当前位置:文档之家› 最新高考物理一轮复习 专项训练 动量守恒定律

最新高考物理一轮复习 专项训练 动量守恒定律

最新高考物理一轮复习 专项训练 动量守恒定律
最新高考物理一轮复习 专项训练 动量守恒定律

最新高考物理一轮复习 专项训练 动量守恒定律

一、高考物理精讲专题动量守恒定律

1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:

(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2

014

mv ;(2) 0mv 【解析】 【详解】

解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以

2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速

度相等,有:2

12

v v =

而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:0

12

v v =

,20 v v = 所以第一次碰撞中的机械能损失为:2

2

22012011

11222

2

24

E m v m v mv mv ?=--=g

g g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=

2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).

(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值;

(3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<

【解析】

⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-

解得:v =

=4m/s

在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =

解得:F =

-mg =22N ,为正值,说明方向与假设方向相同。

⑵根据机械能守恒定律可知,物块A 与物块B 碰撞前瞬间的速度为v 0,设碰后A 、B 瞬间一起运动的速度为v 0′,根据动量守恒定律有:mv 0=2mv 0′ 解得:v 0′=

=3m/s

设物块A 与物块B 整体在粗糙段上滑行的总路程为s ,根据动能定理有:-2μmgs =0-

解得:s =

=4.5m

所以物块A 与物块B 整体在粗糙段上滑行的总路程为每段粗糙直轨道长度的=45倍,即

k =45

⑶物块A 与物块B 整体在每段粗糙直轨道上做匀减速直线运动,根据牛顿第二定律可知,其加速度为:a =

=-μg =-1m/s 2

由题意可知AB 滑至第n 个(n <k )光滑段时,先前已经滑过n 个粗糙段,根据匀变速直线运动速度-位移关系式有:2naL =-

解得:v n =

m/s (其中n =1、2、3、 (44)

【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。 【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相关数学知识辅助分析、求解。

3.牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小.

【答案】v0v0

【解析】设A、B球碰撞后速度分别为v1和v2

由动量守恒定律得2mv0=2mv1+mv2

且由题意知=

解得v1=v0,v2=v0

视频

4.如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线、同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m

的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)

4v

【答案】0

【解析】

【分析】

在抛货物的过程中,乙船与货物组成的动量守恒,在接货物的过程中,甲船与货物组成的系统动量守恒,在甲接住货物后,甲船的速度小于等于乙船速度,则两船不会相撞,应用动量守恒定律可以解题.

【详解】

设抛出货物的速度为v,以向右为正方向,由动量守恒定律得:乙船与货物:

12mv0=11mv1-mv,甲船与货物:10m×2v0-mv=11mv2,两船不相撞的条件是:v2≤v1,解得:v≥4v0,则最小速度为4v0.

【点睛】

本题关键是知道两船避免碰撞的临界条件是速度相等,应用动量守恒即可正确解题,解题时注意研究对象的选择以及正方向的选择.

5.如图所示,在光滑的水平面上有一长为L的木板B,其右侧边缘放有小滑块C,与木板B完全相同的木板A以一定的速度向左运动,与木板B发生正碰,碰后两者粘在一起并继续向左运动,最终滑块C刚好没有从木板A上掉下.已知木板A、B和滑块C的质量均为m,C与A、B之间的动摩擦因数均为μ.求:

(1)木板A 与B 碰前的速度v 0; (2)整个过程中木板B 对木板A 的冲量I . 【答案】(1)2

(2)-

,负号表示B 对A 的冲量方向向右

【解析】(1)木板A 、B 碰后瞬时速度为v 1,碰撞过程中动量守恒,以A 的初速度方向为正方向,由动量守恒定律得mv 0=2mv 1.

A 、

B 粘为一体后通过摩擦力与

C 发生作用,最后有共同的速度v 2,此过程中动量守恒,以A 的速度方向为正方向,由动量守恒定律得2mv 1=3mv 2. C 在A 上滑动过程中,由能量守恒定律得 -μmgL =·3mv -·2mv . 联立以上三式解得v 0=2

.

(2)根据动量定理可知,B 对A 的冲量与A 对B 的冲量等大反向,则I 的大小等于B 的动量变化量,即I =-mv 2=-

,负号表示B 对A 的冲量方向向右。

6.(20分)如下图所示,光滑水平面MN 左端挡板处有一弹射装置P ,右端N 与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ 的长度L=8m ,皮带轮逆时针转动带动传送带以v = 2m/s 的速度匀速转动。MN 上放置两个质量都为m = 1 kg 的小物块A 、B ,它们与传送带间的动摩擦因数μ = 0.4。开始时A 、B 静止,A 、B 间压缩一轻质弹簧,其弹性势能E p = 16 J 。现解除锁定,弹开A 、B ,并迅速移走弹簧。取g=10m/s 2

(1)求物块B 被弹开时速度的大小;

(2)求物块B 在传送带上向右滑行的最远距离及返回水平面MN 时的速度v B ′; (3)A 与P 相碰后静止。当物块B 返回水平面MN 后,A 被P 弹出,A 、B 相碰后粘接在一起向右滑动,要使A 、B 连接体恰好能到达Q 端,求P 对A 做的功。 【答案】(1) 4.0/B v m s =(2)'2/B v m s =(3)162 W J = 【解析】

试题分析:(1)(6分)解除锁定弹开AB 过程中,系统机械能守恒:

2

B 2A p 2

121mv mv E +=

……2分 设向右为正方向,由动量守恒 0B A mv mv -= ……2分 解得 4.0/B A v v m s == ①……2分

(2)(6分)B 滑上传送带做匀减速运动,当速度减为零时,滑动的距离最远。 由动能定理得 2

B M 2

10mv mgs -

=-μ ……2分

解得2

2

2

B

M

v

S m

g

μ

==……1分②

物块B在传送带上速度减为零后,受传送带给它的摩擦力,向左加速,若一直加速,则受

力和位移相同时,物块B滑回水平面MN时的速度'4/

B

v m s

=,高于传送带速度,说明B 滑回过程先加速到与传送带共速,后以2/

m s的速度做匀速直线运动。……1分

物块B滑回水平面MN的速度'2/

B

v v m s

==……2分③

(3)(8分)弹射装置将A弹出后与B碰撞,设碰撞前A的速度为

A

v',碰撞后A、B共同的速度为V,根据动量守恒定律,mV

v

m

v

m2

B

A

=

'

-

'……2分④A、B恰好滑出平台Q端,由能量关系有mgL

mV2

2

2

1

2?

=

?μ……2分⑤

设弹射装置对A做功为W,2A

2

1

v

m

W'

=……2分⑥

由④⑤⑥解得162

W J

=……2分

考点:相对运动动能定理动量守恒

7.如图所示,可看成质点的A物体叠放在上表面光滑的B物体上,一起以v0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C发生完全非弹性碰撞,B,C的上表面相平且B,C不粘连,A滑上C后恰好能到达C板的最右端,已知A,B,C 质量均相等,木板C长为L,求

①A物体的最终速度

②A在木板C上滑行的时间

【答案】①0

3

4

v

;②

4L

v

【解析】

试题分析:①设A、B、C的质量为m,B、C碰撞过程中动量守恒,

令B、C碰后的共同速度为,则,解得,

B、C共速后A以0v的速度滑上C,A滑上C后,B、C脱离

A、C相互作用过程中动量守恒,设最终A、C的共同速度,

解得

②在A、C相互作用过程中,根据功能关系有

(f为A、C间的摩擦力)

代入解得

2

0 16

mv

f

L

此过程中对C,根据动量定理有

代入相关数据解得

4L

t

v

=

考点:动量守恒定律;能量守恒定律及动量定理.

8.如图所示,在沙堆表面放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg.当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm,而木块所受的平均阻力为f=80N.若爆竹的火药质量以及空气阻力可忽略不计,g取10m/s2,求爆竹能上升的最大高度.

【答案】60m

h=

【解析】

试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得

2

1

1

()0

2

mg f h Mv

-=-(1)

爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有21

mv Mv

=(2)

爆竹完后,爆竹做竖直上抛运动,故有2

2

2

v g h

=?(3)

联立三式可得:600

h m

?=

考点:考查了动量守恒定律,动能定理的应用

点评:基础题,比较简单,本题容易错误的地方为在A下降过程中容易将重力丢掉9.(18分)、如图所示,固定的光滑平台左端固定有一光滑的半圆轨道,轨道半径为R,平台上静止放着两个滑块A、B,其质量m A=m,m B=2m,两滑块间夹有少量炸药。平台右侧有一小车,静止在光滑的水平地面上,小车质量M=3m,车长L=2R,车面与平台的台面等高,车面粗糙,动摩擦因数μ="0.2" ,右侧地面上有一立桩,立桩与小车右端的距离为S,S在0

(1)滑块A在半圆轨道最低点C受到轨道的支持力F N。

(2)炸药爆炸后滑块B的速度大小V B。

(3)请讨论滑块B从滑上小车在小车上运动的过程中,克服摩擦力做的功W f与S的关系。

【答案】(1)(2)

(3)(a)当时,小车到与立桩粘连时未与滑块B达到共速。

分析可知滑块会滑离小车,滑块B克服摩擦力做功为:

(b)当时,小车与滑块B先达到共速然后才与立桩粘连

共速后,B与立桩粘连后,假设滑块B做匀减速运动直到停下,其位移为

,假设不合理,滑块B会从小车滑离

滑块B从滑上小车到共速时克服摩擦力做功为:

【解析】

试题分析:(1)、以水平向右为正方向,设爆炸后滑块A的速度大小为V A,

滑块A在半圆轨道运动,设到达最高点的速度为V AD,则1分

得到1分

滑块A在半圆轨道运动过程中,

据动能定理:1分

得:

滑块A在半圆轨道最低点:1分

得:1分

(2)、在A、B爆炸过程,动量守恒。则1分

得:1分

(3)、滑块B滑上小车直到与小车共速,设为

整个过程中,动量守恒:1分

得:1分

滑块B从滑上小车到共速时的位移为1分

小车从开始运动到共速时的位移为1分

两者位移之差(即滑块B相对小车的位移)为:<2R,

即滑块B与小车在达到共速时未掉下小车。 1分

当小车与立桩碰撞后小车停止,然后滑块B以V共向右做匀减速直线运动,则直到停下来发生的位移为 S'

所以,滑块B会从小车滑离。1分

讨论:当时,滑块B克服摩擦力做功为

1分

当时,滑块B从滑上小车到共速时克服摩擦力做功为

1分

然后滑块B以V t向右做匀减速直线运动,则直到停下来发生的位移为

>2R 所以,滑块会从小车滑离。 1分

则滑块共速后在小车运动时克服摩擦力做功为

1分

所以,当时,滑块B克服摩擦力做功为

="11mR" 1分

考点: 牛顿第二定律 动能定理 动量守恒 功

10.在竖直平面内有一个半圆形轨道ABC ,半径为R ,如图所示,A 、C 两点的连线水平,B 点为轨道最低点.其中AB 部分是光滑的,BC 部分是粗糙的.有一个质量为m 的乙物体静止在B 处,另一个质量为2m 的甲物体从A 点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC 轨

道,最高运动到D 点,OD 与OB 连线的夹角θ60.=o

甲、乙两物体可以看作质点,重力加

速度为g ,求:

(1)甲物与乙物体碰撞过程中,甲物体受到的冲量.

(2)甲物体与乙物体碰撞后的瞬间,甲乙构成的整体对轨道最低点的压力. (3)甲乙构成的整体从B 运动到D 的过程中,摩擦力对其做的功. 【答案】(1)2

23m gR (2)压力大小为:

17

3

mg ,方向竖直向下.(3)W f =1

6

mgR -. 【解析】 【分析】

(1)先研究甲物体从A 点下滑到B 点的过程,根据机械能守恒定律求出A 刚下滑到B 点时的速度,再由动量守恒定律求出碰撞后甲乙的共同速度,即可对甲,运用动量定理求甲物与乙物体碰撞过程中,甲物体受到的冲量.

(2)甲物体与乙物体碰撞后的瞬间,对于甲乙构成的整体,由牛顿第二定律求出轨道对整体的支持力,再由牛顿第三定律求得整体对轨道最低点的压力.

(3)甲乙构成的整体从B 运动到D 的过程中,运用动量定理求摩擦力对其做的功. 【详解】

()1甲物体从A 点下滑到B 点的过程,

根据机械能守恒定律得:2012mgR 2mv 2

=?, 解得:0v 2gR =

甲乙碰撞过程系统动量守恒,取向左方向为正,根据动量守恒定律得:

()02mv m 2m mv =+,

解得:2

v 2gR 3

=

, 甲物与乙物体碰撞过程,对甲,由动量定理得:02

I 2mv 2mv m 2gR 3

=-=-甲,方向:水平向右;

()2甲物体与乙物体碰撞后的瞬间,对甲乙构成的整体,

由牛顿第二定律得:()()2

v F m 2m g m 2m R

-+=+, 解得:17

F mg 3

=

, 根据牛顿第三定律,对轨道的压力17

F'F mg 3

==

,方向:竖直向下; ()3对整体,从B 到D 过程,由动能定理得:()2f

1

3mgR 1cos60W 03mv 2

--+=-?o

解得,摩擦力对整体做的功为:f 1

W mgR 6

=-; 【点睛】

解决本题的关键按时间顺序分析清楚物体的运动情况,把握每个过程的物理规律,知道碰撞的基本规律是动量守恒定律.摩擦力是阻力,运用动能定理是求变力做功常用的方法.

11.如图所示,一质量为m=1.5kg 的滑块从倾角为θ=37°的斜面上自静止开始滑下,斜面末端水平(水平部分光滑,且与斜面平滑连接,滑块滑过斜面末端时无能量损失),滑块离开斜面后水平滑上与平台等高的小车.已知斜面长s=10m ,小车质量为M=3.5kg ,滑块与斜面及小车表面的动摩擦因数μ=0.35,小车与地面光滑且足够长,取g=10m/s 2

求:(1)滑块滑到斜面末端时的速度

(2)当滑块与小车相对静止时,滑块在车上滑行的距离 【答案】(1)8 m/s (2)6.4m 【解析】

试题分析:(1)设滑块在斜面上的滑行加速度a , 由牛顿第二定律,有 mg (sinθ-μcosθ)=ma 代入数据得:a=3.2m/s 2

又:s=

12

at 2

解得 t=2.5s

到达斜面末端的速度大小 v 0=at=8 m/s

(2)小车与滑块达到共同速度时小车开始匀速运动,该过程中小车与滑块组成的系统在水平方向的动量守恒,则:mv 0=(m+M )v 代入数据得:v=2.4m/s

滑块在小车上运动的过程中,系统减小的机械能转化为内能,得: μmgL =

12mv 02?12

(m+M )v 2

代入数据得:L=6.4m

考点:牛顿第二定律;动量守恒定律;能量守恒定律

【名师点睛】此题考查动量守恒定律及功能关系的应用,属于多过程问题,需要分阶段求解;解题时需选择合适的物理规律,用牛顿定律结合运动公式,或者用动量守恒定律较简单,此题是中档题。

12.如图所示,小球A 质量为m ,系在细线的一端,线的另一端固定在O 点,O 点到水平面的距离为h .物块B 质量是小球的5倍,置于粗糙的水平面上且位于O 点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为

16

h

.小球与物块均视为质点,不计空气阻力,重力加速度为g ,求碰撞过程物块获得的冲量及物块在地面上滑行的距离.

【答案】16h

【解析】 【分析】

对小球下落过程由机械能守恒定律可求得小球与物块碰撞前的速度;对小球由机械能守恒可求得反弹的速度,再由动量守恒定律可求得物块的速度;对物块的碰撞过程根据动量定理列式求解获得的冲量;对物块滑行过程由动能定理可求得其滑行的距离. 【详解】

小球的质量为m,设运动到最低点与物块相撞前的速度大小为v 1,取小球运动到最低点时的重力势能为零,根据机械能守恒定律有:mgh=1

2

mv 12 解得:v 12gh

设碰撞后小球反弹的速度大小为v′1,同理有:'2

11162

h mg mv ?=

解得:v′1 设碰撞后物块的速度大小为v 2,取水平向右为正方向,由动量守恒定律有: mv 1=-mv′1+5mv 2

解得:v 2

由动量定理可得,碰撞过程滑块获得的冲量为I=5mv 2=5

4

物块在水平面上滑行所受摩擦力的大小为F=5μmg 设物块在水平面上滑行的时间为t,由动能定理有:

2

21052

Fs mv -=-?

解得:16h s μ

= 【点睛】

本题综合考查动量守恒定律、机械能守恒定律及动能定理,要注意正确分析物理过程,选择合适的物理规律求解.

高考物理动量守恒定律试题经典及解析

高考物理动量守恒定律试题经典及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求: (1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2 014 mv ;(2) 0mv 【解析】 【详解】 解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以 2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速 度相等,有:2 12 v v = 而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:0 12 v v = ,20 v v = 所以第一次碰撞中的机械能损失为:2 2 22012011 11222 2 24 E m v m v mv mv ?=--=g g g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-= 2.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。质量m 1=0.40kg 的物块A 从斜槽上端距水平木板高度h=0. 80m 处下滑,并与放在水平木板左端的质量m 2=0.20kg 的物块B 相碰,相碰后物块B 滑行x=4.0m 到木板的C 点停止运动,物块A 滑到木板的D 点停止运动。已知物块B 与木板间的动摩擦因数 =0.20,重力加速度g=10m/s 2,求: (1) 物块A 沿斜槽滑下与物块B 碰撞前瞬间的速度大小; (2) 滑动摩擦力对物块B 做的功; (3) 物块A 与物块B 碰撞过程中损失的机械能。 【答案】(1)v 0=4.0m/s (2)W=-1.6J (3)E=0.80J

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

经典验证动量守恒定律实验练习题(附答案)

验证动量守恒定律 由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单 位,那么小球的水平射程的数值就等于它们的水平速度。 在右图中分别用OP、OM和O/N表示。因此只需验证: m1?OP=m1?OM+m2?(O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1?OP=m1?OM+m2?ON,两个小球的直径也不需测量 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答:

高三一轮复习-动量守恒定律带答案

动量守恒定律 一、冲量、动量和动量定理 1.冲量 (1)定义:力和力的的乘积.(2)公式:I=,适用于求恒力的冲量.(3)方向:与相同. 2.动量 (1)定义:物体的与的乘积.(2)表达式: (3)单位:.符号: (4)特征:动量是状态量,是,其方向和方向相同. 3.动量定理 (1)内容:物体所受合力的冲量等于物体.(2)表达式: . (3)矢量性:动量变化量方向与的方向相同,可以在某一方向上用动量定理. 二、动量守恒定律 1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力. 2.定律内容:如果一个系统作用,或者所受的为零,这个系统的总动量保持不变. 3.动量守恒定律的不同表达形式 (1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和. (2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向. (3)Δp=0,系统总动量的增量为零. 4.守恒条件 (1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒. (2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒. (3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 三、碰撞

1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.解析碰撞的三个依据 (1)动量守恒:p1+p2=p1′+p2′. (2)动能不增加:E k1+E k2≥E k1′+E k2′或 p21 2m1 + p22 2m2 ≥ p1′2 2m1 + p2′2 2m2 . (3)速度要符合情景 ①如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞. ②碰撞后,原来在前面的物体速度一定增大,且速度大于或等于原来在后面的物体的速度,即v前′≥v后′. ③如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变.除非两物体碰撞后速度均为零. 2.分类 (1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒. (2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律. (3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律. 3.碰撞问题的探究 (1)弹性碰撞的求解 求解:两球发生弹性碰撞时应满足动量守恒和动能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有 m1v1=m1v1′+m2v2′1 2 m1v21= 1 2 m1v1′2+ 1 2 m2v2′2 解得:v1′=m1-m2v1 m1+m2 ,v2′= 2m1v1 m1+m2 (2)弹性碰撞的结论

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编(含答案) 一、高考物理精讲专题动量定理 1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=?,右侧斜面的中间用阻值为2R =Ω的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=?。其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。 (1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量; (3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】 (1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得: sin θF T BIl =+ cos θT mg = 解得: tan θ 1.50.5F mg BIl I =+=+ 由图乙可知: 1.50.2F t =+ 则有: 0.4I t = cd 棒上的电流为:

动量及动量守恒定律全章典型习题精讲

动量及动量守恒定律全章典型习题精讲

————————————————————————————————作者: ————————————————————————————————日期:

动量及动量守恒定律全章典型习题精讲 一.学法指导: 动量这部分内容,本身并不复杂,主要有冲量和动量这两个概念,还有动量定理和动量守恒定律这两个重要规律.动量定理是对一个物体说的,它受到合外力的冲量等于该物体动量的增量.动量守恒定律是对相互作用的系统而言的,在系统不受外力作用的情况下,系统的总动量守 本章的难点主要在于冲量和动量都是矢量,矢量的运算比起标量的运算来要困难得多.我们中学阶段目前只要求计算同一直线上的动量问题,对于同一直线上的动量,可以用正负号表示方向,从而把矢量运算转化为代数运算. 这部分内容的另一个难点是涉及到相互作用的系统内物体的动量和机械能的综合问题,为此,我们在学习时要把动量这部分内容与机械能部分联系起来.下面三个方面的问题是我们学习中要重点理解和掌握的. 1、4个重要的物理概念,即冲量、动量、功和动能,下面把它们归纳、整理、比较如下: (1)冲量和功,都是“力”的,要注意是哪个力的冲量,哪个力做的功. 动量和动能,都是“物体”的,要注意是哪个物体的动量、哪个物体的动能. (2)冲量和功,都是“过程量”,与某一段过程相对应.要注意是哪个过程的冲量,是哪个过程中做的功. 动量和动能,都是“状态量”,与某一时刻相对应.要注意是哪个时刻的动量或动能,过程量是不能与状态量划等号的,即决不能说某力的冲量等于某时刻的动量,或说某个功等于某时刻的动能.动量定理和动能定理都是“过程关系”,它们说的是在某段过程中,物体受到的合外力的冲量或做的功,等于物体动量或动能的增量,这里“增量”又叫“变化量”,是相应过程的“始”、“末”两个状态量的差值,表示的还是某一段过程的状态的变化 此外,还有一点要注意,那就是这些物理量与参考系的关系.由于位移和速度都是与参考系有关的物理量,因此动量、功、动能都是与参考系有关的物理量,只有冲量与参考系无关.凡没有提到参考系的问题,都是以地面为参考系的. 2、两个守恒定律是物理学中的重要物理规律,下面把有关两个守恒定律的问题整理列表如下:

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

高考物理动量定理技巧(很有用)及练习题

高考物理动量定理技巧(很有用)及练习题 一、高考物理精讲专题动量定理 1.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求: (1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小; (3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ?(3)32 639 F x =+【解析】 【分析】 【详解】 (1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为 4V E = 由欧姆定律得 24A 8A 0.5 E I R = == (2)由图2可知,1(T m)x B =? 由图3可知,E 与时间成正比,有 E =2t (V ) 4E I t R = = 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43 x L = 又由 F BIL =安

所以 163 F t 安= 即安培力跟时间成正比 所以在1~2s 时间内导体棒所受安培力的平均值 163233N 8N 2 F += = 故 8N s I F t =?=?安 (3)因为 43 v E BLv Bx ==? 所以 1.5(m/s)v t = 可知导体棒的运动时匀加速直线运动,加速度 21.5m/s a = 又2 12 x at = ,联立解得 32 639 F x =+ 【名师点睛】 本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系, 要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式. 2.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。现将细绳拉至与水平方向成30?,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。若忽略空气阻力,重力加速度为g 。 (1)求细绳的最大承受力; (2)求从小球释放到最低点的过程中,细绳对小球的冲量大小; (3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。请通过计算,说明你的观点。

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

高考物理一轮复习作业手册:动量动量守恒定律

课时作业(十六) [第16讲 动量 动量守恒定律] 1.光子的能量为hν,动量的大小为h νc .如果一个静止的放射性元素的原子核在发生γ衰变时只发出一个γ光子,则衰变后的原子核( ) A .仍然静止 B .沿着与光子运动方向相同的方向运动 C .沿着与光子运动方向相反的方向运动 D .可能向任何方向运动 2.如图K16-1所示,在光滑水平面上质量分别为m A =2 kg 、m B =4 kg ,速率分别为v A =5 m/s 、v B =2 m/s 的A 、B 两小球沿同一直线相向运动( ) 图K16-1 A .它们碰撞前的总动量是18 kg · m/s ,方向水平向右 B .它们碰撞后的总动量是18 kg · m/s ,方向水平向左 C .它们碰撞后的总动量是2 kg · m/s ,方向水平向左 D .它们碰撞前的总动量是2 kg · m/s ,方向水平向右 3.如图K16-2所示,车厢质量为M ,静止于光滑水平面上,现车厢内有一质量为m 的物体以速度v 向右运动,与车厢壁来回碰撞n 次后与车厢相对静止,此时车厢的速度为( ) 图K16-2 A .v ,水平向右 B . mv M +m ,水平向右 C .0 D .mv M -m ,水平向右 4.满载沙子的总质量为M 的小车在光滑水平面上做匀速运动,速度为v 0.行驶途中,有质量为m 的沙子从小车上漏掉,则沙子漏掉后小车的速度为( ) A .v 0 B .mv 0M +m C .mv 0M -m D .(M -m )v 0M 5.如图K16-3所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一质量为m =1.0 kg 的小木块A.现以地面为参照系,给A 和B 以大小均为4.0 m/s ,方向

五年真题之2016年高考物理专题动量含答案

专题6 动量 1.[2016·全国卷Ⅰ3-5(2)10分] 某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求: (i)喷泉单位时间内喷出的水的质量; (ii)玩具在空中悬停时,其底面相对于喷口的高度. 答案:(i)ρv0S(ii)v20 2g - M2g 2ρ2v20S2 解析: (i)设Δt时间内,从喷口喷出的水的体积为ΔV,质量为Δm,则 Δm=ρΔV① ΔV=v0SΔt② 由①②式得,单位时间内从喷口喷出的水的质量为 Δm Δt =ρv0S③ (ii)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具底面时的速度大小为v.对于Δt时间内喷出的水,由能量守恒得 1 2(Δm)v2+(Δm)gh= 1 2 (Δm)v20④ 在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp=(Δm)v⑤ 设水对玩具的作用力的大小为F,根据动量定理有 FΔt=Δp⑥ 由于玩具在空中悬停,由力的平衡条件得 F=Mg⑦ 联立③④⑤⑥⑦式得 h=v20 2g - M2g 2ρ2v20S2 ⑧ 2.[2016·北京卷] (1)动量定理可以表示为Δp=FΔt,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中物理_复习:《验证动量守恒定律实验》教学设计学情分析教材分析课后反思

复习:《实验:验证动量守恒定律》教学设计 一、教学目标: 【知识与技能】 1、明确验证动量守恒定律的基本思路; 2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法; 3、掌握实验数据处理的方法; 【过程与方法】 1、学习根据实验要求,设计实验,完成气垫导轨实验和斜槽小球碰撞实验的设计方法; 2、学习根据实验数据进行处理、归纳、总结的方法。 【情感态度与价值观】 1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。 2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。 3、在对实验数据处理、误差处理的过程中合作探究、头脑风暴,提高学生合作探究能力。 4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。 【教学重难点】 教学重点:验证动量守恒定律的实验探究 教学难点:速度的测量方法、实验数据的处理. 【教学过程】 (一)复习导入:问题1、动量守恒定律的内容是什么? 2、动量守恒的条件是什么? (二)讲授新课 实验方案一:气垫导轨以为碰撞实验 1、实验器材 气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2、实验步骤

(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨. (3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向③通过放置橡皮泥、振针、胶布等改变能量损失). (4)验证:一维碰撞中的动量守恒. (5)数据处理 1.滑块速度的测量:v =Δx Δt ,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. 2.验证的表达式:m 1v 1+m 2v 2=m 1v′1+m 2v′2。 (6)注意事项 气垫导轨应水平 [典例1] 现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. (b) 若实验允许的相对误差绝对值× 100%最大为5%,本实验是否在误差范围内验证了动量守恒

2019届高考物理总复习第六章碰撞与动量守恒第二节动量守恒定律碰撞爆炸反冲测习题

第二节动量守恒定律碰撞爆炸反冲 [学生用书P112] 【基础梳理】 一、动量守恒定律 1.守恒条件 (1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒. (2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒. (3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2. 二、碰撞爆炸反冲 1.碰撞 (1)碰撞现象:物体间的相互作用持续时间很短,而物体间相互作用力很大的现象. (2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒. (3)分类 2.爆炸现象:爆炸过程中内力远大于外力,爆炸的各部分组成的系统总动量守恒. 3.反冲运动 (1)物体在内力作用下分裂为两个不同部分并且这两部分向相反方向运动的现象. (2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理. 【自我诊断】 判一判 (1)两物体相互作用时若系统不受外力,则两物体组成的系统动量守恒.( ) (2)动量守恒只适用于宏观低速.( ) (3)当系统动量不守恒时无法应用动量守恒定律解题.( ) (4)物体相互作用时动量守恒,但机械能不一定守恒.( ) (5)若在光滑水平面上两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相同.( ) (6)飞船做圆周运动时,若想变轨通常需要向前或向后喷出气体,该过程中动量守

恒.( ) 提示:(1)√(2)×(3)×(4)√(5)√(6)√ 做一做 (2018·安徽名校联考)如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是( ) A.男孩和木箱组成的系统动量守恒 B.小车与木箱组成的系统动量守恒 C.男孩、小车与木箱三者组成的系统动量守恒 D.木箱的动量增量与男孩、小车的总动量增量不相同 提示:选C.当把男孩、小车与木箱看做整体时水平方向所受的合外力才为零,所以选项C正确. 想一想 碰撞过程除了系统动量守恒之外,还需要满足什么条件?碰撞与爆炸在能量转化方面有何不同? 提示:碰撞过程除了系统动量守恒之外,还要满足的条件:系统动能不增加;碰撞结果要符合实际情况.碰撞系统动能不增加,而爆炸系统动能增加,这是二者最大的不同. 对动量守恒定律的理解和应用[学生用书P113] 【知识提炼】 1.动量守恒定律常用的四种表达形式 (1)p=p′:即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同. (2)Δp=p′-p=0:即系统总动量的增加量为零. (3)Δp1=-Δp2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量. (4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等. 2.动量守恒定律的“五性”

高考物理动量守恒定律题20套(带答案)及解析

高考物理动量守恒定律题20套(带答案)及解析 一、高考物理精讲专题动量守恒定律 1.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的 一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度 g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

高考物理——动能与动量

动量与能量 测试时间:90分钟 满分:110分 第Ⅰ卷 (选择题,共48分) 一、选择题(本题共12小题,共48分。在每小题给出的四个选项中,第1~8小题只有一个选项正确,第9~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分) 1.[2017·河北冀州月考]在光滑的水平桌面上有两个在同一直线上运动的小球a 和b ,正碰前后两小球的位移随时间变化的关系如图所示,则小球a 和b 的质量之比为 ( ) A .2∶7 B .1∶4 C .3∶8 D .4∶1 答案 B 解析 由位移—时间图象的斜率表示速度可得,正碰前,小球a 的速度v 1= 1-41-0 m/s =-3 m/s ,小球b 的速度v 2=1-01-0 m/s =1 m/s ;正碰后,小球a 、b 的共同速度v =2-16-1 m/s =0.2 m/s 。设小球a 、b 的质量分别为m 1、m 2,正碰过程,根据动量守恒定律有m 1v 1+m 2v 2=(m 1+m 2)v ,得m 1m 2=v -v 2v 1-v =14 ,选项B 正确。 2.[2017·江西检测]如图所示,左端固定着轻弹簧的物块A 静止在光滑的水平面上,物块B 以速度v 向右运动,通过弹簧与物块A 发生正碰。已知物块A 、B 的质量相等。当弹簧压缩到最短时,下列说法正确的是( )

A.两物块的速度不同 B.两物块的动量变化等值反向 C.物块B的速度方向与原方向相反 D.物块A的动量不为零,物块B的动量为零 答案 B 解析物块B接触弹簧时的速度大于物块A的速度,弹簧逐渐被压缩,当两物块的速度相同时,弹簧压缩到最短,选项A、D均错误;根据动量守恒定律有Δp A+Δp B =0,得Δp A=-Δp B,选项B正确;当弹簧压缩到最短时,物块B的速度方向与原方向相同,选项C错误。 3.[2017·黑龙江模拟] 如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块。今让一质量为m的小球自左侧槽口A的正上方h 高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是() A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒 B.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量不守恒 C.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒 D.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动 答案 B 解析当小球在槽内由A到B的过程中,墙壁对槽有力的作用,小球与半圆槽组成的系统水平方向动量不守恒,故A、C错误,B正确。当小球运动到C点时,它的两个分运动的合速度方向是右上方,所以此后小球将做斜上抛运动,即C错误。 4.[2017·辽师大附中质检]质量相同的子弹a、橡皮泥b和钢球c以相同的初速度水平射向竖直墙,结果子弹穿墙而过,橡皮泥粘在墙上,钢球被以原速率反向弹回。关于它们对墙的水平冲量的大小,下列说法中正确的是() A.子弹、橡皮泥和钢球对墙的冲量大小相等 B.子弹对墙的冲量最小 C.橡皮泥对墙的冲量最小 D.钢球对墙的冲量最小 答案 B

相关主题
文本预览
相关文档 最新文档