当前位置:文档之家› 2018届高考物理知识点第一轮复习教案15 第六章 碰撞与动量守恒 第1讲 动量和动量定理

2018届高考物理知识点第一轮复习教案15 第六章 碰撞与动量守恒 第1讲 动量和动量定理

第六章碰撞与动量守恒

考点一动量动量定理的理解

1.动量

(1)定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示。

(2)表达式:p=m v。

(3)单位:kg·m/s。

(4)标矢性:动量是矢量,其方向和速度方向相同。

(5)动量、动能、动量变化量的比较

(1)定义:力F 与力的作用时间t 的乘积。

(2)定义式:I =Ft 。

(3)单位:N·s 。

(4)方向:恒力作用时,与力的方向相同。

(5)物理意义:是一个过程量,表示力在时间上积累的作用效果。

3.动量定理

(1)内容:物体所受合外力的冲量等于物体的动量的变化量。

(2)表达式:?????

Ft =p ′-p I =Δp (3)对动量定理的理解

①动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。(这里所说的冲量必须是物体所受的合外力的冲量或者说是物体所受各外力冲量的矢量和。)

②动量定理给出了冲量(过程量)和动量(状态量)变化间的关系。

③现代物理学把力定义为物体动量的变化率:F =Δp Δt (牛顿第二定

律的动量形式)。

[思维诊断]

(1)质量越大的物体,其动量一定越大。( )

(2)动能相同的两个物体,质量大的动量小。( )

(3)动量相同的两个物体,质量大的动能小。( )

(4)一个力作用在物体上,如果物体保持静止,则该力的冲量为零。( )

(5)一个鸡蛋以相同速度落到水泥地面上比落在海绵上容易破是由于水泥地面给鸡蛋的冲量大。 ( )

(6)反冲是动量守恒的体现。( )

答案: (1)× (2)× (3)√ (4)× (5)× (6)√

[题组训练]

1.[动量的理解]关于物体的动量,下列说法中正确的是( )

A .运动物体在任一时刻的动量方向,一定是该时刻的速度方向

B .物体的加速度不变,其动量一定不变

C .动量发生改变,物体所受外力一定变化

D .物体的动量越大,其惯性越大

解析: 动量是矢量,动量的方向与物体的运动方向一致,选项A 正确;物体的加速度不变,说明物体受到的合外力不变,但动量的改变是由于合外力的冲量引起的,合外力不变,合外力的冲量一定不等于零,物体的动量一定变化,选项B 、C 错误;物体的动量大,物体的质量不一定大,因此,动量大的物体其惯性不一定大,选项D 错误。

答案: A

2.[冲量的理解](多选)用水平推力F推放在水平面上的物体,作用时间为t,此过程中物体始终不动。关于此过程中各力的冲量和功,下列说法正确的是()

A.合力的冲量为0B.摩擦力的冲量为Ft

C.推力的冲量为Ft D.合力的功为0

解析:用水平推力F推物体,物体不动,说明合力为0,合力的冲量也为0,选项A、D正确;推力F作用的时间为t,则推力的冲量为Ft,摩擦力与推力等大反向,故摩擦力的冲量大小也为Ft,但方向与F方向相反,选项C正确,选项B错误。

答案:ACD

3.[动量定理的理解]篮球运动员通常伸出双手迎接传来的篮球。接球时,两手随球迅速收缩至胸前,这样做可以()

A.减小球对手的冲量B.减小球对手的冲击力

C.减小球的动量变化量D.减小球的动能变化量

解析:先伸出两手迎接,手接触到球后,两手随球收缩至胸前,可以增加球与手接触的时间,取球的初速度方向为正方向,根据动量

定理-Ft=0-m v得F=m v

t,当时间增大时,作用力就减小,而冲量

和动量变化量、动能的变化量都不变,所以B正确。

答案: B

反思总结要注意区分“合外力的冲量”和“某个力的冲量”,根据动量定理,是“合外力的冲量”等于动量的变化量,而不是“某个力的冲量”等于动量的变化量。这是在应用动量定理解题时经常出错的地方,要引起注意。

考点二动量定理的应用

1.动量定理与牛顿第二定律的区别与联系

(1)从牛顿第二定律出发可以推导出动量定理,因此牛顿第二定律和动量定理都反映了外力作用与物体运动状态变化的因果关系。

(2)牛顿第二定律反映了力与加速度之间的瞬时对应关系;而动量定理反映了合外力的冲量与物体的动量变化之间的关系。

(3)牛顿第二定律只适用于宏观物体的低速运动情况,对高速运动的物体及微观粒子不再适用;而动量定理是普遍适用的。

(4)牛顿第二定律和动量定理都适用于地面参考系,但必须选惯性系。

2.动量定理的两个重要应用

(1)应用I=Δp求变力的冲量

如果物体受到大小或方向改变的力的作用,则不能直接用I=Ft 求变力的冲量,可以求出该力作用下物体动量的变化Δp,等效代换变力的冲量I。

(2)应用Δp=FΔt求动量的变化

例如,在曲线运动中,速度方向时刻在变化,求动量变化(Δp=p2-p1)需要应用矢量运算方法,计算比较复杂,如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。

[题组训练]

1.[用动量定理解释生活现象]人从高处跳到低处时,为了安全,一般都是让脚尖先着地,这是为了()

A.减小地面对人的冲量

B.使人的动量变化减小

C.减小地面对人的冲力

D.增大人对地面的压强,起到安全保护作用

解析:人从高处跳下落地时的速度是一定的,与地面接触的过

程中,人的动量变化是定值,所受到的冲量也是一定的,但脚尖先着地增加了缓冲时间,使得人所受冲力减小,起到安全保护作用,这个过程中人对地面的压强也相应减小。选项C 正确。

答案: C

2.[动量定理的应用]质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来。已知安全带的缓冲时间是

1.2 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的大小为( )

A .500 N

B .600 N

C .1 100 N

D .100 N

解析: 安全带长5 m ,人在这段距离上做自由落体运动,获得速度v =2gh =10 m/s 。受安全带的保护经1.2 s 速度减小为0,对此过程应用动量定理,以向上为正方向,有(F -mg )t =0-(-m v ),则F =m v t +mg =1 100 N ,C 正确。

答案: C

3.[应用动量定理求变力的冲量]如图甲所示,一轻弹簧上端固定,下端悬挂着质量为m 的物体A ,其静止点为O ,然后再用细线在A 下面挂上另一个质量也为m 的物体B (如图乙所示),平衡后将细线剪断,当物体A 弹回到O 点时的速度为v ,而此时物体B 下落的速度为u ,不计空气阻力,则在这段时间里弹簧的弹力对物体A 的冲量大小为( )

A.m v B.mu

C.m(v-u) D.m(v+u)

解析:物体B做自由落体运动,有mgt=mu。

在相同的时间t内物体A弹回到O点,应用动量定理,有

mgt-I=-m v

所以I=m(v+u),选项D正确。

答案: D

4.[应用动量定理求动量的变化量]把一个质量为0.4 kg的小球,以3 m/s的速度水平抛出,经过0.4 s的时间小球落地,则小球的动量变化量的大小为(不计空气阻力,g=10 m/s2)()

A.1.2 kg·m/s B.1.6 kg·m/s

C.2 kg·m/s D.4 kg·m/s

解析:根据动量定理I=Δp得:

Δp=mgt=0.4×10×0.4 kg·m/s=1.6 kg·m/s。

故选项B正确。

答案: B

5.[某一方向动量定理的应用](多选)如图所示,质量为M的小车在光滑的水平面上以速度v0向右匀速运动,一质量为m的小球(m ?M)从高h处自由下落,与小车碰撞后,反弹上升的最大高度仍为h。设球与车之间的动摩擦因数为μ,则小球弹起后的水平速度为()

A.v0B.0

C.2μ2gh D.-v0

解析:由题知M?m,可认为小球与车相互作用时,车的速度保持不变,仍为v0。对小球应用动量定理,在竖直方向可认为碰撞力远大于重力,

有F N·Δt=2m v=2m2gh

在水平方向,有μF N·Δt=m v x

故v x=μF N·Δt

m=2μ2gh

小球在水平方向的最大速度可能等于小车的速度v0,其原因之一是动摩擦因数足够大,使小球获得足够的冲量,达到与小车同速;另一种可能是小球落至车面上由于碰撞力很大,小球与车没有相对位移,在静摩擦力的冲量作用下获得了与小车同样的速度。选项A、C 正确。

答案:AC

方法技巧(1)用动量定理解题的基本思路

(2)对过程较复杂的运动,可分段用动量定理,也可整个过程用

动量定理。

思想方法盘点⑦——“微元法”在动量定理中的应用【方法概述】

微元法就是从某一物理量、物理状态或物理过程中选取一个足够小的单元——微元作为研究对象的研究方法。微元法是物理解题中常用方法之一,在使用微元法解题时,常取时间元Δt、长度元ΔL、面积元ΔS、质量元Δm等。

一截面积为S的竖直放置的水管向上持续喷水。水离开管口的速度为v,喷出的水全部击中一个质量为m的物块的底部,而后水无初速自由落下。物体停在距管口h处的高空不掉下,如图所示。求h的大小。

解析:取极短时间Δt,则此时间内喷出水的质量

Δm=ρS v·Δt,①

设水到达h高处的速度为v1,则

1 2·Δm·v 2=

1

2Δm·v

2

1

+Δm·gh②

设水与物体m相作用的冲量大小为I,由题意及动量定理可知对水有:Δm·v1=I+Δmg·Δt。③

对物体有:mg·Δt=I。④

由①②③④得

mg=ρS vv1-ρS v g·Δt=ρS v(v2-2gh-g·Δt),

由于Δt→0,因而有mg=ρS v v2-2gh。⑤

由⑤得h=v2

2g-

m2g

2ρ2S2v2。

答案:v2

2g-

m2g

2ρ2S2v2

方法技巧微元法解题的思维程序

(1)隔离选择恰当微元作为突破整体研究的对象。微元(可以是一小段线段、圆弧、一小块面积、一个小体积、小质量、一小段时间……)应具有整体对象的基本特征。

(2)将微元模型化(如视作点电荷、质点、匀速直线运动、匀速转动……)并运用相关物理规律,求解这个微元与所求物体的关联。

(3)将一个微元的求解结果推广到其他微元,并充分利用各微元间的对称关系、矢量方向关系、近似极限关系,对各微元的解出结果进行叠加,以得出整体量的合理解答。

[即学即练]

如图所示,在水平光滑的轨道上有一辆质量为300 kg,长度为2.5 m的装料车,悬吊着的漏斗以恒定的速率100 kg/s向下漏原料,装料车以0.5 m/s的速度匀速行驶到漏斗下方装载原料。

(1)为了维持车速不变,在装料过程中需用多大的水平拉力作用于车上才行。

(2)车装完料驶离漏斗下方仍以原来的速度前进,要使它在2 s内停下来,需要对小车施加一个多大的水平制动力。

解析:设在Δt时间内漏到车上的原料质量为Δm,要使这些原

料获得与车相同的速度,需加力为F ,根据动量定理,有

F ·Δt =Δm ·v

所以F =Δm Δt ·v =100×0.5 N =50 N

车装完料的总质量为

M =m 车+Δm Δt ·t =? ??

??300+100×2.50.5 kg =800 kg 对车应用动量定理,有F ′·t ′=0-(-M v )

解得F ′=M v t ′

=800×0.52 N =200 N 答案: (1)50 N (2)200 N

1.(多选)置于水平面上质量为m 的物体,在水平恒力F 作用下,从静止开始经t 1时间速度达到v ,若从这时开始撤去外力,则再经t 2时间物体停止运动。如果在运动过程中受到的阻力是F 阻,根据动量

定理,下列方程正确的是( )

A .(F -F 阻)(t 1+t 2)=0

B .(F -F 阻)t 1=m v

C .F ·t 1-F 阻(t 1+t 2)=0

D .F ·t 1-F 阻·t 2=0

解析: 在t 1时间内,物体在水平方向受到F 和F 阻的作用,初

动量为0,末动量为m v ,由动量定理有(F -F 阻)t 1=m v 。在全过程中F 作用时间为t 1,F 阻作用时间为(t 1+t 2),初动量为0,末动量也为0,根据动量定理,有Ft 1-F 阻(t 1+t 2)=0。选项B 、C 正确。

答案: BC

2.水平飞行的子弹m 穿过光滑水平面上原来静止的木块m 木,子弹在穿过木块过程中( )

A .子弹和木块所受的冲量相同

B .子弹与木块间相互作用力做功的数值相等

C .子弹速度的减少等于木块速度的增加

D .子弹动量的减少等于木块动量的增加

解析: 子弹和木块所受的冲量大小相同,方向相反,所以其冲量不相同。虽然子弹与木块之间的相互作用力大小相等,但子弹的位移大于木块位移,相互作用力做功的数值不等,子弹的质量一般情况下与木块质量不相等,由于子弹和木块所受的冲量大小相同,子弹动量的减少等于木块动量的增加。子弹减小的速度不等于木块增加的速度。选项D 正确。

答案: D

3.(2015·重庆理综)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为 ( ) A.m 2gh t +mg

B .m 2gh t -mg C.m gh t +mg D .m gh

t -mg

解析: 由v 2=2gh 得v =2gh 。对人与安全带作用的过程应用动量定理,则有

(mg -F )t =0-m v ,解得F =m 2gh t +mg ,故A 正确。

答案: A

4.

(多选)如图所示,一颗陨星进入到地球周围的空间中,它的运动轨迹如实线abc 所示,b 为距地球最近点,陨星质量保持不变,不计阻力,图中虚线是以地心为圆心的同心圆,则下列说法正确的有

( )

A .在地球的引力作用下,陨星做曲线运动

B .在b 点,陨星的动量最大

C .在b 点,陨星的动量变化率最大

D .在a 、c 点,陨星动量的变化率最大

解析: 陨星所做的曲线运动,是由于受到地球的引力作用,到达b 点之前一直是引力做正功,陨星的动能增加,到达b 点时动能最

大,p =2mE k ,其动量也最大。由动量定理F ·Δt =Δp ,可知F =Δp Δt ,

即陨星动量的变化率就等于它所受到的引力,可知陨星在b 点的动量变化率最大。选项A 、B 、C 正确。

答案: ABC

课时作业

(本栏目内容,在学生用书中以独立形式分册装订!)

一、选择题(1~5题为单项选择题,6~9题为多项选择题)

1.玻璃杯从同一高度落下,掉在石头上比掉在草地上容易碎,这是由于玻璃杯与石头的撞击过程中()

A.玻璃杯的动量较大

B.玻璃杯受到的冲量较大

C.玻璃杯的动量变化较大

D.玻璃杯的动量变化较快

解析:从同一高度落到地面上时,速度相同,动量相同,与草地或石头接触后,末动量均变为零,因此动量变化量相同。因为玻璃杯与石头的作用时间短,由动量定理Ft=mΔv知,此时玻璃杯受到的力F较大,容易碎,D正确。

答案: D

2.把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着纸带一起运动;若迅速拉动纸带,纸带就会从重物下抽出,这个现象的原因是()

A.在缓缓拉动纸带时,纸带给重物的摩擦力大

B.在迅速拉动纸带时,纸带给重物的摩擦力大

C.在缓缓拉动纸带时,纸带给重物的冲量大

D.在迅速拉动纸带时,纸带给重物的冲量大

解析:在缓缓拉动纸带时,两物体之间的作用力是静摩擦力;在迅速拉动纸带时,它们之间的作用力是滑动摩擦力。由于滑动摩擦力F f=μF N(μ是动摩擦因数),而最大静摩擦力F fm=μm F N(μm是静摩擦因数)且μ≤μm。一般情况下可以认为F f=F fm,即滑动摩擦力F f近

似等于最大静摩擦力F fm。因此,一般情况是缓拉,摩擦力小;快拉,摩擦力大。缓缓拉动纸带时,摩擦力虽小些,但作用时间可以很长,故重物获得的冲量,即动量的改变量可以很大,所以能把重物带动;快拉时,摩擦力虽大些,但作用时间很短,故冲量小,所以重物动量的改变量小。因此选项C正确。

答案: C

3.质量为0.5 kg的钢球从5.0 m高处自由落下,与地面相碰后竖直弹起到达4.05 m高处,整个过程经历2.0 s,则钢球与地面碰撞时受到地面对它的平均作用力为(g=10 m/s2)()

A.5.0 N B.90 N

C.95 N D.100 N

解析:钢球从5.0 m高处落下所用时间t1=2h1

g=1.0 s,与

地面碰前的速度v1=2gh1=10 m/s,钢球与地面碰后的速度v2=

2gh2=9.0 m/s,上升至4.05 m所用时间t2=2h2

g=0.9 s,钢球与

地面碰撞的时间Δt=t-t1-t2=0.1 s,则(F-mg)·Δt=m v2-(-m v1),

解得F=mg+m(v2+v1)

Δt=0.5×10 N+

0.5×(10+9)

0.1N=100 N,选项

D正确。

答案: D

4.在一光滑的水平面上,有一轻质弹簧,弹簧一端固定在竖直墙面上,另一端紧靠着一物体A,已知物体A的质量m A=4 kg,如图所示。现用一水平力F作用在物体A上,并向左压缩弹簧,F做功50 J后(弹簧仍处在弹性限度内),突然撤去外力F,物体从静止开始运动。则当撤去F后,弹簧弹力对A物体的冲量为()

A.5 N·s B.15 N·s

C.20 N·s D.100 N·s

解析:弹簧的弹力显然是变力,因此该力的冲量不能直接求解,可以考虑运用动量定理:I=Δp,即外力的冲量等于物体动量的变化。由于弹簧储存了50 J的弹性势能,我们可以利用机械能守恒求出物体

离开弹簧时的速度,然后运用动量定理求冲量。所以有:E p=1

2m v

2,

I=m v。由以上两式可解得弹簧弹力对A物体的冲量为I=20 N·s。选项C正确。

答案: C

5.

如图所示,质量为m的小球以速度v0水平抛出,恰好与倾角为30°的斜面垂直相碰,其弹回速度的大小与抛出的速度大小相等,求小球与斜面碰撞过程中受到的冲量大小为()

A.m v0B.2m v0

C.3m v0D.6m v0

解析:设小球落至斜面相碰前瞬间的速度为v,由平抛运动的规律,有v·sin 30°=v0,则v=2v0

由动量定理,有

I=Δp=m v′-m v=m v0-(-2m v0)=3m v0。故选项C正确。

答案: C

6.一只小球沿光滑水平面运动,垂直于墙面撞到竖直墙上。小

球撞墙前后的动量变化量为Δp,动能变化量为ΔE。关于Δp和ΔE,下列说法正确的是()

A.若Δp最大,则ΔE也最大

B.若Δp最大,则ΔE一定最小

C.若Δp最小,则ΔE也最小

D.若Δp最小,则ΔE一定最大

解析:当小球原速率返回时,Δp最大,而ΔE=0,选项B正确,A错误;当小球撞墙后速度减为零时,Δp最小,而ΔE最大,选项D正确,C错误。

答案:BD

7.一辆空车和一辆满载货物的同型号的汽车,在同一路面上以相同的速度向同一方向行驶。紧急刹车(即车轮不滚动只滑动)后,下列说法中不正确的是()

A.货车由于惯性大,滑行距离较大

B.货车由于受的摩擦力较大,滑行距离较小

C.两辆车滑行的距离相同

D.两辆车滑行的时间不相同

解析:摩擦力是合外力,根据动量定理,有-μmgt=0-m v,

得t=v

μg,选项D错误;根据动能定理,有-μmgx=0-

1

2m v

2,得x

=v2

2μg,选项A、B错误,选项C正确。

答案:ABD

8.“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下。将蹦极过程简化为人沿竖直方向的运动,从绳恰好伸直到人第一次下降至最低点的过程中,下列分析正确的是

( )

A .绳对人的冲量始终竖直向上

B .人的动量先增大后减小

C .绳对人的拉力始终做负功

D .绳恰好伸直时,绳的弹性势能为零,人的动能最大

解析: 弹性绳的弹力为F =kx ,绳子伸直之后,对人进行受力

分析可知,a =mg -kx m ,当x 0,速度增大;当x >mg k 时,a <0,

速度减小。从绳恰好伸直到人第一次降至最低点的过程中,人的速度先增大后减小,则人的动量和动能都是先增大后减小,绳的弹力方向始终竖直向上,则绳对人的冲量始终竖直向上,绳对人的拉力始终做负功,选项A 、B 、C 正确,选项D 错误。

答案: ABC

9.古时有“守株待兔”的寓言。假设兔子质量约为2 kg ,以15 m/s 的速度奔跑,撞树后反弹的速度为1 m/s ,取兔子初速度方向为正方向,则( )

A .兔子撞树前的动量大小为30 kg·m/s

B .兔子撞树过程中的动量变化量为32 kg·m/s

C .兔子撞树过程中的动量变化的方向与兔子撞树前的速度方向相同

D .兔子受到撞击力的冲量大小为32 N·s

解析: 由题意可知,兔子的初速度v 0=15 m/s ,则兔子撞树前的动量大小为p 1=mv 1=2 kg×15 m/s =30 kg·m/s ,选项A 正确;末速度为v =-1 m/s ,末动量p 2=m v 2=2 kg ×(-1 m/s)=-2 kg·m/s ,兔子撞树过程中的动量变化量为Δp =p 2-p 1=-2 kg·m/s -30 kg·m/s =-32 kg·m/s ,兔子撞树过程中的动量变化量的大小为32 kg·m/s ,选

项B 错误;兔子撞树过程中的动量变化量为负值,说明兔子撞树过程中的动量变化量的方向与兔子撞树前的速度方向相反,选项C 错误;由动量定理可知兔子受到撞击力的冲量为I =m v -m v 0=[2×(-1)-2×15] N·s =-32 N·s ,兔子受到撞击力的冲量大小为32 N·s ,选项D 正确。

答案: AD

二、非选择题 10.

一根质量不计,长0.5 m ,能承受最大拉力为36 N 的绳子,一端固定在天花板上,另一端系一质量为2 kg 的小球,整个装置处于静止状态,如图所示。若要将绳子拉断,求作用在球上的水平冲量的最小值。(取g =10 m/s 2)

解析: 当绳子所受的拉力刚好达到极限强度时,有F T m -mg =m v 2l

又I =m v

故F T m -mg =I 2ml

则I =(F T m -mg )ml =(36-2×10)×2×0.5 N·s =4 N·s 。

答案: 4 N·s

11.一艘帆船在湖面上顺风航行,在风力的推动下做速度为v 0=4 m/s 的匀速直线运动。若该帆船在运动状态下突然失去风力的作用,则帆船在湖面上做匀减速直线运动,经过t =8 s 才可静止。该帆

动量守恒定律,碰撞知识点总结

动量守恒定律,碰撞知识点总结 动量守恒定律 1.守恒条件 (1)系统不受外力或所受外力的合力为零,则系统动量守恒. (2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒. (3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.几种常见表述及表达式 (1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′). (2)Δp=0(系统总动量不变). (3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反). 其(1)的形式最常用,具体到实际应用时又有以下三种常见形式: ①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统). ②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与 各自质量成反比).

③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非 弹性碰撞). 3.理解动量守恒定律:矢量性?瞬时性?相对性?普适性. 4.应用动量守恒定律解题的步骤: (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); (3)规定正方向,确定初、末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明. 碰撞现象 2.弹性碰撞的规律 两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律. 在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与

高中物理《动量守恒定律(2)》优质课教案、教学设计

【教材分析】 前一节已涉及动量守恒定律在物理学史上是如何被提出来的,本节 则以一维情况下两个相互作用的小球为例,根据牛顿第二定律和牛顿第三定律,导出具体的动量守恒定律的表达式。这样的处理,使学生对动量守恒定律的理解更深刻,同时也使学生对知识间的联系有了更深入的理解。 【教学目标】 (1)能运用牛顿第二定律和牛顿第三定律分析碰撞,导出动量守恒的 表达式。 (2)了解动量守恒定律的普遍适用性和牛顿运动定律适用范围的局限 性。 (3)加深对动量守恒定律的理解,进一步练习用动量守恒定律解决生产、生活中的问题。 (4)知道求初、末动量不在一条直线上的动量变化的方法。 【教学重点】掌握动量守恒定律的推导、表达式、适用范围和守恒条件【教学难点】动量守恒定律的理解及守恒条件的判定

【教学思路】首先通过演示实验使学生了解系统相互作用过程中动量守恒,再使学生清楚地理解动量守恒定律的推导过程、守恒 条件及适用范围,即用实验法、推理法、归纳法、举例讲授法。 【教学器材】多媒体、碰撞试验装置。 【教学过程】 新课导入 前面已经学习了动量定理,下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何? 这就是我们今天要介绍的动量守恒定律。它是自然界中最重要最普遍的定律之一。 新课展示 一、动量守恒定律 1.实验探究: 学生分组实验,探究碰撞前后系统的动量关系 2.理论探究:

课件展示:光滑的水平桌面上做匀速运动的两个小球,质量分别为m1 和m2。沿同一直线向相同的方向运动,速度分别是v l 和v2,且v l> v2,(1)两个小球的总动量为多少?一段时间后碰撞,碰后的速度为v1’ 和v2’,(2)则碰撞后的总动量为多少?(3)碰撞前后的总动量p 和p’有什么关系? 引导学生合作探究: 碰撞之前总动量:p=p1+p2 = m1 v l + m2 v2 碰撞之后总动量:p’=p1’+ p2’= m1 v1’+ m2 v2’ 根据牛顿第二定律,碰撞过程中两球的加速度分别是 a1=F1/m1 , a2= F2/m2 (1) 根据牛顿第三定律得F1=-F2 所以m1a1=-m2a2 (2) 又由加速度公式 a1= v1’- v l/t a2= v2’- v2/t (3) 由以上(1)(2)(3)得 m1 v l + m2 v2= m1 v1’+ m2 v2’即p= p’

高中物理-动量守恒定律教案

高中物理-动量守恒定律(一) ★新课标要求 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 ★教学重点 动量的概念和动量守恒定律 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②矢量性:动量的方向与速度方向一致。 师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生

的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 【例1(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒; 思考与讨论: 如图所示,子弹打进与固定于墙壁的弹簧相连的木块, 此系统从子弹开始入射木块到弹簧压缩到最短的过程中,

动量守恒定律碰撞与反冲

动量守恒定律碰撞与反冲Last revision on 21 December 2020

碰撞与反冲 【自主预习】 1.如果碰撞过程中机械能守恒,这样的碰撞叫做________。 2.如果碰撞过程中机械能不守恒,这样的碰撞叫做________。 3.一个运动的球与一个静止的球碰撞,如果碰撞之前球的运动速度与两球心的连线在________,碰撞之后两球的速度________会沿着这条直线。这种碰撞称为正碰,也叫________碰撞。 4.一个运动的球与一个静止的球碰撞,如果之前球的运动速度与两球心的连线不在同一条直线上,碰撞之后两球的速度都会________原来两球心的连线。这种碰撞称为________碰撞。 5.微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做 ________。 6. 弹性碰撞和非弹性碰撞 从能量是否变化的角度,碰撞可分为两类: (1)弹性碰撞:碰撞过程中机械能守恒。 (2)非弹性碰撞:碰撞过程中机械能不守恒。 说明:碰撞后,若两物体以相同的速度运动,此时损失的机械能最大。 7.弹性碰撞的规律 质量为m1的物体,以速度v1与原来静止的物体m2发生完全弹性碰撞,设碰撞后它们的速度分别为v′1和v′2,碰撞前后的速度方向均在同一直线上。 由动量守恒定律得m1v1=m1v′1+m2v′2 由机械能守恒定律得1 2 m1v21= 1 2 m1v′21+ 1 2 m2v′22 联立两方程解得 v′1=m1-m2 m1+m2 v1,v′2= 2m1 m1+m2 v1。 (2)推论 ①若m1=m2,则v′1=0,v′2=v1,即质量相等的两物体发生弹性碰撞将交换速度。惠更斯早年的实验研究的就是这种情况。 ②若m1m2,则v′1=v1,v′2=2v1,即质量极大的物体与质量极小的静止物体发生弹性碰撞,前者速度不变,后者以前者速度的2倍被撞出去。 ③若m1m2,则v′1=-v1,v′2=0,即质量极小的物体与质量极大的静止物体发生弹性碰撞,前者以原速度大小被反弹回去,后者仍静止。乒乓球落地反弹、台球碰到桌壁后反弹、篮球飞向篮板后弹回,都近似为这种情况。 【典型例题】 【例1】在光滑水平面上有三个完全相同的小球,它们成一条直线,2、3小球静止,并靠在一起,1球以速度v0射向它们,如图16-4-2所示。设碰撞中不损失机械能,则碰后三个小球的速度可能是( )

物理选修3-5(碰撞与动量守恒)知识点与习题

碰撞与动量守恒 一、动量和冲量 【例1】质量为m的小球由高为H的、倾角为θ光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大 【例3】一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各是多少 二.动量定理 1.求动量及动量变化的方法。 图1【例1】以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量 变化是多少 【例2】一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 1.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2,在碰撞过程中,地面对钢球的冲量的方向和大小为(D) A.向下,m(v2 - v1)B.向下,m(v2 + v1)C.向上,m(v2 - v1)D.向上,m(v2 + v1) 2.质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I。 2.用动量定理求解相关问题 (1).简解多过程问题。 【例3】一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。试求物体在水平面上所受的摩擦力。 . (2).求解平均力问题 【例4】质量是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为,安全带伸直后长5m,求安全带所受的平均冲量.(g= 10m/s2) (3)、求解曲线运动问题 【例5】以V o =10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球.忽略空气阻力的作用,g取10m/s2.求抛出后第2s末小球速度的大小.

高中物理第一章碰撞与动量守恒第1节碰撞教学案教科版

第1节碰__撞 (对应学生用书页码P1) 一、碰撞现象 1.碰撞 做相对运动的两个(或几个)物体相遇而发生相互作用,运动状态发生改变的过程。 2.碰撞特点 (1)时间特点:在碰撞过程中,相互作用时间很短。 (2)相互作用力特点:在碰撞过程中,相互作用力远远大于外力。 (3)位移特点:在碰撞过程中,物体发生速度突变时,位移极小,可认为物体在碰撞前后仍在同一位置。 试列举几种常见的碰撞过程。 提示:棒球运动中,击球过程;子弹射中靶子的过程;重物坠地过程等。 二、用气垫导轨探究碰撞中动能的变化 1.实验器材 气垫导轨,数字计时器、滑块和光电门,挡光条和弹簧片等。 2.探究过程 (1)滑块质量的测量仪器:天平。 (2)滑块速度的测量仪器:挡光条及光电门。 (3)数据记录及分析,碰撞前、后动能的计算。 三、碰撞的分类 1.按碰撞过程中机械能是否损失分为: (1)弹性碰撞:碰撞过程中动能不变,即碰撞前后系统的总动能相等,E k1+E k2=E k1′+ E k2′。 (2)非弹性碰撞:碰撞过程中有动能损失,即动能不守恒,碰撞后系统的总动能小于碰撞前系统的总动能。 E k1′+E k2′<E k1+E k2。 (3)完全非弹性碰撞:碰撞后两物体黏合在一起,具有相同的速度,这种碰撞动能损失最大。 2.按碰撞前后,物体的运动方向是否沿同一条直线可分为: (1)对心碰撞(正碰):碰撞前后,物体的运动方向沿同一条直线。 (2)非对心碰撞(斜碰):碰撞前后,物体的运动方向不在同一直线上。(高中阶段只研究

正碰)。 (对应学生用书页码P1) 探究一维碰撞中的不变量 1.探究方案方案一:利用气垫导轨实现一维碰撞 (1)质量的测量:用天平测量。 (2)速度的测量:v =Δx Δt ,式中Δx 为滑块(挡光片)的宽度,Δt 为数字计时器显示的 滑块(挡光片)经过光电门的时间。 (3)各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量。 方案二:利用等长悬线悬挂等大小球实现一维碰撞 (1)质量的测量:用天平测量。 (2)速度的测量:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。 (3)不同碰撞情况的实现:用贴胶布的方法增大两球碰撞时的能量损失。 方案三:利用小车在光滑桌面上碰撞另一静止小车实现一维碰撞。 (1)质量的测量:用天平测量。 (2)速度的测量:v =Δx Δt ,Δx 是纸带上两计数点间的距离,可用刻度尺测量。Δt 为小 车经过Δx 所用的时间,可由打点间隔算出。 2.实验器材 方案一:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。 方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等。 方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。 3.实验步骤 不论采用哪种方案,实验过程均可按实验方案合理安排,参考步骤如下: (1)用天平测相关质量。 (2)安装实验装置。 (3)使物体发生碰撞。 (4)测量或读出相关物理量,计算有关速度。 (5)改变碰撞条件,重复步骤(3)、(4)。

动量守恒弹性碰撞知识点

动量守恒弹性碰撞知识点 一、不同类型的碰撞 (1)非弹性碰撞:碰撞过程中物体往往会发生形变、发热、发声,一般会有动能损失.(2)完全非弹性碰撞:碰撞后物体结合在一起,动能损失最大. (3)弹性碰撞:碰撞过程中形变能够完全恢复,不发热、发声,没有动能损失. 二、弹性碰撞的实验研究和规律 质量m1的小球以速度v1与质量m2的静止小球发生弹性碰撞.根据动量守恒和动能守恒, 得m1v1=m1v1′+m2v2′,1 2 m1v21= 1 2 m1v′21+ 1 2 m2v′22 碰后两球的速度分别为:v′1=m1-m2v1 m1+m2, v′2= 2m1v1 m1+m2 ①若m1>m2,v1′和v2′都是正值,表示v1′和v2′都与v1方向相同.(若m1?m2,v1′=v1,v2′=2v1,表示m1的速度不变,m2以2v1的速度被撞出去) ②若m1

4.对于弹性碰撞,碰撞前后无动能损失;对非弹性碰撞,碰撞前后有动能损失;对于完全非弹性碰撞,碰撞前后动能损失最大. 四、碰撞过程的分析 1.判断依据 在所给条件不足的情况下,碰撞结果有各种可能,但不管哪种结果必须同时满足以下三条:(1)系统动量守恒,即p1+p2=p′1+p′2. (2)系统动能不增加,即E kl+E k2≥E′kl+E′k2或p21 2m1+ p22 2m2 ≥ p′21 2m1 + p′22 2m2 . (3)符合实际情况,如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞.碰撞后,原来在前的物体的速度一定增大,且原来在前的物体速度大于或等于原来在后的物体的速度,即v′前≥v′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.爆炸与碰撞的异同 (1)共同点:相互作用的力为变力,作用力很大,作用时间极短,均可认为系统满足动量守恒. (2)不同点:爆炸有其他形式的能转化为动能,所以动能增加;弹性碰撞时动能不变,而非弹性碰撞时通常动能要损失,动能转化为内能,动能减小.

动量守恒定律教学设计

《动量守恒定律》教学设计 物理组梁永 一、教材分析 地位与作用 本节课的内容是全日制普通高级中学物理第二册(人教版)第一章第三节。 本节讲述动量守恒定律,它既是本章的核心内容,也是整个高中物理的重点内容。它是在学生学习了动量、冲量和动量定理之后,以动量定理为基础,研究有相互作用的系统在不受外力或所受合外力等于零时所遵循的规律。它是动量定理的深化和延伸,且它的适用范围十分广博。 动量守恒定律是高中物理阶段继牛顿运动定律、动能定理以及机械能守恒定律之后的又一严重的解决问题的基本工具。动量守恒定律对于宏观物体低速运动适用,对于微观物体高速运动同样适用;不仅适用于两个物体组成的系统,也适用于多个物体组成的系统。因此,动量守恒定律不仅在动力学领域有很大的应用,在日后的物理学领域如原子物理等方面都有着广博的应用,为解决物理问题的几大主要方法之一。因此,动量守恒定律在教学当中有着非常严重的地位。 二、学情分析 学生在前面的学习当中已经掌握了动量、冲量的相关知识,在学习了动量定理之后,对于研究对象为一个物体的相关现象已经能够做出比较确凿的解释,并且学生已经初步具备了动量的观念,为以相对较为繁复的由多个物体构成的系统为研究对象的一类问题做好了知识上的准备。 碰撞、爆炸等问题是生活中比较多见的一类问题,学生对于这部分现象比较感兴趣,理论和实际问题在这部分能够很好地结合在一起。学生在前期的学习和实践当中已经具备了一定的分析能力,为动量守恒定律的推导做好了能力上的准备。

从实验导入,激发学生求知欲,对于这部分的相关知识,学生具备了一定的主动学习意识。 三、教学目标、重点、难点、关键 (一)教学目标 1.知识与技能:理解动量守恒定律的确切含义和表达式,能用动量定理和牛顿第 三定律推导出动量守恒定律,掌握动量守恒定律的适用条件。 2.过程与方法:分析、推导并应用动量守恒定律 3.情感态度与价值观:培养学生实事求是的科学态度和严格务实的学习方法。 (二)重点、难点、关键 重点:动量守恒定律的推导和守恒条件 难点:守恒条件的理解 关键:应用动量定理分析四、设计理念 在教学活动中,充分体现学生的主体地位,积极调动学生的学习热情,让学生在学习过程当中体会胜利的喜悦,渗透严格务实的科学思想;同时,教师发挥自身的主导作用,引导学生在学习探究活动当中找到正确的分析方向, 五、教学流程设计教学方法 分析归纳法、质疑讨论法、多媒体展示教学流程(一)引入新课 回顾动量定理的内容和表达式,指出动量定理的研究对象为一个物体。质疑:当物体相互作用时,情况又怎样呢?(二)新课教学 1、分析教材中实验部分,对比多媒体展示的实验,总结通过实验得到的相关结论。

动量守恒定律的应用教案

动量守恒定律的应用 一、教学目标 1.学会分析动量守恒的条件。 2.学会选择正方向,化一维矢量运算为代数运算。 3.会应用动量守恒定律解决碰撞、反冲等物体相互作用的问题(仅限于一维情况),知道应用动量守恒定律解决实际问题的基本思路和方法。 二、重点、难点分析 1.应用动量守恒定律解决实际问题的基本思路和方法是本节重点。 2.难点是矢量性问题与参照系的选择对初学者感到不适应。 三、教具 1.碰撞球系统(两球和多球); 2.反冲小车。 四、教学过程 本节是继动量守恒定律理论课之后的习题课。 1.讨论动量守恒的基本条件 例1.在光滑水平面上有一个弹簧振子系统,如图所示,两振子的质量分别为m 1和m 2 。 讨论此系统在振动时动量是否守恒? 分析:由于水平面上无摩擦,故振动系统不受外力(竖直方向重力与支持力平衡),所以此系统振动时动量守恒,即向左的动量与向右的动量大小相等。 例2.承上题,但水平地面不光滑,与两振子的动摩擦因数μ相同,讨论m 1=m 2 和m 1 ≠m2 两种情况下振动系统的动量是否守恒。 分析:m 1和m 2 所受摩擦力分别为f 1 =μm 1 g和f2=μm2g。由于振动时两振子的运动方向 总是相反的,所以f 1和f 2 的方向总是相反的。 板书画图:

对m 1和m 2 振动系统来说合外力∑F外=f 1 +f2,但注意是矢量合。实际运算时为 板书:∑F外=μm 1 g-μm2g 显然,若m 1=m 2 ,则∑F外=0,则动量守恒; 若m 1 ≠m2,则∑F外≠0,则动量不守恒。 向学生提出问题: (1)m1=m2时动量守恒,那么动量是多少? (2)m1≠m2时动量不守恒,那么振动情况可能是怎样的? 与学生共同分析: (1)m1=m2时动量守恒,系统的总动量为零。开始时(释放振子时)p=0,此后振动时,当p1和p2均不为零时,它们的大小是相等的,但方向是相反的,所以总动量仍为零。 数学表达式可写成 m1v1=m2v2 (2)m1≠m2时∑F外=μ(m1-m2)g。其方向取决于m1和m2的大小以及运动方向。比如m1>m2, 一开始m 1向右(m 2 向左)运动,结果系统所受合外力∑F外方向向左(f 1 向左,f 2 向右,而且f 1 > f2)。结果是在前半个周期里整个系统一边振动一边向左移动。 进一步提出问题: 在m 1=m 2 的情况下,振动系统的动量守恒,其机械能是否守恒? 分析:振动是动能和弹性势能间的能量转化。但由于有摩擦存在,在动能和弹性势能往复转化的过程中势必有一部分能量变为热损耗,直至把全部原有的机械能都转化为热,振动停止。所以虽然动量守恒(p=0),但机械能不守恒。(从振动到不振动) 2.学习设置正方向,变一维矢量运算为代数运算 例3.抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g 仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。 分析:手雷在空中爆炸时所受合外力应是它受到的重力G=(m 1 +m2)g,可见系统的动量并不守恒。但在水平方向上可以认为系统不受外力,所以在水平方向上动量是守恒的。 强调:正是由于动量是矢量,所以动量守恒定律可在某个方向上应用。 那么手雷在以10m/s飞行时空气阻力(水平方向)是不是应该考虑呢? (上述问题学生可能会提出,若学生不提出,教师应向学生提出此问题。) 一般说当v=10m/s时空气阻力是应考虑,但爆炸力(内力)比这一阻力大的多,所以这一瞬间空气阻力可以不计。即当内力远大于外力时,外力可以不计,系统的动量近似守恒。 板书:

物理选修35碰撞与动量守恒知识点与习题

碰撞与动量守恒 一、动量与冲量 【例1】质量为m的小球由高为H的、倾角为θ光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各就是多大? 【例3】一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各就是多少? 二、动量定理 1、求动量及动量变化的方法。 图1 【例1】以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变 化就是多少? 【例2】一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 1.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2,在碰撞过程中,地面对钢球的冲量的方向与大小为(D) A.向下,m(v2-v1) B.向下,m(v2+v1)C、向上,m(v2-v1)D.向上,m(v2+v1) 2、质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I。 2、用动量定理求解相关问题 (1).简解多过程问题。 【例3】一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。试求物体在水平面上所受的摩擦力。 . (2)、求解平均力问题 【例4】质量就是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中、已知弹性安全带缓冲时间为1、2s,安全带伸直后长5m,求安全带所受的平均冲量、( g= 10m/s2) (3)、求解曲线运动问题 【例5】以V o =10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球、忽略空气阻力的作用,g取10m/s2、求抛出后第2s末小球速度的大小、

高中物理 第一章 碰撞与动量守恒 第一节 物体的碰撞教学案 粤教版选修35

第一节 物体的碰撞 对应学生用书页码P1 1.碰撞是力学的基本问题之一,著名的科学家伽利略、牛顿等都先后进行了一系列的实验,从最初对一些现象尚无法作出解释,到逐渐归纳成系统的理论,总结出碰撞的规律,直至明确提出运动量守恒的基本思想,都为后来的动量守恒定律奠定了基础。 2 .20世纪30年代以后,由于加速器技术和探测技术的发展,通过高能粒子的碰撞,实验物理学家相继发现了许多新粒子。 3.物体间碰撞的形式多种多样。如图1-1-1甲所示,两小球碰撞时的速度沿着连心线的方向,这种碰撞称为正碰,如图1-1-1乙所示,两球碰撞前的相对速度不在连心线上,这种碰撞称为斜碰。 图1-1-1 4.碰撞的最主要特点是:相互作用时间短,作用力变化快和作用力峰值大等,因而其他外力可以忽略不计。 碰撞是生活中常见的现象,两节火车车厢之间的挂钩靠碰撞连接,台球由于两球的碰撞而改变运动状态,微观粒子之间更是由于相互碰撞而改变能量,甚至使得一种粒子转化为另一种粒子,物体在碰撞中遵循什么物理规律呢? 本章我们将从历史上的碰撞实验出发,认识各种碰撞的形式,探究碰撞的规律—动量守恒定律,从守恒和对称的关系中感受物理学的和谐美。

5.如果碰撞过程中系统动能守恒,这样的碰撞叫做弹性碰撞。如果碰撞过程中系统动能不守恒,这样的碰撞叫做非弹性碰撞,如果两个物体碰撞后合为一体具有共同的速度,这样的碰撞叫做完全非弹性碰撞。 对应学生用书页码P1 对碰撞现象的研究 1.碰撞现象 两个或两个以上有相对速度的物体相遇时,在很短的时间内它们的运动状态发生显著变化,物体间相互作用的过程叫碰撞。 2.碰撞的特点 (1)作用时间极短,相互作用力变化很快,平均作用力很大;相互作用力远大于其他外力,其他外力可以忽略不计。 (2)碰撞过程是在一瞬间发生的,作用时间极短,所以可以忽略物体的位移,可以认为物体在碰撞前后仍在同一位置。 3.碰撞的分类 按碰撞过程的能量损失情况可分为完全弹性碰撞、非弹性碰撞、完全非弹性碰撞。 (1)完全弹性碰撞:任何两个小球碰撞时都会发生形变,若两球碰撞后形变能完全恢复,并没有能量损失,碰撞前后两小球构成的系统的动能相等,我们称这种碰撞为完全弹性碰撞。 (2)非弹性碰撞:若两球碰撞后它们的形变不能完全恢复原状,这时将有一部分动能最终会转变为内能,碰撞前后系统的动能不再相等,我们称这种碰撞是非弹性碰撞。 (3)完全非弹性碰撞:如果碰撞后完全不反弹,两球成为一个整体,这种碰撞则是完全非弹性碰撞。 4.对弹性碰撞和非弹性碰撞的理解 弹性碰撞和非弹性碰撞可以从形变和动能两个角度进行理解。 (1)若两个物体发生碰撞时形变属于弹性的,碰后能够恢复,碰撞过程中只是发生了动能和弹性势能之间的相互转化,碰撞前后两小球构成的系统的动能不可能损失,则两物体间发生了完全弹性碰撞。 (2)若两个物体发生碰撞时形变属于非弹性的,碰后不能够恢复原状,碰撞过程中除发生动能和弹性势能之间的相互转化外,碰撞前后系统的动能不再相等,则两物体间的碰撞为非弹性碰撞;若两个物体碰撞后合为一体,形变完全不能恢复,此时损失的动能最大。 (1)物理学家所研究的碰撞,并不限于物体直接接触的情况。分子、原子、基本粒子等微观粒子不直接接触,但相互以力作用着,并影响彼此的运动,这种情况也叫做碰撞。 (2)小到微观粒子,大到生活中宏观物体,再到宇宙天体,碰撞是自然界中最常见的物

【2013真题汇编】第18专题 碰撞与动量守恒定律

第十七专题 碰撞与动量守恒定律 【 2013福建卷30 (2) 】将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在及短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是 。(填选项前的事母) A.0m v M B. 0M v m C. 0M v M m - D. 0m v M m - 【答案】D 【解析】根据动量守恒定律得:0)(0=--mv v m M ,所以火箭模型获得的速度大小是m M m v v -=0,选项D 正确。 【2013山东 38(2)】如图所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为kg 2=A m 、kg 1=B m 、kg 2=C m 。开始时C 静止,A 、B 一起以s /m 5=0v 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞。求A 与C 发生碰撞后瞬间A 的速度大小。 解析:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得 C C A A A v m v m v m +=0 A 与 B 在摩擦力作用下达到共同速度,设共同速度为v AB , 由动量守恒定律得 AB B A B A A v m m v m v m )+(=+0 A 与 B 达到共同速度后恰好不再与 C 碰撞,应满足C AB v v = 联立上式,代入数据得 s /m 2=A v 【2013江苏 12 C (3)】如图所示,进行太空行走的宇航员A 和B 的质量分别为80kg 和100kg ,他们携手远离空间站,相对空间站的速度为0。 1m/ s 。 A 将B 向空间站方向轻推后,A 的速度变为0。2m/ s ,求此时B 的速度大小和方向。

最新选修3-5动量守恒定律知识点

选修3-5 动量守恒定律知识点 动量守恒定律、碰撞、 反冲现象知识点归纳总结 一.知识总结归纳 1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。 2. 动量守恒定律的条件: (1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。 (2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。 (3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。 3. 动量守恒定律应用中需注意: (1)矢量性:表达式m1v1+m2v2=中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。 (2)系统性:即动量守恒是某系统内各物体的总动量保持不变。 (3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。 (4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物). 4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。 (1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。例如:钢球、玻璃球、微观粒子间的碰撞。 (2)一般碰撞——碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失.例如:木制品、橡皮泥球的碰撞。 (3)完全非弹性碰撞——碰撞结束后,形变完全保留,通常表现为碰后两物体合二为一,以同一速度运动,碰撞前后系统的总动量相等,动能损失最多。上述三种情况均不含其它形式的能转化为机械能的情况。 一维弹性碰撞的普适性结论: 在一光滑水平面上有两个质量分别为、的刚性小球A和B,以初速度、运动,若它们能发生碰撞(为一维弹性碰撞),碰撞后它们的速度分别为和。我们的任务是得出用、、、表达和的公式。 、、、是以地面为参考系的,将A和B看作系统。 由碰撞过程中系统动量守恒,有……① 有弹性碰撞中没有机械能损失,有……② 由①得 由②得 将上两式左右相比,可得 即或……③ 碰撞前B相对于A的速度为,碰撞后B相对于A的速度为,同理碰撞前A相对于B的速度为,碰撞后A相对于B的速度为,故③式为或, 其物理意义是: 碰撞后B相对于A的速度与碰撞前B相对于A的速度大小相等,方向相反; 碰撞后A相对于B的速度与碰撞前A相对于B的速度大小相等,方向相反; 故有:

高中物理-学习并验证碰撞中的动量守恒定律教案

高中物理-学习并验证碰撞中的动量守恒定律教案 教学目标: 1、知道动量守恒定律的内容,掌握动量守恒定律成立的条件,并在具体问题中判断动量是否守恒。 2、学会沿同一直线相互作用的两个物体的动量守恒定律的推导。 3、知道动量守恒定律是自然界普遍适用的基本规律之一。 教学重点: 动量守恒定律及其守恒条件的判定。 教学难点: 对动量守恒定律条件的掌握。 教具准备:斜槽、小球等。 教学过程 (一)引入新课 前面已经学习了动量定理,那么我们首先回顾一下动量定理的定义:物体所受合力的冲量等于物体的动量变化。表达式为:Ft=mv′-mv=p′-p,或Ft=△p 由此看出冲量是力在时间上的积累效应。动量定理公式中的F 是研究对象所受的包括重力在内的所有外力的合力。它可以是恒力,也可以是变力。当合外力为变力时,F 是合外力对作用时间的平均值。p 为物体初动量,p′为物体末动量,t 为合外力的作用时间。 下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何? (二)以两球发生碰撞为例讨论“引入”中提出的问题,进行理论推导。 画图: 设想水平桌面上有两个匀速运动的球,它们的质量分别是1m 和2m ,速度分别是1v 和2v ,而且21v v >。则它们的总动量(动量的矢量和)。经过一定时间1m 追上2m ,并与之发生碰撞,设碰后二者的速度分别为'1v 和' 2v ,此时它们的动量的矢量和,即总动量'+'='+'='221121v m v m p p p 。 板书:221121v m v m p p p +=+= '+'='+'='221121v m v m p p p 下面从动量定理和牛顿第三定律出发讨论p 和p '有什么关系.设碰撞过程中两球相互作用力分别是1F 和2F ,力的作用时间是t .根据动量定理,1m 球受到的冲量是11111v m v m t F -' =;

动量守恒定律-碰撞问题试卷

动量守恒定律-碰撞问题试卷

考点23动量守恒定律碰撞问题考点名片 考点细研究:(1)动量守恒定律处理系统内物体的相互作用;(2)碰撞、打击、反冲等“瞬间作用”问题。其中考查到的如:2016年全国卷Ⅰ第35题(2)、2016年全国卷Ⅲ第35题(2)、2016年天津高考第9题(1)、2015年福建高考第30题(2)、2015年北京高考第17题、2015年山东高考第39题(2)、2014年重庆高考第4题、2014年福建高考第30题(2)、2014年江苏高考第12题C(3)、2014年安徽高考第24题、2013年天津高考第2题、2013年福建高考第30题等。高考对本考点的考查以识记、理解为主,试题难度不大。 备考正能量:预计今后高考仍以选择题和计算题为主要命题形式,以物理知识在生活中的应用为命题热点,灵活考查动量守恒定律及其应用,难度可能加大。 一、基础与经典 1. 如图所示,在光滑水平面上,用等大反向的力F1、F2分别同时作用于A、B两个静止的物体上。已知m A

答案 A 解析选取A、B两个物体组成的系统为研究对象,根据动量定理,整个运动过程中,系统所受的合外力为零,所以动量改变量为零。初始时刻系统静止,总动量为零,最后粘合体的动量也为零,即粘合体静止,选项A正确。 2.关于系统动量守恒的条件,下列说法正确的是() A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统动量就不守恒 C.只要系统所受的合外力为零,系统动量就守恒 D.系统中所有物体的加速度为零时,系统的总动量一定守恒 答案 C 解析动量守恒的条件是系统不受外力或所受合外力为零,与系统内是否存在摩擦力无关,与系统中物体是否具有加速度无关,故A、B选项错误,C选项正确;所有物体加速度为零时,各物体速度恒定,动量恒定,总动量只能说不变,不能说守恒,D选项错误。 3. 质量为m的甲物块以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定在甲物块上。另一质量也为m的乙物块以4 m/s的速度与甲相向运动,如图所示。则() A.甲、乙两物块在压缩弹簧过程中,由于弹力作用,系统动量不守恒 B.当两物块相距最近时,甲物块的速率为零 C.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s,也可能为0

高中物理知识点总结:动量守恒定律知识讲解

一. 教学内容: 第十六章动量守恒定律 1. 实验:探究碰撞中的不变量 2. 动量守恒定律(一) 3. 动量守恒定律(二) 二. 知识要点: 1. 理解碰撞过程中动量守恒的探究过程。 2. 理解动量守恒定律的理论推导过程,理解动量守恒的意义,记住动量守恒定律的三种表达式,会应用动量守恒解相关问题。 三. 重难点解析: 1. 碰撞中守恒量的探究 实验的基本思路 我们只研究最简单的情况?D?D两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。这种碰撞叫做一维碰撞。 与物体运动有关的物理量可能有哪些呢?在一维碰撞的情况下只有物体的质量和物体的速度。设两个物体的质量分别为m2,碰撞前的速度分别为v1、v v。如果速度与我们设定的方向一致,取正值,否则取负值。 现在的问题是,碰撞前后哪个物理量可能是不变的?质量是不变的,但质量并不描述物体的运动状态,不是我们追寻的“不变量”。速度在碰撞前后是变化的,但一个物体的质量与它的速度的乘积是不是不变量?如果不是,那么,两个物体各自的质量与自己的速度的乘积之和是不是不变量?也就是说,关系式v1 v2=v m2 是否成立? 或者,各自的质量与自己的速度的二次方的乘积之和是不变量?也就是说,关系式v m2 =v m2 是否成立?

也许,两个物体的速度与自己质量的比值之和在碰撞前后保持不变?也就是说,关系式 =是否成立? 也许…… 碰撞可能有很多情形。例如,两个质量相同的物体相碰撞,两个质量相差悬殊的物体相碰撞,两个速度大小相同、方向相反的物体相碰撞,一个运动物体与一个静止物体相碰撞……两个物体的质地不同,碰撞的情形也不一样。例如两个物体碰撞时可能碰后分开,也可能粘在一起不再分开…我们寻找的不变量必须在各种碰撞的情况下都不改变,这样才符合要求。 需要考虑的问题 实验中首要的问题是如何保证碰撞是一维的,即如何保证两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动。此外,还要考虑怎样测量物体的质量、怎样测量两个物体在碰撞前后的速度。 质量可以用天平测量,本实验要解决的主要问题是怎样保证物体沿同一直线运动和怎样测量物体的速度。 关于实验数据的处理,下面的表格可供参考。填表时要注意: 如果小球碰撞后运动的速度与原来的方向相反,应该怎样记录?

(统编版)2020高中物理第一章碰撞与动量守恒1.4反冲运动教案粤教版选修3_

1.4 反冲运动 课堂互动 三点剖析 一、反冲运动 1.反冲运动的产生是系统内力作用的结果,两个相互作用的物体A 、B 组成的系统,A 对B 的作用力使B 获得某一方向的动量,B 对A 的反作用力使A 获得相反方向的动量,从而使A 沿着与B 的运动方向相反的方向做反冲运动. 2.实际遇到的反冲运动问题通常有以下三种: (1)系统不受外力或所受外力之和为零,满足动量守恒的条件,可以用动量守恒定律解决反冲运动问题. (2)系统虽然受到外力作用,但内力远远大于外力,外力可以忽略,也可以用动量守恒定律解决反冲运动问题. (3)系统虽然所受外力之和不为零,系统的动量并不守恒,但系统在某一方向上不受外力或外力在该方向上的分力之和为零,则系统的动量在该方向上的分量保持不变,可以用该方向上动量守恒解决反冲运动问题. 3.动量守恒定律研究的是相互作用的物体总动量问题,如果合外力为零,则总动量守恒,但每个物体的动量都要变化,这是由于相互作用的内力对各个物体都有冲量,据动量定理Ft=Δp,F=t p ?,如果Δp 为某个常数,若时间t 非常小,则F 很大,这时候即使合外力不为零,由于外力远小于内力,可以忽略外力的影响,认为系统动量守恒;但如果时间t 达不到非常小,内力不是非常大,不满足外力远小于内力,则不能认为动量守恒.例如两物体碰撞后结合在一起,由于作用时间极短,即使在不光滑的平面上,也认为动量守恒,但如果两物体间有一根轻质弹簧,两物体通过弹簧相互作用而达到共同速度,这个作用时间就比较长,不满足内力远大于外力的条件,就不能认为动量守恒了. 二、爆炸 爆炸的过程满足动量守恒的条件,只是在炮弹炸开的那一瞬间,才有内力远大于外力,当爆炸结束以后就不再存在这个很大的内力,则系统动量不再守恒.前述碰撞过程机械能不变或有损失,不可能增大,但爆炸过程机械能可能会增加,这是因为火药爆炸产生的能量有可能转化为机械能. 当一个静止的物体爆炸后,炸成两块的质量分别是m 1、m 2,速度分别是v 1、v 2,爆炸消耗的化学能E 全部转化成动能,则有:m 1v 1=m 2v 2 E=2222112 121v m v m + 各个击破 【例1】 如图1-4-2所示,质量为M 的炮车静止在水平面上,炮筒与水平方向夹角为θ,当炮车发射一枚质量为m 、对地速度为v 0的炮弹后,炮车的反冲速度为________________. 图1-4-2 解析:在炮弹发射过程中,炮车所受阻力远小于内力,故系统在水平方向动量守恒. 设炮车速度为v ,则由水平方向动量守恒可得0=Mv+mv 0cosθ

相关主题
文本预览
相关文档 最新文档