当前位置:文档之家› 物理法拉第电磁感应定律的专项培优练习题及答案

物理法拉第电磁感应定律的专项培优练习题及答案

物理法拉第电磁感应定律的专项培优练习题及答案
物理法拉第电磁感应定律的专项培优练习题及答案

物理法拉第电磁感应定律的专项培优练习题及答案

一、法拉第电磁感应定律

1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求:

(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;

(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。

【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】

(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动,

a =

sin mg m

θ

=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:

1Blv t

=? 2(sin )x x

B l I

BI g t t θ??= 解得

2sin x l

t g θ

=

ab 棒在区域Ⅱ中做匀速直线运动的速度

12sin

v glθ=

则ab棒开始下滑的位置离EF的距离

2

1

23

2x

h at l l

=+=

(3)ab棒在区域Ⅱ中运动时间

2

22

sin

x

l l

t

v gθ

==

ab棒从开始下滑至EF的总时间

2

2

2

sin

x

l

t t t

=+=

感应电动势:

1

2sin

E Blv Bl glθ

==

ab棒开始下滑至EF的过程中回路中产生的热量:

Q=EIt=4mgl sinθ

2.两间距为L=1m的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、磁感应强度大小B=2T的匀强磁场中.金属棒P垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m0未知),将重物由静止释放,经过一段时间,将另一根完全相同的金属棒Q垂直放在导轨上,重物立即向下做匀速直线运动,金属棒Q恰好处于静止状态.己知两金属棒的质量均为m=lkg、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度

g=l0m/s2,sin 37°=0.6,cos37°=0.8.求:

(1)金属棒Q放上后,金属棒户的速度v的大小;

(2)金属棒Q放上导轨之前,重物下降的加速度a的大小(结果保留两位有效数字);(3)若平行直导轨足够长,金属棒Q放上后,重物每下降h=lm时,Q棒产生的焦耳热.

【答案】(1)3m/s

v=(2)2

2.7m/s

a=(3)3J

【解析】

【详解】

(1)金属棒Q恰好处于静止时

sin

mg BIL

θ=

由电路分析可知E BLv

= ,

2

E

I

R

= ,

代入数据得,3m/s v =

(2)P 棒做匀速直线运动时,0sin m g BIL mg θ=+, 金属棒Q 放上导轨之前,由牛顿第二定律可得

00sin ()m g mg m m a θ-=+

代入数据得,22.7m/s a =

(3)根据能量守恒可得,0sin m gh mgh Q θ=+总 由于两个金属棒电阻串联,均为R ,可知 Q 棒产生的焦耳热为3J 2

Q Q =

=总

3.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求

(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.

【答案】0F E Blt g m μ??=- ??? ; R =220

B l t m

【解析】 【分析】 【详解】

(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ??

=-

???

④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E

R

⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦

联立④⑤⑥⑦式得: R=

22

0 B l t m

4.如图所示,竖直平面内两竖直放置的金属导轨间距为L1,导轨上端接有一电动势为E、内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求:

(1)金属棒匀速运动的速度大小;

(2)金属棒与金属导轨间的动摩擦因数μ;

(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。

【答案】(1);(2);(3)mgL2。

【解析】

【分析】

(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;

(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解;

(3)根据功能关系结合焦耳定律求解。

【详解】

(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1,

由于

解得:;

(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里;

根据平衡条件可得:mg=μF A,

通过导体棒的电流I′=,则F A=BI′L1,

解得μ=;

(3)金属棒经过efgh 区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;

根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W 克=mgL 2, 则Q 总=mgL 2,

定值电阻R 上产生的焦耳热Q R =Q 总=mgL 2。 【点睛】

对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。

5.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小;

(2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向;

(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.

【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)

203

Q J

【解析】 【分析】

t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做

功,系统产生的热量等于克服安培力,即可得解.【详解】

(1)当t=3s时,设MN的速度为v1,则v1=at=3m/s 感应电动势为:E1=BL v1

根据欧姆定律有:E1=I(R MN+ R PQ)

根据P=I2R PQ

代入数据解得:B=2T

(2)当t=6 s时,设MN的速度为v2,则

速度为:v2=at=6 m/s

感应电动势为:E2=BLv2=12 V

根据闭合电路欧姆定律:2

2

4

MN

PQ

E

I A

R R

==

+

安培力为:F安=BI2L=8 N

规定沿斜面向上为正方向,对PQ进行受力分析可得:

F2+F安cos 37°=mg sin 37°

代入数据得:F2=-5.2 N(负号说明力的方向沿斜面向下)

(3)MN棒做变加速直线运动,当x=5 m时,v=0.4x=0.4×5 m/s=2 m/s

因为速度v与位移x成正比,所以电流I、安培力也与位移x成正比,

安培力做功:

120

23

MN PQ

BLv

W BL x J

R R

=-??=-

+

【点睛】

本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.

6.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN和PQ,两导轨间距为l,电阻均可忽略不计。在M和P之间接有阻值为R的定值电阻,导体杆ab质量为m、电阻为r,并与导轨接触良好。整个装置处于方向竖直向上磁感应强度为B的匀强磁场中。现给ab杆一个初速度v0,使杆向右运动。

(1)当ab杆刚好具有初速度v0时,求此时ab杆两端的电压U;a、b两端哪端电势高;(2)请在图2中定性画出通过电阻R的电流i随时间t变化规律的图象;

(3)若将M和P之间的电阻R改为接一电容为C的电容器,如图3所示。同样给ab杆一个初速度v0,使杆向右运动。请分析说明ab杆的运动情况。

【答案】(1)0Bl R

U R r

=

+v ;a 端电势高(2) (3)当ab 杆以初速度

v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆

在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。 【解析】 【分析】

(1)求解产生感应电动势大小,根据全电路欧姆定律求解电流强度和电压,根据右手定则判断电势高低;

(2)分析杆的受力情况和运动情况,确定感应电流变化情况,由此画出图象;

(3)杆在向右运动过程中速度逐渐减小、由此分析安培力的变化,确定运动情况;根据动量定理求解最后的速度大小。 【详解】

(1)ab 杆切割磁感线产生感应电动势: E = Bl v 0 根据全电路欧姆定律:E

I R r

=

+ ab 杆两端电压即路端电压:U IR = 解得0Bl R

U R r

=

+v ;a 端电势高。 (2)杆在向右运动过程中速度逐渐减小、感应电动势逐渐减小,根据闭合电路的欧姆定律可得感应电流逐渐减小,通过电阻R 的电流i 随时间变化规律的图象如图所示:

(3)当ab 杆以初速度v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。 【点睛】

对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键。

7.如图甲所示,两根完全相同的光滑平行导轨固定,每根导轨均由两段与水平面成θ=30°的长直导轨和一段圆弧导轨平滑连接而成,导轨两端均连接电阻,阻值R 1=R 2=2Ω,导轨间距L =0.6m .在右侧导轨所在斜面的矩形区域M 1M 2P 2P 1内分布有垂直斜面向上的磁

场,磁场上下边界M1P1、M2P2的距离d=0.2m,磁感应强度大小随时间的变化规律如图乙所示.t=0时刻,在右侧导轨斜面上与M1P1距离s=0.1m处,有一根阻值r=2Ω的金属棒ab垂直于导轨由静止释放,恰好独立匀速通过整个磁场区域,取重力加速度g=

10m/s2,导轨电阻不计.求:

(1)ab在磁场中运动速度的大小v;

(2)在t1=0.1s时刻和t2=0.25s时刻电阻R1的电功率之比;

(3)整个过程中,电路产生的总热量Q.

【答案】(1)1m/s(2)4:1(3)0.01 J

【解析】

试题分析:(1)由mgs·sinθ=mv2

(2)棒从释放到运动至M1P1的时间

在t1=0.1 s时,棒还没进入磁场,有

此时,R2与金属棒并联后再与R1串联

R总=3 Ω

由图乙可知,t=0.2s后磁场保持不变,ab经过磁场的时间

故在t2=0.25 s时ab还在磁场中运动,电动势E2=BLv=0.6V

此时R1与R2并联,R总=3Ω,得R1两端电压U1′=0.2V

电功率,故在t1=0.1 s和t2=0.25 s时刻电阻R1的电功率比值

(3)设ab的质量为m,ab在磁场中运动时,通过ab的电流

ab受到的安培力F A=BIL

又mgsinθ= BIL

解得m=0.024kg

在t=0~0.2s时间里,R2两端的电压U2=0.2V,产生的热量

ab最终将在M2P2下方的轨道区域内往返运动,到M2P2处的速度为零,由功能关系可得在

t=0.2s 后,整个电路最终产生的热量Q=mgdsinθ+mv 2=0.036J 由电路关系可得R 2产生的热量Q 2=Q=0.006J 故R 2产生的总热量Q 总= Q 1+ Q 2=0.01 J

考点:法拉第电磁感应定律、欧姆定律、能量守恒定律

【名师点睛】本题是法拉第电磁感应定律、欧姆定律以及能量守恒定律等知识的综合应用,关键要搞清电路的连接方式及能量转化的关系,明确感应电动势既与电路知识有关,又与电磁感应有关.

8.如图所示,在水平面上固定一光滑金属导轨HGDEF ,EF ∥GH ,DE =EF =DG =GH =EG =L .一质量为m 足够长导体棒AC 垂直EF 方向放置于在金属导轨上,导轨与导体棒单位长度的电阻均为r .整个装置处在方向竖直向下、磁感应强度为B 的匀强磁场中.现对导体棒AC 施加一水平向右的外力,使导体棒从D 位置开始以速度v 0沿EF 方向做匀速直线运动,导体棒在滑动过程中始终保持与导轨良好接触.

(1)求导体棒运动到FH 位置,即将离开导轨时,FH 两端的电势差.

(2)关于导体棒运动过程中回路产生感应电流,小明和小华两位同学进行了讨论.小明认 为导体棒在整个运动过程中是匀速的,所以回路中电流的值是恒定不变的;小华则认 为前一过程导体棒有效切割长度在增大,所以电流是增大的,后一过程导体棒有效切 割长度不变,电流才是恒定不变的.你认为这两位同学的观点正确吗?请通过推算证 明你的观点. (3)求导体棒从D 位置运动到EG 位置的过程中,导体棒上产生的焦耳热. 【答案】(1)045FH U BLv = (2)两个同学的观点都不正确 (3)2203B L v Q '= 【解析】 【分析】 【详解】

(1)导体棒运动到FH 位置,即将离开导轨时,由于切割磁感线产生的电动势为E =BLv 0在电路中切割磁感线的那部分导体相当于电源,则此时可将电路等效为:

可以将切割磁感线的FH 棒看成电动势为E ,内阻为r 的电源,

根据题意知,外电路电阻为R =4r ,

再根据闭合电路欧姆定律得FH 间的电势差:0044

45

FH R r U E BLv BLv R r r r ===++ (2)两个同学的观点都不正确

取AC 棒在D 到EG 运动过程中的某一位置,MN 间距离设为x ,

则由题意有:DM =NM =DN =x

则此时切割磁感线的有效长度为x ,则回路中产生的感应电动势E =Bxv 0 回路的总电阻为R =3rx 据欧姆定律知电路中电流为00

33Bxv Bv E I R rx r

=

==,即此过程中电流是恒定的; 当导体棒由EG 棒至FH 的过程中,由于切割磁感线的导体长度一定,故产生的感应电动势恒定,但电路中电阻是随运动而增加的据欧姆定律可得,电路中的电流是减小的. (3)设任意时刻沿运动方向的位移为s ,如图所示:

则3

2

s x =

安培力与位移的关系为2200233A B v x B v s

F BIx r ===

AC 棒在DEG 上滑动时产生的电热,数值上等于克服安培力做的功,

又因为A F s ∝,所以22

03032212

A

B L v F Q L +=?=

因为导体棒从D 至EG 过程中,导体棒的电阻始终是回路中电阻的

13

, 所以导体棒中产生的焦耳热22033B L v Q

Q '==

9.如图所示,在水平地面MN 上方空间存在一垂直纸面向里、磁感应强度B =1T 的有界匀强磁场区域,上边界EF 距离地面的高度为H .正方形金属线框abcd 的质量m =0.02kg 、边长L = 0.1m (L

(1)若线框从h =0.45m 处开始下落,求线框ab 边刚进入磁场时的加速度; (2)若要使线框匀速进入磁场,求h 的大小;

(3)求在(2)的情况下,线框产生的焦耳热Q 和通过线框截面的电量q . 【答案】(1)22.5m/s a = (2)0.8m h = (3) 0.02J Q =,0.05C q = 【解析】 【分析】 【详解】

(1)当线圈ab 边进入磁场时,由自由落体规律:123m/s v gh == 棒切割磁感线产生动生电动势:1E BLv =

通电导体棒受安培力0.15N BLE

F BIL R

=== 由牛顿第二定律:mg F ma -=

解得:22.5m/s a =

(2)匀速进磁场,由平衡知识:mg F = 由2v gh BLv

I R

=

,代入可解得:0.8m h =

(3)线圈cd 边进入磁场前线圈做匀速运动,由能量守恒可知重力势能变成焦耳热

0.02J Q mgL ==

通过线框的电量2

0.05C BL q It R R

φ?====

【点睛】

当线框能匀速进入磁场,则安培力与重力相等;而当线框加速进入磁场时,速度在增加,安培力也在变大,导致加速度减小,可能进入磁场时已匀速,也有可能仍在加速,这是由进入磁场的距离决定的.

10.如图所示,导线全部为裸导线,半径为r 的圆内有垂直于平面的匀强磁场,磁感应强度为B ,一根长度大于2r 的导线MN 以速度v 在圆环上自左向右匀速滑动,电路的固定电阻为R ,其余电阻忽略不计.试求MN 从圆环的左端到右端的过程中电阻R 上的电流强度的平均值及通过的电荷量.

【答案】2Brv R π2

B r R

π

【解析】

试题分析:由于ΔΦ=B·ΔS =B·πr 2,完成这一变化所用的时间2t=r v

? 故2

Brv

E t π?Φ=

=? 所以电阻R 上的电流强度平均值为2E Brv

I R R

π=

= 通过R 的电荷量为2

·B r q I t R

π?==

考点:法拉第电磁感应定律;电量

11.桌面上放着一个单匝矩形线圈,线圈中心上方一定高度上有一竖立的条形磁体(如图),此时线圈内的磁通量为0.04Wb 。把条形磁体竖放在线圈内的桌面上时,线圈内磁通量为0.12Wb 。分别计算以下两个过程中线圈中的感应电动势。 (1)把条形磁体从图中位置在0.5s 内放到线圈内的桌面上;

(2)换用100匝的矩形线圈,线圈面积和原单匝线圈相同,把条形磁体从图中位置在0.1s 内放到线圈内的桌面上。

【答案】(1)0.16V ;(2)80V 【解析】 【分析】 【详解】

(1)根据法拉第电磁感应定律,把条形磁体从图中位置在0.5s 内放到线圈内的桌面上线圈中的感应电动势

0.120.04

V 0.16V 0.5

E t ??-=

==? (2)换用100匝的矩形线圈条形磁体从图中位置在0.1s 内放到线圈内的桌面上的感应电动势

0.120.04100V 80V 0.1

E n

t ??-==?=?

12.如图1所示,固定于水平面的U 形导线框处于竖直向下、磁感应强度为B 0的匀强磁场中,导线框两平行导轨间距为l ,左端接一电动势为E 0、内阻不计的电源.一质量为m 、电阻为r 的导体棒MN 垂直导线框放置并接触良好.闭合开关S ,导体棒从静止开始运动.忽略摩擦阻力和导线框的电阻,平行轨道足够长.请分析说明导体棒MN 的运动情况,在图2中画出速度v 随时间t 变化的示意图;并推导证明导体棒达到的最大速度为

0m E v B l

=

【答案】导体棒做加速度逐渐减小的加速运动,达到最大速度时,加速度

a =0;

【解析】 【分析】

导体棒在向右运动的过程中会切割磁感线产生感应电动势,与回路中的电源形成闭合回路,根据闭合电路的欧姆定律求得电流,结合牛顿第二定律判断出速度的变化; 【详解】

解:闭合开关s 后,线框与导体棒组成的回路中产生电流,导体棒受到安培力开始加速运动,假设某一时刻的速度为v ,此时导体棒切割产生的感应电动势为E Blv '= 初始阶段0E E '< 回路中的电流为:000E E E B lv

I r r

-'-=

= 导体棒受到的安培力为0

00·E blv

F B Il B l r

-==,方向水平向右 因此,导体棒的加速度为000·B l E B lv F a m m r

-==,方向水平向右,即与v 方向相同,随速度的增加,加速度减小,但仍与v 同方向,因此,导体棒做加速度逐渐减小的加速运动,达到最大速度时,加速度a =0,即有:0m E BIv =,解得0

0m E v B l

=

图象为

13.如图所示,电阻1r =Ω的金属棒ab 放在水平光滑平行导轨PQMN 上(导轨足够长),ab 棒与导轨垂直放置,导轨间间距30cm L =,导轨上接有一电阻5R =Ω,整个导轨置于竖直向下的磁感强度1T B =的匀强磁场中,其余电阻均不计.现使ab 棒以速度

2.0m/s v =向右作匀速直线运动,试求:

(1)ab 棒中的电流大小 (2)R 两端的电压U

(3)ab 棒所受的安培力大小ab F 和方向.

【答案】(1)0.1A ;(2)0.5V ;(3)0.03N ;方向水平向左

【解析】(1)金属棒ab 切割磁感线产生的感应电动势为

10.32V 0.6V E BLv ==??=,电路中的电流为0.6

A 0.1A 15

E I R r =

==++. 由右手定则判断可以知道ab 中感应电流方向由b a →. (2)金属棒ab 两端的电压为0.15V 0.5V ab U IR ==?=;

(3)金属棒ab 所受的安培力为10.10.3N 0.03N A F BIL ==??=,由左手定则知方向水平向左.

14.如图甲所示,两竖直放置的平行金属导轨,导轨间距L =0.50m ,导轨下端接一电阻R =5Ω的小灯泡,导轨间存在一宽h =0.40m 的匀强磁场区域,磁感应强度B 按图乙所示规律变化,t =0时刻一金属杆自磁场区域上方以某一初速度沿导轨下落,t 1时刻金属杆恰好进入磁场,直至穿越磁场区域,整改过程中小灯泡的亮度始终保持不变.已知金属杆的质量m =0.10kg ,金属杆下落过程中始终保持水平且与导轨良好接触,不计金属杆及导轨的电阻,g 取10m/s 2.求:

(1)金属杆进入磁场时的速度v ; (2)图乙中t 1的数值;

(3)整个过程中小灯泡产生的总焦耳热Q .

【答案】(1)5m/s (2)0.04s (3)0.6J 【解析】

解:(1)金属杆进入磁场时受力平衡mg BIL =

E I R

=

E BLv =

整理得22

5m /s mgR

v B L =

= (2)根据法拉第电磁感应定律1

B

E Lh t ?=

? 0

1

B B BLv Lh t -=

? ()0100.04s

B B h t B v

-=

=

(3)整个过程中小灯泡产生的总焦耳热()2

12E Q t t R =+

20.08s h

t v

=

= 解得:0.6J Q =

15.两根足够长的光滑直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,且接有阻值为R 的电阻。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆MN 由静止沿导轨开始下滑.求:

(1)当导体棒的速度为v (未达到最大速度)时,通过MN 棒的电流大小和方向; (2)导体棒运动的最大速度. 【答案】(1) Blv

I R =,方向为从N 到M (2)22

sin m mgR v B L θ= 【解析】 【详解】

(1)当导体棒的速度为v 时,产生的感应电动势为E Blv = 回路中的电流大小为Blv

I R

=

由右手定则可知电流方向为从N 到M

(2)导体棒在磁场中运动时,所受安培力大小为

22B L v

F ILB R

== 由左手定则可知,安培力方向沿斜面向上当导体棒的加速度为零时,速度最大即:

22sin m

B L v mg R

θ=

可解得最大速度为:

22

sin m mgR v B L θ

=

答:(1)当导体棒的速度为v (未达到最大速度)时,通过MN 棒的电流大小为Blv

I R

=,方向为从N 到M ;

(2)导体棒运动的最大速度22

sin m mgR v B L θ

=

相关主题
文本预览
相关文档 最新文档