点起,左右的叫方向分划,上下的叫高低分划。 测量方向角时用方向分划,测量垂直角时就用高低分划。测量时,要持平望远镜,用任一方向分划(或高低分划)对准目标的一端,读出到目标另一端间的密位数,即为该目标的方向角(或高低角)。 测出方向角(或高低角)后再根据已知目标的宽度(或高度),按下面的密位公式就可以计算出距离。 距离=目标宽度(或高度)×1000/密位数 水准仪刻度标示可能也是密位值,具体请参照水准仪说明。能否回复一下水准仪刻度相当于整个圆周是多少?是密位吗?谢谢! 视距测量是利用经纬仪、水准仪的望远镜内十字丝分划板的上的视距丝在视距尺(水准尺)上读数,根据光学和几何学原理,同时测定仪器到地面点的水平距离和高差的一种方法。这种方法具有操作简便、速度快、不受地面起伏变化的影响的邮点,被广泛应用于碎部测量中。但其测距精度低,约为:1/200-1/300。 一、视距测量原理 1.视线水平时的距离与高差公式 欲测定A、B两点间的水平距离D及高差h,可在A点安置经纬仪,B点立视距尺,设望远镜视线水平,瞄准B点视距尺,此时视线与视距尺垂直。求得上,下视距丝读数之差"l"。上,下丝读数之差称为视距间隔或尺间隔。S=100l 2.视线倾斜时的距离与高差公式 在地面起伏较大的地区进行视距测量的,必须使视线倾斜才能读取视距间隔。由于视线不垂直于视距尺,故不能直接应用上述公式。要用S=Kl(cosa)^2 K:视距乘常数;a:视线竖直角 有必要说明下哟 斜距S=K×L×cos(a) 水平距离D=K×L×cos(a)×cos(a) 注明下:K是仪器(经纬仪、水准仪)生产时就把它生产定为100的值,L实为上丝与下丝的差距(上丝-下丝),a为垂直角,水平时为0度 对于你的问题是:水平距离=100×(上丝-下丝)×cos(2°)×cos(2°) 而你只读了上丝、中丝,没有下丝,这里可以建议你近似取(上丝-下丝=2×(上丝-中丝))

轨道直线度测量方法的综述

上海大学2014 ~2015 学年春季学期研究生课程考试 课程名称:现代光学测试技术课程编号: 09SAT9004 论文题目: 轨道直线度测量方法的综述 研究生姓名: 华明亚学号: 14721353 论文评语: 成绩: 任课教师: 高洪跃 评阅日期:

轨道直线度测量方法的综述 华明亚 (上海大学机电工程与自动化学院,上海200072) 摘要:随着我国铁路交通事业的快速发展,我国的铁路线路已经达到了2.4万公里。在高速铁路线路里程不断增加,列车大提速的背景下,随着使用年限的增加,在某些路段铁轨会发生弯曲、下沉等形变,从而导致平直度等参数超过建设初期的安全设计指标,会产生一系列事故隐患。为预防因线路老化问题带来的重大事故的发生,越来越多的线路需要人工进行检测和维护。在传统铁轨检测时,通常采用1Om弦测法或者大型轨检车进行测量,前者测量误差较大,有很大的局限性;后者价格昂贵,也不便于日常检修使用。因此,工程中需要较高精度,低成本,测量距离长,使用简便的铁轨直线度测量方法。本文介绍了三种简便而且应用比较成熟的轨道直线度测量方法,包括三坐标法,双频激光干涉仪测量法和激光准直测量法。并且简单阐述了它们的工作原理,优缺点,误差分析以及应用场合。 关键词:轨道测量;直线度;激光测量; Application of image processing technology Hua Mingya (School of mechanical engineering and automation, Shanghai University, Shanghai 200072, China) Abstract:With the rapid development of China's railway transportation, our railway line has reached 24000 kilometers. As high speed railway mileage increases, with the background of high speed train and the increase of age ,the track of some sections will bending and sinking deformation, which leads to the flatness of the parameters over at the initial stage of the construction safety design index and will produce a series of accidents. In order to prevent the occurrence of major accidents caused by the aging of the line, more and more lines need to be detected and maintained manually. In the traditional rail detection, usually with 10m chord measurement or large track inspection car are measured, the former measurement has many errors, which is a big limitation; the latter is expensive, not easy to daily maintenance. Therefore, the engineering need to high accuracy, low cost, long distance measurement, using simple rail straightness measurement method. This paper introduces three simple and more sophisticated methods for measuring the straightness of orbit, including three coordinate method, dual frequency laser interferometer and laser alignment. And it also describes their working principle, the advantages and disadvantages, the error analysis and the application. Key words: Orbit measurement;Laser measurement; Straightness; 1.引言 随着我国铁路交通事业的快速发展,普通铁路提速和建设高速铁路已经成为提高铁路运送能力的重要手段。至2007年底,我国铁路原有线路经过了六次大面积提速,快速线路长度达到2. 4万公里,其中允许速度160Km/h及以上的线路更是达到了1. 6万公里。随着列车运营速度的快速提高,也对铁轨自身的参数提出了更高的要求[1]。高速铁路要求轨道几何形位必须保持极高的平顺性,否则,轨面极小的形变都可能引起巨大的轮轨冲击力,造成轨道部件的损伤,更有甚者,可能会造成列车的脱轨等重大事故发生[2]。轨道状态的不平顺往

频率测量方法

0引言 随着无线电技术的发展与普及,"频率"已经成为广大群众所熟悉的物理量。而单片机的出现,更是对包括测频在内的各种测量技术带来了许多重大的飞跃,然而,小体积、价廉、功能强等优势也在电子领域占有非常重要的地位。为此.本文给出了一种以单片机为核心的频率测量系统的设计方法。 1 测频系统的硬件结构 测量频率的方法一般分为无源测频法、有源测频法及电子计数法三种。无源测频法(又可分为谐振法和电桥法),常用于频率粗测,精度在1%左右。有源比较法可分为拍频法和差频法,前者是利用两个信号线性叠加以产生拍频现象,再通过检测零拍现象进行测频,常用于低频测量,误差在零点几Hz;后者则利用两个非线性信号叠加来产生差频现象,然后通过检测零差现象进行测频,常用于高频测量,误差在±20 Hz左右。以上方法在测量范围和精度上都有一定的不足,而电子计数法主要通过单片机进行控制。由于单片机的较强控制与运算功能,电子计数法的测量频率范围宽,精度高,易于实现。本设计就是采用单片机电子计数法来测量频率,其系统硬件原理框图如图1所示。 为了提高测量的精度,拓展单片机的测频范围,本设计采取了对信号进行分频的方法。设计中采用两片同步十进制加法计数器74LS160来组成一个100分频器。该100分频器由两个同步十进制加法计数器74LS160和一个与非门74LS00共同设计而成。由于一个74LS160 可以分频十的一次方,而当第一片74LS160工作时,如果有进位,输出端TC便有进位信号送进第二片的CEP端,同时CET也为高电平,这样两个工作状态控制端CET、CEP将同时为高电平,此时第二片74LS160将开始工作。 2 频率测量模块的电路设计 用单片机电子计数法测量频率有测频率法和测周期法两种方法。测量频率主要是在单位定时时间里对被测信号脉冲进行计数;测量周期则是在被测信号一个周期时间里对某一基准时钟脉冲进行计数。 2.1 8051测频法的误差分析 电子计数器测频法主要是将被测频率信号加到计数器的计数输入端,然后让计数器在标准时间Ts1内进行计数,所得的计数值N1。与被测信号的频率fx1的关系如下:

介绍一下大拇测距的方法

介绍一下大拇指测距的方法,具体的 答案 拇指测距(与密位)向前伸直手臂树起拇指,闭上左眼,右眼、拇指、目标形成 直线,闭上右眼,睁开左眼,此时记住左眼、拇指延长直线目标右侧那一点,目测那一点与目标的距离并乘以10,即你到目标的大概距离。竖起大拇指。手臂放平目光通过指尖是与水平线的夹角约120 密位,看目标高度估算出视线经过目标顶部和目标底部的两条实现的夹角为多少密位,用密位乘以目标高度(凭经验)即为目标距离 例如,日军身高约 1.5 米,视线通过其头顶和脚底的夹角约100 密位,距离为150 米通常情况下,某些物体的长度是一个已知量,比如汽车、房屋等,那么根据在目测中占据多大角度(军事测量中采用密位),就可以推算出其距离远近。 用伸直手臂之后竖起的大拇指所遮挡的范围的密位数是固定的,由此参考被测目标,就可以得到这个角度值。经过换算就可以得到距离的大致数据。密位是一个圆平分为6000 份每一份是一密位,还有伸出右手,闭上左眼,对准一个物体,让他恰好挨着你的大拇指左侧,手不要动换一下眼,你会发现物体产生跳动一段距离,根据物体目测宽度,跳动宽度,之比乘以50. 为大约距离。还有经验积累。密位计算也是实际物体在你手上相对应的一个密位数通过计算得出的大约距离。 理论上讲,将胳膊伸直,竖起拇指,根据眼睛到拇指的距离(约为臂长),拇指长和所测物的高进行相似计算。但实际上,使用这项技能时,基本是凭经验测距,要长时间练习才能熟练掌握。而且,要更正的是,手指测距多用于行军和炮兵定位粗测,且是每个士兵必修。而很少用手指测距,因为手指测距要将手臂伸直,很容易暴露自己,狙击手多直接用目测。手指测距一般能估测2-4 公里(有明显地物,如房子,树等时适用),经验丰富的士兵误差不超过200 米,目测一 般用来估测一公里内距离,误差50 米以里。手指测距和目测都是需要长期练习的,还要了解一般地物的大小,及其在不同距离的视觉大小,能熟练利用距离已知的参照物进行比较等。如果你能刻苦练习,相信你一定会成功。 "大拇指测距法"是根据直角三角函数来测量的假设距离我们N米有一目标物,测量我们到目标物的距离: 1 、水平端起我们的右手臂,右手握拳并立起大拇指2、用右眼(左眼闭)将大拇指的左边与目标物重叠在一条直线上; 3 、右手臂和大拇指不动,闭上右眼,再用左眼观测大拇指左边,会发现这个边线离开目标物右边一段距离;4、估算这段距离(这个也可以测量),将这个距离X 10,得数就是我

用打表法测量阀体的平面度及平行度.doc

用打表法测量阀体的平面度和平行度的方法 一 实验目的 本实验所用测量方法是工厂里常用的方法,有助于学生对平面度公差、面对面的平行度公差概念的理解,训练学生的动手能力(仅一台三坐标测量机,做不到人人动手操作),训练学生数据处理能力,以及对平面度评定方法的理解。 二 实验仪器 测量平台,作为测量的基准使用,精度要求高。磁力表架和表座、千分表、V 型块、被测零件阀体。 三 操作过程 1 将磁力表架和V 型块放置于测量平台上,将被测零件阀体放置于V 型块上。 2 将千分表安装在磁力表架上,调整磁力表架,使千分表的测头与阀体的被测平面垂直接触,且具有一定的接触力,并保证测量过程中千分表不超量程。 3 固定磁力表座,推动V 型块,并保证其与测量平台稳定接触,使千分表测头与 测量平台 阀体 表架 表座 千分表 V 型块

被测平面上3X3分布的点接触,记录9个数据,如下所示。 四数据处理 1 误差评定准则(见教材) 将测得数据处理成上述三个准则中的任意一种,各点数据中的最大值减去最小值即为平面度误差。而平行度误差评定较简单,在测得原始数据中,用最大值减去最小值即是。 2 平面度数据处理方法(见学习指导) 测得数据不会是三个准则中的任意一种,需要进行处理才行,处理方法按照如下例题所示。 例用打表法测量一块350mmx350mm的平板,各测点的读数值如下图所示。试用最小包容区域法求平面度误差值。 解:此题旨在训练培养大家进行数据处理,求解几何误差的能力。观察检测数据,最大值为20,最小值为-12 ,次小值为-10,决定采用三角形准则求解平面度误差。保留中间的最大值,求出3个相等的最小值,三个最小值位置选定-12、-10、+7,将3个数值相加除3等于-5,即3个数的平均值。利用矩阵变换方法,将3个最小值变为-5,即将第1列的数都加+7,而将第三列的数都加-7,将结果列表后,再将第一行都加-5,而第三行都加+5,再将结果列表,即得下图所示。 经过两次坐标变换后,故平面度误差值为() f=+--= 205μm25μm

1).直线度和平面度

机 械 加 工 检 验 标 准 及 方 法.目的: .范围: 三.规范性引用文件 四.尺寸检验原则 1.基本原则: 2.最小变形原则: 3.最短尺寸链原则: 4.封闭原则: 5.基准统一原则: 6.其他规定 五.检验对环境的要求 1.温度 2.湿度 3.清洁度 4.振动 5.电压 六.外观检验 1.检验方法

2.检验目距 3.检测光源 4.检测时间 5.倒角、倒圆 7.伤痕 9.凹坑、凸起、缺料、多料、台阶10.污渍11.砂孔、杂物、裂纹12.防护包装

七.表面粗糙度的检验 1.基本要求 2.检验方法: 3.测量方向 4.测量部位 5.取样长度 八.线性尺寸和角度尺寸公差要求 1.基本要求2线性尺寸未注公差 九.形状和位置公差的检验 1.基本要求3.检测方法十?螺纹的检验 1.使用螺纹量规检验螺纹制件 2.单项检验 1^一 .外协加工件的检验规定 1.来料检验 2.成品检验计划十二.判定规则附注: 1.泰勒原则

.目的: 为了明确公司金属切削加工检验标准,使检验作业有所遵循,特制定本标准。 .范围: 本标准适用于切削加工(包括外协、制程、出货过程)各检验特性的检验。在本标准中, 切削加工指的是:车削加工、铣削加工、磨削加工、镗削加工、刨削加工、孔加工、拉削加 工和钳工作业等。本标准规定了尺寸检验的基本原则、对环境的要求、外观检验标准、线性 尺寸公差要求、形位公差要求、表面粗糙度的检验、螺纹的检验和判定准则。 注:本标准不适用于铸造、锻造、钣金、冲压、焊接加工后的检验,其检验标准另行制 定。本标准不拟对长度、角度、锥度的测量方法进行描述 ,可参看相关技术手册;形位公差 的测量可参看GB/T1958-1980;齿轮、蜗杆的检验可参看相关技术手册。 三.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后 所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达 成协议的各方研究是否 可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版 本适用于本 标准 计数抽样程序第1部分:按接收质量限(AQL )检索的 逐批检验抽样计划 GB/T 1958-1980 形状和位置公差 检测规定 GB/T 1957-1981 光滑极限量规 Q/HXB 3000.1抽样检查作业指导书 Q/HXB 2005.1产品的监视和测量控制程序 Q/HXB 2005.15不合格品控制程序 GB/T 2828.1-2003 (ISO 2859-1:1989) GB/T 1804- 2000 (ISO2768-1:104989) 一般公差未注公差的线性和角度尺寸的公差 GB/T 1184 - 1996(ISO2768-2:1989) 形状和位置公差未注公差值

固有频率测定方法

固有频率测定方法 1.概要 固有频率的测定一般采用传递函数测定的方法。这个方法是一种为了测定结构物的各个点中的传递函数,使用数字信号处理技术和FFT算法的方法。 所谓传递函数是指若以系统的输入信号为“X”,从该处输出(应答)信号为“Y”,可以公式:传递函数 H=Y/X (1) 来表示的函数。 振动解析的领域中处理的传递函数,输入X多数为力。输出(应答)Y 是哪一个物理量,则取决于测定。如表1所示那样,传递函数H分别具有固有频率。 表1 传递函数的种类 Y 位移速度加速度 H 顺从性迁移 率 加速度(惯性) 图1所示为测定传递函数顺序。固有频率与传递函数的虚数部中的峰值相一致。此外,除在振幅成为“0”的节点测定的外,在所有的测定点,振幅存在于相同的频率上。 图1 传递函数的测定顺序

以的输入信号 同时采样输入信号和应答 信号 实行采样的波形(信号)的 傅里叶交换 以输入的傅里叶交换实行 应答的傅里交换 2.测定安装方法 以下就传递函数测定法的具有代表性的加振方法——随机加振法、脉冲加振法进行说明。对于试验体的材料、结构、试验目的等,可采用各种各样的加振方法,详细内容请参照参考书。 (1)随机加振法图2 随机加振法随机加振法是一种如图2所示的那样, 在试验体的加振点安装加振机,给与随机噪 声的加振力,测定应答点的加速度,其信号 输入至FFT模拟装置,进行处理的方法。 图3脉冲加振法(2)脉冲加振法 脉冲加振法是一种如图3所示的那样,用 脉冲锤子敲打作为测定对象的试验体的加振点, 给与脉冲状的力,检测这个力的时间变化和应

答点的加速度,进行与上述加振法相同的处理 方法。 此外,脉冲信号的频谱也是平坦的,所以, 随机噪声同样作为输入波形使用。 再者,采用这类测定时有必要预先确认加振力和应答加速度的时间波形、频谱、相关函数。 表2 所示为各种加振法的比较。 表2 加振法的比较 3.加振试验时的注意事项

轨道直线度误差的测量

轨道直线度误差测量 一、实验目的: 1、掌握用水平仪测量垂直平面内的直线度误差的方法。 2、掌握用作图法求直线度误差,用最小区域法评定直线度误差的方法。 3、了解其他测量直线度误差的方法。 二、实验内容: 测量导轨直线度误差或测量平板一对角线的直线度误差。 三、水平仪的结构、工作原理: 1、水平仪的结构 框式水平仪一般是制成矩形框架,它们互相垂直平行,下方框边的上面装有一个水准器(密封的玻璃容器),本实验用i=0.01mm/l000mm水平仪。 2、测量工作原理: 以自然水平面为测量基准。用节距法(又称跨距法)对被测直线进行逐段测量,得到各段的读数然后经过数据处理,就可以用作图法或计算法求出误差值。 四、测量时注意事项 1、使用水平仪要尽量避免人的体温对它的影响。 2、测好一段.应推动板桥向后一测量段滑进,等气泡完全静止下来再读数。水平仪置于板桥上是作为一整体使用,测量过程中二者之间尽量不要发生相对移动。 3、作图力求准确,比例恰当,图面清晰。

五、实验步骤 1.将水平仪、桥板擦干净,将被测面去毛刺并擦净。 2.初步调平被测表面(导轨、平尺、平板、工作台)。 3.用节距法测量。桥板节距由被测长度L划分成若干等分段确定,跨距一般为100~250mm。将水平仪置于桥板上,从一端开始,逐段测量,做到相邻两段首尾相接。为使所作误差曲线图为实际形状误差的一致性,我们从左向右逐段进行测量。第一段的起点称为原点,第一段的末点是第1点,测得的读数表示该段末点相对起点的升降,将水平仪读数记于实验报告相应栏目中,然后将桥板连同水平仪滑移至第二段,使第一段末点与第二段的起点相衔接,就可测得第二点的读数。依此类推,直至测量完毕。 4.对测得值进行数据处理,用作图法求直线度误差f_。 用分度值: i =0.01 mm/m的合象水平仪检测长导轨的直线度,桥板跨距为130mm.测量数据列于下表: 六、数据处理

电气间隙和爬电距离的测量方法

电气间隙和爬电距离的测量方法 爬电现象:在绝缘材料的性能降低时受天气等外界因素如空气湿度大,接连阴天霉雨季节,潮湿环境等使得带电金属部位与绝缘材料产生象水纹样电弧沿着外皮爬的现象,也有点象闪电一样. 爬电原理:两极之间的绝缘体表面有轻微的放电现象,造成绝缘体的表面(一般)呈树枝状或是树叶的经络状放电痕迹,一般这种放电痕迹不是连通两极的,放电一般不是连续的,只是在特定条件下发生,如天气潮湿、绝缘体表面有污秽、灰尘等,时间长了会导致绝缘损坏。 引起爬电现象的原因:绝缘部分表面附着污秽,使绝缘部分绝缘强度下降,在空气潮湿发生爬电。 爬电的本质:绝缘表面电压分布不均匀,造成局部放电。 发生爬电的环境:发生爬电时电弧的长度受污秽的面积大小、空气湿度、电压高低因素影响。在电缆的绝缘部分,绝缘材料的绝缘强度、防污秽附着、加长绝缘“距离”等性能会对爬电现象有影响 电气间隙Clearance 在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。 电气间隙的大小和老化现象无关。电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。因此根据不同的使用场合将过电压分为Ⅰ至Ⅳ四个等级。 爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。此带电区(导体 为圆形时,带电区为环形)的半径,即为爬电距离; 爬电距离

平行度误差平面度误差的测量

任务四平行度误差、平面度误差的测量 【课题名称】 零件的平行度、平面度误差测量 【教学目标与要求】 知识目标 了解平面度误差、平行度误差的检测工具及测量方法。 能力目标 能够正确使用框式水平仪、自准直仪和百分表进行测量,并准确计算误差值。 素质目标 熟悉平面零件形位误差的检测原理、测量工具和使用方法,并能准确计算其误差。 教学要求 能够按照误差要求正确地选择检测工具,并能够掌握测量工具的使用方法,对工件进行准确的测量。 【教学重点】 框式水平仪、自准直仪和百分表的使用,各种形位误差的检测方法。 【难点分析】 平面度测量出9点误差值的调零方法及误差值计算。 【分析学生】 该内容的难度较大,特别是直线度误差值的计算和平面度零位调整比较难以理解,需要多做解释,学生才能够掌握。尤其是零位调整的方法更难懂,一定要把原理讲透。 【教学设计思路】 本次课内容较多,且内容难懂,建议分成4学时,以保证有更多的练习机会,由于实训条件有限,可以分组进行测量,然后按结果来讲述如何计算平行度和平面度的误差值。对于平面度的检测也应先讲测量原理和方法,再给学生实测,最后介绍如何调零位计算误差值,边讲边练再总结提高。本次课教学一定要做好预习工作。 【教学安排】 4学时 先讲后练,以练为主,加强巡视指导。 【教学过程】 一. 复习旧课 在形状和位置误差中,直线度误差在零件中出现比较多,大家是否还能记住这些形位公差的含义呢? 二、导入新课 需要应用什么测量工具来检测零件的直线度、平面度、平行度、呢?对于测量出来的数值又需要进行怎么样的处理才能得出正确的误差值呢?这是本次课程的主要内容。 三、讲授新课 1. 平行度误差的测量 平行度误差是工件的位置误差,一般是指工件两直线之间的平行度偏差值。它影响加工工件的精确度,因此控制平行度误差在允许的范围内就显得更为重要。 平行度误差分线与线和线与面之间的误差两种。 平行度误差的测量主要使用百分表。以一条线或面为基准,将百分表座放在基准上,沿基准来回移动,百分表针的最大值与最小值之差就是平行度误差值。

各种频率测量方法验证-详细

频率测量方法: 1 技巧离散傅立叶方法 设余弦输入信号:)cos()(φω+=t X t x ,其中φ,X 分别为信号的幅值和初相角。对)(t x 以 N 50的采样频率进行采样,则可得采样序列{})(k x : )50cos()(φω +=N k X k x (1) 同时)(t x 可表示为 2 )(*t j t j e x e x t x ωω-+= (2) 由全周傅氏算法,有 ∑-=-+=1 2)(2?N k N k j r e r k x N x π (3) (2)代入(3),考虑到)50(2f ?+=πω,则有 )]1(100)12([5022 * ]100)12([50112 2sin 22sin ?-++-+?-+-+?+=N r N r f N j r N r f N j r e N N x e N N x x ππθθθθ (4) 其中N f 5021?=πθ,N f ) 502(22?+=πθ 令)] 1002(50[ +?=f N j e a π *********************************************************************** α=[y(i) + y(i-2)+sqrt( ((y(i)+y(i-2))^2 – 4y(i-1)^2 ) ]/ (2 * y(i-1)) 1 11 1jb a jd c ++ 其中: )1(21-*=i real a )1(21-*=i imag b a i real i real c +-+=)2()(1 a d i imag i imag d 2)2()(1+ -+= [][][] )1()1(4)2()()2()(222 2 -+-*--+--+=i imag i real i imag i imag i real i real c

直线度误差测量方法的研究

直线度误差测量方法的研究 发表时间:2009-08-11T14:42:23.780Z 来源:《赤子》2009年第10期供稿作者:王锐(齐齐哈尔二机床(集团)有限责任公司,黑龙江齐齐哈尔 [导读] 提出一种测量圆柱体轴线直线度误差的新方案——转位测量法。该法运用误差分离技术有效地提高了测量准确度,且便于大型工件的在线测量。 摘要:提出一种测量圆柱体轴线直线度误差的新方案——转位测量法。该法运用误差分离技术有效地提高了测量准确度,且便于大型工件的在线测量。 关键词:直线度;误差;图解法 提出一种新的直线度误差测量方案,即转位测量法。该法采用一个测量头完成对圆柱体轴线直线度误差的测量,经过数据处理,利用误差分离技术有效地分离出仪器导轨的直线度误差、被测件的直径偏差等,从而大大提高了测量准确度。这一测量方案可实现直线度误差的在线测量。另外,若采用双测头装置进行测量,经过数据处理,还可同时得到仪器导轨的直线度误差及工件的多项形状误差。 1 测量原理 为了能对多项几何要素的直线度误差实现同时测量,可采用图1所示的双测头装置。若仅仅要求测量工件的轴线直线度误差,则只需从测头A(或测头B)中采集测量数据。 图1 测量装置 测量过程中,被测件处于静止状态,测头随测量拖板作轴向移动,每移动一个节距,采集一次数据。设由测头A进行测量,在被测件全长范围内采集信号;然后把工件旋转180°,进行第二次测量采集信号。在采集数据时,必须使两次测量过程中相同序号的采样点处于同一横截面内,即采样截面内。按照上述测量方法,在几个轴向截面(测量截面)内进行测量。一般为简便实用起见,可在两个互相垂直的测量截面内进行测量。至于采样截面的多少,应根据被测件的长度及其测量准确度要求而定。整个测量过程的采样点分布情况见图2。设被测件的轴线直线度误差为f(x),其直径偏差为φ(x),仪器导轨的直线度误差为δ(x),则由测量过程可知SA(x)=f(x)?啄(x)+φ(x)/2 (1) SA(x)=-f(x)?啄(x)+φ(x)/2 (2) 两式相减得 f(x)=[SA(x)-S'A(x)]/2 (3) 由式(3)即可求出被测件实际轴线在一个方向上的直线度误差,这个方向就是与该测量截面平行的方向。 若要同时从测量数据中得出仪器导轨的直线度误差δ(x)、被测件的直径偏差φ(x)及其素线的直线度误差g(x),则必须用如图1所示的双测头装置,且在测量过程中同时从测头A和测头B中采集数据。若将测头B采集的数据记作SB(x),则可得出SB(x)=-f(x)?啄(x)+φ(x)/2 (4) 由式(2)和式(4)得 ?啄(x)=[SB(x)-S'A(x)]/2 (5) 由式(1)和式(4)得 φ(x)=SA(x)+SB(x)(6) 另外,还可得到被测件素线的直线度误差g(x)。 2 数据处理 取(n+1)个采样截面,在两个互相垂直的轴向截面(即测量截面)内进行测量。由所采集的数据,按式(3)分别求出与两测量截面对应平行的方向上的轴线直线度误差fy(x)和fz(x),并由此确定各采样截面的中心o0、o1、…on,设其坐标依次为o0(y0,z0)、o1(y1,z1)、…、on(yn,zn),连接o0、o1、…on则可得到被测件轴线的误差曲线。为保证较高的准确度,采用图解法来评定直线度误差。 3 测量实例 被测件为长840mm的轴,采用转位法进行临床测量,取7个采样截面。设两个互相垂直的测量截面分别为xoy和xoz,在Y坐标方向所采集的数据为SAy(x)和S'Ay(x),在Z坐标方向采集的数据SAz(x)和S'Az(x)。由这些数据,按式(3)可分别求出两个测量方向上时轴线直线度误差fy(x)和fz(x),见表1。 以测量时被测件的旋转轴线为X轴建立直角坐标系,然后依据表1中的fy(x)和fz(x)的数值,在坐标图中确定各采样截面中心所对应的点,如图3所示。作这些点的最小包容圆。此圆直径即为被测轴线的直线度误差f。本例评定结果为f=25.4μm。 如果用传统的双表法测量,测得其轴线直线度误差为35μm。与上述转位法所得测量结果相比,两者之差为9.5μm。这是由于传统的双表测量法所得测量结果中包含了测量装置导轨的直线度误差,所以其值偏大。 4 结论 这里提出的转位测量法,由于运用误差分离技术比较彻底地分离了多项有关误差,如测量装置导轨的直线度误差、被测件的直径偏差等,而且只使用一个传感器,不存在因不同传感器的性能差异而带来的误差,所以大大提高了测量准确度。参考文献 [1]林景凡.互换性与测量技术基础[M].哈尔滨:哈尔滨工程大学出版社,2004.

相关主题
文本预览
相关文档 最新文档