当前位置:文档之家› Low-loss reconfigurable OADM for metro core optical network

Low-loss reconfigurable OADM for metro core optical network

Low-loss reconfigurable OADM for metro core optical network
Low-loss reconfigurable OADM for metro core optical network

Low-loss recon?gurable OADM for metro

core optical network

C.A.Al Sayeed,A.Vukovic,O.W.W.Yang and Heng Hua

Abstract:Recon?gurable optical add/drop multiplexers(ROADMs)will play a key role in

next-generation dynamically provisioned wavelength networks.Existing ROADM subsystems,

manufactured with different designs and technologies,are suffering from either high insertion

losses,especially for the passing-through(express)-channels,or high manufacturing costs that

are preventing their rapid deployment in networks.An architecture for an ROADM subsystem

that integrates the best features of the latest available ROADM designs is proposed.The proposed

ROADM subsystem,denoted as a Hybrid-ROADM,exhibits a lower insertion loss( 7dB for

express-channels)than existing ROADMs while offering simpli?cation and cost bene?t.A

metro network testbed has been con?gured to demonstrate and compare the performance of the

proposed Hybrid-ROADM module against currently available ROADM subsystems.The obtained

results indicate that our Hybrid-ROADM shows better performance in metro networks than the

latest available ROADM subsystems and will reduce the overall network operating costs.

1Introduction

With increasing demands for bandwidth-hungry applications,equipment vendors are trying to develop new technologies that will build networks with enormous capacities while offering services to customers at lower costs.This is pushing towards adoption of recon?gurable all-optical networks,which combined with dense wave-length division multiplexing(DWDM)provides service ?exibility,dynamic provisioning and reduction of network capital and operating expenditures(OPEX).

The present metro wavelength division multiplexed (WDM)networks are mainly using?xed optical add/drop multiplexers(OADMs)in which the number of wavelengths in the network and their service patterns are?xed and pre-determined.This imposes a signi?cant limitation on the service providers in the management of their optical net-works,especially in handling churns.The lack of?exibility and slow service provisioning are the main challenges of building the dynamically provisioned network of future. Therefore the role of development and integration of recon?gurable optical add/drop multiplexers(ROADMs) into the present WDM networks is of critical value.This paper describes two ROADM subsystems,based on today’s state-of-the-art technologies(Section2).Moreover,it elabor-ates a new proposed ROADM structure(Hybrid-ROADM) based on combining the features of the previous two. Section3elaborates proposed Hybrid-ROADM subsystem architecture in more details,and depicts its comparison with other two ROADM architectures.Section4demon-strates the integration of the proposed Hybrid-ROADM in a metro network testbed,and characterises and compares its performance with other ROADM modules.Section5 concludes the paper.

2Architecture of ROADM subsystems

An ROADM can be de?ned as an optical module capable of adding/dropping or passing through(express)any or all wavelengths present in the DWDM signal.An ROADM offers pay-as-you-grow capability and?exibility on the provisioning of wavelengths regardless of how the network changes.It effectively alleviates the need for service provi-sioning when new services are added to the network.In addition,ROADM technology enables the possibility of developing transparent ring-to-ring interconnection[1] among metro ring networks that will effectively alleviate the use of costly optoelectronic regenerators within networks.

Fig.1describes a functional block diagram of an ROADM subsystem[1–6].ROADM module can be built using micro-electromechanical systems(MEMS)[6], liquid crystal[7]or planar lightwave circuit(PLC)-based technologies[8,9].

In our paper,we have discussed two ROADM subsystems: (a)PLC-based ROADM and(b)wavelength selective switch (WSS)-based ROADM.By analysing their advantages, potential applications and their drawbacks,we have proposed a new structure based on combining the features of the previous two–Hybrid-ROADM subsystem.Although the focus of this paper is on the proposed hybrid structure, the other two will be described as well.

The PLC-based ROADMs have become popular because of their simpler manufacturing approach[1].However,the major drawbacks of the PLC-based structures are their high insertion losses,especially for express-channels (10–13dB)[1,8,9],while all ports in their drop and add modules are wavelength-speci?c(coloured ports).This imposes the biggest limitation on PLC-based coloured ROADM modules where customers always need to be connected between them using speci?c channels.

#The Institution of Engineering and Technology2007

doi:10.1049/iet-opt:20060092

Paper?rst received25th October2006and in revised form31st January2007 C.A.Al Sayeed and O.W.W.Yang are with the School of Information Technology and Engineering,University of Ottawa,Ontario,Canada K1N6N5 A.Vukovic and Heng Hua are with the Communications Research Centre (CRC),3701Carling Avenue,Ottawa,Ontario,Canada K2H8S2

E-mail:calsayee@site.uottawa.ca

The WSS-based colourless ROADMs [10–12]are one of the most recently introduced architectures that combine the features of MEMS technology.However,in order to build a colourless (any wavelength to any port)ROADM subsys-tem,two WSS modules are required [12]–one for the add and the other for the drop functions.A single WSS imposes insertion loss ( 5.5dB)for express-channels,but the combination of two WSS modules increases this loss to at least 11dB [11].The WSS-based module also integrates more devices than its PLC counterpart and the integration of all of its lightpaths over the silicon wafer makes this ROADM subsystem more costly than the previous PLC architecture.

Hence among the two most popular ROADM subsystems,the PLC concentrates only on a simpler manu-facturing approach having coloured ports and reduced costs,whereas the WSS-based colourless ROADM features colourless ports irrespective of cost and manufacturing constraints.

In this paper,we present a Hybrid-ROADM subsystem that combines the features of both PLC and WSS technol-ogies and innovative architecture into integrated solution.It consists of one WSS and passive elements [splitter /com-biner and arrayed waveguide gratings (AWGs)or star coupler].Such a Hybrid-ROADM architecture provides less loss ( 7dB)for express-channels when compared with the other existing structures and also affords the

advantage of having colourless connectivity either for dropped or added channels.Hybrid-ROADM architecture is described in the following section.Furthermore,a metro network testbed is designed to demonstrate the performance of the proposed Hybrid-ROADM module in a typical metro network environment,and is compared with the performance of the latest PLC-(coloured)[9]and WSS-based (colourless)ROADM [12]subsystems.All three variance of the ROADMs were custom-made (prototypes).3Hybrid-ROADM architecture 3.1

Internal structure

Fig.2shows our proposed architecture for an N-channel Hybrid-ROADM subsystem.The hybrid architecture con-tains a demultiplexer for wavelength-speci?c drop ports (for all N channels)followed by a WSS-based recon?gur-able add-module that provides the features of (M 21)number of colourless add ports.

The functional technologies of our proposed hybrid archi-tecture depends on the integration of AWGs (implementing all multiplexers and demultiplexers),couplers,optical switches,variable optical attenuators (VOAs)and tap moni-tors for monitoring optical power in desired locations.The ROADM module contains Mx1optical switches that can be manufactured using free-space MEMS technology,whereas the rest of the devices can be developed using PLC technology.The incoming optical signals are usually brought to the Line-In input port.A fraction of the input signal is diverted towards AWG_1that basically acts as a receiving demultiplexer to drop the received channels.The rest of the input signal is carried towards AWG_2that separates it into N number of channels.Each channel contains an Mx1MEMS switch that provides very low-loss hitless switching followed by a VOA and a tap monitor for power adjustment purposes.Each add port is connected with an AWG that provides the

connectivity

Fig.1Functional ROADM module block

diagram

Fig.2Proposed architecture for Hybrid-ROADM module

with all channel-speci?c switches and makes the designated add port colourless.Multiple colourless add-ports are provi-sioned that provide higher degrees of freedom for handling customers.The Mx1switches select either the express-channel or any of the add-channels for their output.Finally,the express channels and the newly added channels(if any)come directly through the Line-Out output port.

As the optical paths of both the WSS and the AWGs are always reversible,the low-loss Hybrid-ROADM subsystem architecture can also be implemented using the WSS as a recon?gurable drop module followed by a monitored multi-plexer for the add module,as shown in Fig.3,in which case the colourless ports are all drop ports.

For the rest of this paper,we consider only the hybrid architecture proposed in Fig.2in order to compare its performance with other two ROADM subsystems.All three ROADM subsystems are custom-designed.

3.2Power-balancing feature

In a DWDM network with closely spaced channels,it is very important to maintain equal power levels among differ-ent channels.Especially,in dynamically provisioned optical networks with multiple adding and dropping of wave-lengths,there will be a signi?cant mismatch in the optical power levels and hence in the optical signal-to-noise ratio level among different channels.Because of this irregular optical power level,the high-powered channels will introduce more nonlinear effects and cross-talks to the neighbouring low-powered ones.Moreover,each ampli?er in a network works within a particular input power range. The combined power of all channels arriving at the input of the ampli?er can be out of that operating range because of the irregularity at the individual channel power level. Hence,to avoid such anomalies,dynamic power-balancing features are needed to be introduced into the subsystem.For a fewer number of channels(channels4–8),the power levels may be adjusted manually.However,when consider a metro network scenario with32channels or more where wavelengths will be added/dropped dynamically,then the importance of this auto-power balancing feature can be realised.A common control interface is developed for the Hybrid-ROADM architecture that provides the control over the Mx1MEMS switches and VOAs placed within the recon?gurable add module.It can also be used to monitor the power level of different channels by placing tap monitors on desired locations.With the help of VOAs and internal tap monitors,it is possible to develop a dynamic power-balancing system that will equalise the power levels between different express-and add-channels.

3.3Comparison with other architectures

The performance of our proposed Hybrid-ROADM archi-tecture is compared with the coloured PLC-[9]and WSS-based colourless ROADM subsystems[12]in terms of insertion losses,operational?exibility and costs. Insertion loss:For the hybrid structure shown in Fig.2,the integrated recon?gurable WSS-add module provides a loss of around5.5dB for the express-channels,whereas for add-channels the loss is around6.5dB.We are using a 30%/70%splitter that diverts70%of the total power towards the recon?gurable add module,thus making the total loss for express-channels at around7dB.The AWG_1at the passive drop module provides a maximum insertion loss of3.5dB that makes the total loss for drop channels as8.7dB.

A comparison with other structures in terms of insertion losses is shown in Fig.4.Our proposed hybrid architecture certainly provides a lower loss for express-channels ( 7dB).For add-channels,the insertion loss(6.5dB)is the same as that of the WSS-based colourless ROADM sub-system[12],whereas for drop-channels(8.7dB),it is almost the same as that of the PLC-based coloured ROADM subsystem[9].However,instead of the30%/ 70%splitter,it is possible to use a splitter with different power ratios depending on the type of application for which the ROADM will be used.For example,we can install a50%/50%splitter that will divert50%of the total power towards the recon?gurable add module.In such case,the loss for express-channels will be increased to8.5dB,whereas for drop-channels the loss will be reduced to6.5dB.

Operational?exibility and cost:Although the proposed Hybrid-ROADM architecture increases the design com-plexity and manufacturing cost when compared with the PLC-ROADM[9],it certainly introduces the advantage of having colourless add or drop ports.Such a hybrid design will be suitable and cost-effective for networks having high channel count applications(16–80channels).With the coloured PLC-ROADM,?bre connections are always port-speci?c that ultimately increases the OPEX for the overall network.However,with the proposed Hybrid-ROADM architecture(shown in Fig.2),service providers would now be able to transmit a number of wavelengths through a single colourless add port.Hence,the proposed design will de?nitely reduce the total number of ports in a network and thus its overall network operating costs (OPEX).

When compared with the WSS-based colourless ROADM subsystem[12],the proposed hybrid architecture will de?nitely reduce the cost almost by half as it integrates only a single WSS with an AWG with reduced loss and design complexity.However,the hybrid design loses the ?exibility of having all-colourless ports and hence contains more ports when compared with the WSS-based colourless ROADMs.

4Proof of the concept in an experimental network

In order to characterise the performance of our proposed Hybrid-ROADM subsystem in a metro network environ-ment and compare its performance with the PLC-and the WSS-based ROADM modules,we have designed and implemented a testbed that will be described in the following section.We concentrate only on obtaining the maximum?bre span after the ROADM module before placing the?rst optical ampli?er in the

network. Fig.3Alternative architecture for Hybrid-ROADM subsystem

4.1Metro network testbed

The implemented metro network testbed is shown in Fig.5.The experimental measurements are done initially with a 5-channel Hybrid-ROADM subsystem consisting of three colourless add-ports and then it is replaced by a 16-channel coloured PLC-[9]and by a WSS-based colour-less ROADM subsystem [12],respectively.Live video streams are transmitted through the system using four C-band (conventional band)channels (channels 5,7,9and 11,at 1547.72,1549.32,1550.92and 1552.52nm,respectively),whereas one channel (channel 8at

1550.12nm)carries the signal from a bit error rate tester (BERT).All are considered as express-channels in order to optimise the network parameters for the worst-case scenario.

An MEMS-based 8?8Photonic Cross-Connect (PXC#1)is installed in the system only to add the ?exibility of changing the express /add subsets,whereas PXC#2provides the ?exibility of receiving any channels from the drop /express subsets.Two AWGs (Mux 1and DeMux 2)are set up in the testbed in order to provide multiplexed input to the ROADM node and to extract express-channels at the receiving end,respectively.Single-mode

?bre

Fig.4Loss comparison among different ROADM

architectures

Fig.5Testbed for Hybrid-ROADM architecture (block diagram)

(SMF-28)associated with an erbium-doped?bre ampli?er (EDFA)are installed after the ROADM module.Tap moni-tors(1%)are placed to monitor the performance of the channels at different locations with the help of an optical channel performance monitor(OCPM)[13]and?nally the demultiplexed channels are switched to a set of receivers (Rxs)and to a BERT as shown in Fig.5.A common control interface is developed in order to control the ROADM module,the gain of the EDFAs and the switching of the PXCs so that a single user can control the channels all over the network from a single point.The speci?cations of the installed optical equipment are listed in Table1, whereas a snapshot of the implemented testbed is presented in Fig.6.

4.2Measuring factors

The system performance is evaluated in terms of two measures:the Q-factor and the optical signal-to-noise ratio(OSNR).The Q-factor can be obtained from the bit error rate(BER)of the received signal using the relation[1]

Q?

???

2

p

erfcà1(2BER)(1) Obviously,the higher the value of the Q-factor,the better the BER.In order to satisfy the forward error correction (FEC)requirement,the minimum Q-factor value is taken to be7.94(BER’10215)[14].In the experimental measurements,the BERT is primarily used to measure the BER of the optical signals.The measured BER is then con-verted to a Q-factor using(1)which is an easier and a better representation of BER.However,obtaining a steady BER value in real-time measurements for the complete sequence of the transmitted pattern(from BERT)usually takes a very long time[15–16](e.g.in our metro network,testbed with a pseudo-random bit sequence of22321and transmitting at 2.48Gbps,only six errors were observed in one of our measurements over a period of48h and the BER value was still not stable).

The OSNR is another important measure associated with a given optical signal.In our measurements,an OCPM[13]

Table1:Optical equipment speci?cation a

Optical equipment Characteristics Values

proposed Hybrid-ROADM subsystem max.number of channels32(1531.90–1556.55nm)

channel spacing,GHz100

insertion loss express:7dB;add:6.5dB;drop:8.7dB

adjacent channel cross-talk,dB25

chromatic dispersion,ps/nm10

polarisation mode dispersion,ps0.5

PLC-based coloured ROADM subsystem[9]max.number of channels16(1544.52–1556.55nm)

channel spacing,GHz100

insertion loss express:10dB;add:6dB;drop:9dB adjacent channel cross-talk,dB25

chromatic dispersion,ps/nm10

polarisation mode dispersion,ps0.7

WSS-based(1?9-port)colourless ROADM subsystem[11,12]max.number of channels32(1531.90–1556.55nm)

channel spacing,GHz100

insertion loss express:11dB;add:6.5dB;drop:6.5dB adjacent channel cross-talk,dB25

chromatic dispersion,ps/nm10

polarisation mode dispersion,ps0.5

transmitter(Tx)transmitted power,dBm23to26

bit rate,Gbps 2.48

pseudo-random bit sequence22321 photonic cross-connect(PXC)ports8?8

insertion loss,dB 3.7

adjacent channel cross-talk,dB50

AWG number of channels16

adjacent channel cross-talk,dB23

insertion loss,dB 3.5

single mode?bre(SMF-28)propagation loss,dB/km0.2

chromatic dispersion,ps/nm/km17

polarisation mode dispersion,ps/km1/20.2

EDFA gain,dB20

noise?gure,dB,6

operating power,dBm217to226 receiver(Rx)sensitivity,dB240

a Individual elements are tested prior to testbed implemented to ensure spec veri?cation

is used to measure the OSNR of the optical signals in real-time.4.3

Performance comparison

The performances of the optical signals travelling at 2.48Gbps through the SMF-28?bre span are depicted in Figs.7and 8.For each of the ROADM subsystems,the performances (both Q -factor and OSNR)decrease with the increase in ?bre span as expected.

As shown in Fig.7,the optical signals coming out of the Hybrid-ROADM module is strong enough to travel a signi?-cantly greater distance ( 65km)before placing the ?rst optical ampli?er in the network.At this point,the Q -factor of the received signal is 7.7(BER ’10215)that satis?es the latest FEC requirement.However,to keep the same Q -factor (’7.7)with the PLC-(coloured)and WSS-based (colourless)ROADM subsystems,the maximum possible ?bre span is around 38and 24km,respectively,as evident

from Fig.7.Note that for the colourless WSS-based subsys-tem,the performance is reduced as the express-channels experience higher insertion loss not only from the complete subsystem ( 11dB),but also from the ?bres and connectors joining the two WSS modules (loss 1dB).

As evident from Fig.8,the OSNR of the BERT channel coming out of the Hybrid-ROADM module decreases with the increase in ?bre-span and maintains a good signal-to-noise ratio level ( 24dB)even after travelling 65km in the metro network testbed.This is much better than the performance (OSNR 18dB at 65km)of the PLC-(coloured)and the WSS-based (colourless)ROADM subsystems.Hence the proposed Hybrid-ROADM module comes with its unique low-loss features that will enable service providers to achieve signi?cantly greater ?bre spans (max.65km)before any further ampli?cation for their next-generation metro networks while maintaining a good OSNR level for their transmitted channels,and also satisfying the latest carrier-grade requirement.5

Conclusion

A low-loss Hybrid-ROADM subsystem architecture has been proposed and experimentally demonstrated.An architecture consisting of a WSS and passives (splitter and AWG)integrates the best features of the latest PLC-(coloured)and WSS-based (colourless)ROADM modules.In comparison with PLC-based ROADMs,the Hybrid-ROADM offers colourless drop or add ports,lower insertion losses for express channels,all of that at approximately the same cost.In comparison with WSS-based colourless ROADMs,the proposed Hybrid-ROADM solution demon-strated lower insertion losses for express channels at approximately the half of the cost (along with losing some ?exibility of all-colourless ports).

The proposed Hybrid-ROADM is quite suitable for high channel count applications without being accompanied by pre-and post-optical ampli?ers.The express-channels would now be able to travel a signi?cantly greater metro network distance before ampli?cation.The Hybrid-ROADM also comes with its power-balancing features that will play a key role in next-generation dynamically provi-sioned wavelength network.6

Acknowledgments

This research was supported jointly by the Communications Research Centre (CRC),Ottawa,Ont.,Canada,and the Natural Sciences and Engineering Research Council (NSERC),Canada,under the Dynamically

Provisioned

Fig.6Testbed implemented at the Communications Research Centre (CRC),Ottawa,Canada (photo of

equipment)

Fig.7Performance comparison among the ROADM architec-tures in terms of Q-factor against the associated ?bre

span

Fig.8OSNR against the associated ?bre span for different ROADM architectures

Wavelength Network research program.It was also supported?nancially in part through the Agile All-Photonic Networks(AAPN)research network with its industrial and government partners.

7References

1Al Sayeed, C.A.,Vukovic, A.,and Yang,O.:‘Performance optimization of PLC-based ROADM subsystem in ring-to-ring interconnection’.Proc.IEEE https://www.doczj.com/doc/1b7720908.html,m.(ICC’06),Istanbul, Turkey,June2006,pp.2764–2769

2Rhee,J.K.,Tomkos,I.,and Li,M.J.:‘A broadcast-and-select OADM optical network with dedicated optical-channel protection’,IEEE/ OSA J.Light.Tech.,2003,21,(1),pp.25–31

3Soole,J.B.D.,Chand,N.,Earnshaw,M.P.,Kojima,K.,Pafchek,Ling M., and Swaminathan,V.:‘High-performance operation of monolithically-integrated multipurpose recon?gurable optical add-drop multiplexer’,IEE Electron.Lett.,2003,39,(5),pp.436–437 4Boskovic,A.,Sharma,M.,Antoniades,N.,and Lee,M.:‘Broadcast and select OADM nodes application and performance trade-offs’.

Proc.OFC’02,Anaheim,CA,USA,March2002,pp.158–159

5Rhee,J.K.,Tomkos,I.,Vasilyev,M.,and Nederlof,L.:‘Ultra-long-haul DWDM network studies with cost-effective recon?gurable OADMs’,Proc.SPIE,2002,4872,pp.121–128

6Li,J.,Liu,A.Q.,Zhang,Q.X.,Balasubramanian,N.,and Lu,C.:‘A Hybrid recon?gurable OADM using MEMS switch and FBG’, Proc.SPIE,2002,4907,pp.9–15

7Ertel,J.,Helbing,R.,Hoke,C.,Landolt,O.,Nishimura,K.,et al.:‘Design and performance of a recon?gurable liquid-crystal-based

optical add/drop multiplexer’,IEEE/OSA J.Light.Tech.,2006,24,

(4),pp.1674–1680

8JDS Uniphase Corporation:‘40channel integrated PLC recon?gurable optical add/drop multiplexer’.http://products.jdsu.

com/assets/public/pdf/40plcroadm_ds_cms_ae_020806.pdf,accessed September2006

9DuPont Photonics:‘iROAD TM integrated recon?gurable optical add drop multiplexer module’.https://www.doczj.com/doc/1b7720908.html,/ down-loads/iROAD_datasheet.pdf,accessed September2006

10Keyworth, B.P.:‘ROADM subsystems and technologies’.Proc.

OFC’05,Anaheim,CA,March2005,vol.3,pp.4–7

11Metconnex,Inc.:‘WSS5400product brief’.http://www.metconnex.

com/Products-page/products.htm,accessed September2006

12Metconnex,Inc.:‘ROADM architectures and implementations’.http:// https://www.doczj.com/doc/1b7720908.html,/Products-page/roadm.htm,accessed September 2006

13Vukovic,A.,Wu,J.,Savoie,M.,Hua,H.,Campbell,S.,and Zhang,

H.:‘Optical network testbed–key enabler in developing current

and future network solutions’,IEEE/OSA J.Light.Tech.,2005,23,

(10),pp.2839–2845

14Al Sayeed,C.A.,Vukovic,A.,and Yang,O.:‘Transparent ring-to-ring interconnection for metro core optical network’.Proc.IEEE https://www.doczj.com/doc/1b7720908.html,.Serv.Res.(CNSR’06)Conf.,NB,Canada,May2006, pp.19–25

15Wang,X.,Kiamilev,F.,Ping,G.,Ekman,J.,Papen,G.C.,et al.:‘A2-Gb/s optical transceiver with accelerated bit-error-ratio test capability’,IEEE/OSA J.Light.Tech.,2004,22,(9), pp.2158–2167

16Gumaste, A.,and Antony,T.:‘WDM network design-1:DWDM network designs and engineering solutions’(Cisco Press,2002,1st edn.),p.120

G20风镐参数、工作原理说明

G20风镐 G20风镐广泛适用于岩石破碎、路面破碎、房屋拆迁、市政建设等作业场合,是理想的气动工具。 G20风镐产品简述及构成 G20风镐是手持的风动工具,由配气机构、冲击机构和镐钎组成。该产品借助压缩空气由管状分配阀轮流分配于缸体二端,使锤体进行入复冲击运动,冲击镐钎尾部,使镐钎打入岩石或矿层中,至使分裂成块。G20风镐整机具有重量轻、冲击功率大,结构简单、操作灵活、维护保养方便等特点。 G20风镐产品用途 G20风镐主要用于采矿、筑路,还可用于钢筋混凝土建筑、水泥、冻土层、冰层、软矿石、软岩石、道路施工的破碎作业,土木工程及地下建筑、人防施工等工作中用以推毁坚固或冻结的地层,市镇建设中打碎旧路面、工矿企业设备安装中破坏原基础等。 G20风镐适用范围

1:煤矿中采煤,刨柱脚坑,开水沟。 2:开采软岩石。 3:建筑安装工程破碎混凝土,冻土及破冰。 4:机械工业中需要产生冲击运动的场合,如拖拉机,坦克履带销钉的装卸。 G20风镐的参数 机长:556mm 机重:20kg 使用气压:0.4-0.6MP 耗气量:27L/S 冲击能:62J 冲击频率:18Hz 缸体直径:40mm 气管直径:19mm G20风镐的原理

G20风镐由配气机构、冲击机构和镐钎等组成。冲击机构是一个厚壁气缸,内有一冲击锤可沿气缸内壁作往复运动。镐钎的尾部插入气缸的前端,气缸后端装有配气阀箱。在进风管和配气阀之间有一柱塞阀控制气路,柱塞阀在螺旋弹簧作用下处于切断气路的常闭状态。在气缸壁的四周有许多纵向气孔,压缩柱塞阀的弹簧而接通气路,这些气孔一端通配气阀,推压手柄套筒,另一端通入气缸,各气孔的长度根据冲击锤的运动要求配置,以便轮流进气或排气,柱塞阀在螺旋弹簧作用下处于切断气路的常闭状态。使冲击锤在气缸内有规律地往复运动。冲击锤向前运动时,锤头打击钎尾;冲击锤向后运动时,气缸内的气体封闭在配气阀箱内,形成柔性缓冲垫层,气缸内的气体封闭在配气阀箱内,待重新配气后再向前冲击。风镐的启动装置位于手柄套筒内。风镐作业时,使镐钎顶住施工面,另一端通入气缸,推压手柄套筒,使冲击锤不断往复运动,打击钎尾,破碎施工体。 G20风镐实物图

lovestory歌词中英文对照

We were both young when I first saw you 当我第一次看见你的时候,我们都还年轻 I close my eyes and the flashback starts 我闭上眼睛,一幕幕往事又在脑海中重现 I'm standing there on a balcony in summer air 我站在阳台上,空气里,浓浓的,是夏天的味道 See the lights, see the party, the ball gowns 看见灯火,看见热闹的舞会,华丽的盛装 See you make your way through the crowd 看见你穿越人群向我走来 And say hello 对我说“hello” little did I know 我却一无所知 That you were Romeo 当时我并不知道你是我的罗密欧 You were throwing pebbles 在你抛砖引玉向我示爱之后 And my daddy said “stay away from Juliet .” 我爸爸气急败坏地叫你离我远一点 And I was crying on the staircase 我却蜷坐在楼梯间里偷偷地抹眼泪 Begging you “please don't go ” 祈求你不要离开 And I said 我说 Romeo, take me somewhere we can be alone 罗密欧,带我走吧,一起去到一个我们可以相依相偎的地方I'll be waiting, all there's left to do is run 我一直在等待(这一天),只有逃离才能让我们摆脱束缚You'll be the prince and I'll be the princess (到那时)我们就可以像王子和公主一样(快乐地在一起)It's a love story, baby, just say yes 这是多么美好的爱情故事呀,亲爱的,对吧 So I sneak out to the garden to see you 于是,我偷偷摸摸地溜到小花园去见你 We keep quiet 'cause we're dead if they knew 我们压抑着声息,被他们发现我们就死定了 So close your eyes 那么,闭上你的双眼 Escape this town for a little while 逃避这个喧嚣的尘世,即使只有如此短暂的一刻 Oh, oh, oh Cause you were Romeo, 正因为你的出现 I was a scarlet letter 我的生命才有了如此鲜艳的光彩 And my daddy said “stay away from Juliet ” 我爸爸气急败坏地叫你离我远一点 But you were everything to me

毕业论文凿岩机行走机构总体方案和零部件参数设计说明

凿岩机行走机构总体方案和零部件参数设计 第一章绪论 1.1 课题的研究背景和意义 随着社会的不断发展,手锤打眼已不能满足生产要求。通过前人的努力,1887 年制造出第一台轻型气动凿岩机,1938 年发明了气腿和碳化钨钎头。气腿式凿岩机和钎头的不断完善,对凿岩机的效率又提出了新的要求,20 世纪 60 年代初,开发了独立回转凿岩机,随后发展和完善了架柱式凿岩机和凿岩钻车。在凿岩机不断发展的同时,注意到随着孔深的增加,深孔凿岩接杆钎具联接处能量损失较大,提出了将凿岩机送入孔底的设想,因而发明了潜孔冲击器。 凿岩机是用来直接开采石料的工具,如图1所示。它在岩层上钻凿出炮眼,以便放入炸药去炸开岩石,从而完成开采石料或其它石方工程,此外,凿岩机也可改作破坏器,用来破碎混凝土之类的坚硬层。 图1 凿岩机 迄今为止,凿岩爆破是实施岩石破碎的主要方法,破碎岩石首先需要在岩(矿) 石中钻凿按爆破要求设计的炮孔。目前采用机械破碎岩石钻孔的方法主要有以下三种类型: (1) 冲击-旋转破碎岩石钻孔采用冲击载荷和转动钎具一定角度,并施加合理的推力来破碎岩石,适应在中硬、坚硬的岩石中钻孔。此类钻孔设备有潜孔钻机和凿岩机等;

(2) 旋转破碎岩石钻孔采用旋转式多刃钎具切割岩石,同时施加较大的推力破碎岩石。适应在磨蚀性小及中硬以下的岩石中钻孔。此类钻孔设备有电钻和旋转钻机; (3) 旋转-冲击破碎岩石钻孔,又称为碾压破碎钻孔。它是施加很大的轴压(一般大于300 kN) 给钻头,同时旋转滚齿传递冲击和压入力,滚齿压入岩石的作用比冲击作用大,通过旋转 - 冲击破碎岩石。此类穿孔设备最典型的是牙轮钻机。 凿岩机按其动力来源可分为风动凿岩机、燃凿岩机、电动凿岩机和液压凿岩机等四类。 1、风动凿岩机。如图2所示,风动式以压缩空气驱使活塞在气缸中向前冲击,使钢钎凿击岩石,应用最广。电动式由电动机通过曲柄连杆机构带动锤头冲击钢钎,凿击岩石。并利用排粉机构排出石屑,燃式利用燃机原理,通过汽油的燃爆力驱使活塞冲击钢钎,凿击岩石。适用于无电源、无气源的施工场地。液压式依靠液压通过惰性气体和冲击体冲击钢钎,凿击岩石。这些凿岩机的冲击机构在回程时,由转钎机构强迫钢钎转动角度,使钎头改变位置继续凿击岩石。通过柴油的燃爆力驱使活塞冲击钢钎,如此不断地冲击和旋转,并利用排粉机构排出石屑,即可凿成炮孔。 图2 风动凿岩机 2、燃凿岩机。如图3所示,燃凿岩机不用更换机头部零件,只需按要求搬动手柄,即可作业。具有操作方便,更加省时,省力,具有凿速快、效率高等特点。在岩石上凿孔,可垂直向下、水平向上小于45°垂直向下最深钻孔达六米。无论在高山、平地,无论在40°的酷热或零下40°的严寒地区均可进行工作,本机具有广泛的适应性。燃凿岩机具有矿山开采凿孔、建筑施工、水泥路面、

BMS系统方案

1.建筑自动化管理系统(BMS) 1.1 系统概述 大厦智能化工程的建设目标是要在为使用者提供高效、舒适、便捷及安全的环境的前提下,降低行政中心的经营费用和提高运行管理的智能化水平,并随着科学技术的发展和信息的积累,进一步提供增值服务,要求建筑空间、系统空间和功能空间具有高度的一致性和协调性,达到人与物、人与环境的协调与统一。而建筑自动化管理系统作为其智能化系统的重要组成部分,应从功能、技术、产品和工程等多方面进行系统集成,才能达到系统建设的预期目标,提高行政中心的经济效益和社会效益。 分析建筑自动化管理系统的实际功能需求,我们用SynchroBMS智能化管理平台来完成集成。 现代的智能化建筑提倡“以人为本”,构造i-Building系统。建筑自动化管理系统,简称BMS系统,BMS处于建筑物智能化管理系统(Intelligent Building Management System ,IBMS)的基础设备控制层和信息管理层之间,是沟通控制系统与信息管理系统的桥梁。建筑自动化管理系统作为建筑物机电设备运行信息的交汇与处理中心,对汇集的各类信息进行分析、归类、处理和判断,采用最优化的控制手段,对各类设备进行分布式监控和管理,使各子系统和设备始终处于有条不紊、协调一致的高效、被控状态下运行,在为建筑提供安全保证和舒适宜人的环境前提下,最大限度地节省能耗和日常运行维护管理费用,给业主一个较高的回报率。SynchroBMS系统保证将建筑建成先进的、现代化的智能中心。 1.2 设计依据 智能建筑设计标准(GB/T50314-2000) 弱电系统工程招标文件 1.3 设计原则 建筑自动化管理系统的总体设计原则是:以计算机网络为基础、软件为核心,通过信息交换和共享,将各个具有完整功能的独立分系统组合成一个有机的整体,提高系统维护和管理的自动化水平、协调运行能力及详细的管理功能,彻底实现功能集成、网络集成

(完整版)SeasonsintheSun_中文歌词翻译_中英对照

Seasons in the Sun_中文歌词翻译_中英对照 goodbye to you my trusted friend.再见了,我忠实的朋友. we're known each other we're 9 or 10.我们从孩提时就已相识相知. together we've climb hills trees.我们一起爬山上树. learned of love abc.一起学习. skinned our hearts skinned our knees.我们心意相通,情如手足. goodbye my friend it's hard to die.再见了,朋友们,我本不愿离去. when all the birds are singing in the sky.当所有的鸟儿在天空歌唱. now the spring is in the air.空气中弥漫着春天的气息. pretty girls are everywhere.到处是漂亮女孩. think of me and i'll be there.想我,我便与你同在. we had joy,we had fun.我们曾如此快乐. we had seasons in the sun.也曾充满阳光. but the hills that we climbed were just seasons out of time.那些日子已然逝去. goodbye papa please pray for me.再见了爸爸,请为我祈祷. i was the black sheep of the family.我是家里的害群之马. u tried 2 teach me right from wrong.你费尽心思教我明辨是非. too much wine too much song.我却沉醉于歌酒狂欢. wonder how i got along.真不知那些日子是如何度过. goodbye papa is hard 2 die.再见了爸爸,我本不愿离去. when all the birds are singing in the sky.当所有的鸟儿在天空歌唱. now the spring in the air.空气中弥漫着春天的气息. little children everywhere.孩子们到处嬉戏. when u see them i'll be there.当你看见他们,我便会与你同在. we had joy,we had fun.我们曾如此快乐. we had seasons in the sun.也曾有阳光季节. but the wild the song.但昔日的歌酒狂欢. like the season has all gone.犹如季节更迭已消逝. we had joy,we had fun.我们曾如此快乐. we had seasons in the sun.也曾有阳光季节. but the wild the song.但昔日的歌酒狂欢. like the season has all gone.犹如季节更迭已消逝. goodbye michelle my little one.再见了蜜雪儿,我的贝比. u gave me love help me find the sun.你给我爱,给我希望. and every time that i was down.当我意志消沉时.

系统集成、建筑智能化工程与弱电工程的概念与区别

系统集成工程、弱电工程、智能建筑工程的区别与联系 具有智能化建筑特点的工程,在近年许多的建筑建设项目中的投资幅度,呈逐年增长的趋势。但在这些建设项目中,有的并不能称之为智能建筑工程、充其量也仅仅是具有BA 性能的简单的系统集成工程,与智能建筑还相差甚远。还有的建设项目一提出做弱电系统工程,就要和系统集成、智能建筑联系起来。 可怎么联系?建设方又拿不出切实可行的技术规划方案,由集成商在那里做主导意见。有的建筑物面积大并形成了相关的建筑群,具有很强的综合性功能,本应该具有智能建筑特点的工程,但又往往舍不得投资,只是做几个相对独立的弱电工程来应付。缺少了构成完整的一体化网络管理系统,给今后的楼宇物业的科学管理以及资源的浪费带来很大的遗憾。有的建设方在考察了相关的工程和听了集成商的一番炒作后,觉得智能建筑很不错,不惜这方面的投资。但在经过使用一段时间后,觉得工程并没有发挥多么好的效益,相反,有时却成了管理者的负担。诸如此类问题。不禁令投资者和使用者困惑。究竟弱电工程是什么?系统集成是什么?智能建筑是什么?系统集成是否就是智能化建筑?如何对上述工程定义。如何把握好建设投资的适度,并在今后的使用过程中切实保证弱电各子系统以及建筑物的智能化管理的功能达到当初所预计的目的,无论对投资方还是使用方都是很重要的。 智能化工程及弱电系统工程,目前已经在一些重大的建设项目中与建筑结构、机电设备安装、内外装饰工程列为同等重要的单位工程。但是,由于智能化工程相对其他传统建设项目起步较晚,属于朝阳产业。同时涉及建设、信息、公安、消防、电信、广电等部门在上述工程界面内容的互为交叉难于协调,故疏于工程规范化标准的综合性的具体操作等现象。另外,在设计领域里,由于没有此项工程设计的取费依据及取费标准,而是将智能化技术含量很高的这样一个工程按建筑电气工程设计取费,故费率很低,加上很多设计院也缺少智能建筑的系统集成设计人员。所以国内大多甲级建筑设计院对智能建筑工程设计普遍没有积极性。这种设计的缺位,就往往由集成商取代了。集成商为取得工程的承包资格,常常免费为建设方设计,而集成商无论从设计经验和各专业图纸的协调以及图纸之间的纵横质量深度无法与正规设计院相比,造成设计图纸的质量普遍偏低现象。这种本末倒置的做法很是影响智能建筑工程的发展。所以在验收上述工程时,不难发现在对整体的传统建设项目验收过程中,智能化工程及弱电工程却成了验收中的弱项,甚至是空白点。这对建设方合同利益维护方面,显然处于下风。尤其对今后的使用方面带来很不好的影响。存在这方面的问题是多方面的原因,但有一点不可否认,那就是在工程的前期工作中,没有将上述工程准确的定位,究竟是建设几个单独的弱电工程?还时建设具有系统集成含有智能化特点的工程。因而较为准确的理解并清楚上述工程之间的区别和基本概念是很有必要的。 一、弱电工程是目前各类建筑建设项目的基本单元,已经成为各类建筑项目中不可缺少的建设子项目。既是目前住宅小区建设,它的弱电工程建设目前也得到了很大级别的提高,例如,由原来的有线电视、宽带网建设发展到小区的闭路电视监控、楼宇门禁、三表远抄及科学物业管理等。在随着绿色建筑的兴起,有可能家用电器集成与家用信息网络交

计算机的基本组成及工作原理

计算机的基本组成及工作原理(初中信息技术七年级) 讲课:教技12江旭美【教学设计学科名称】 计算机的基本组成及工作原理是广西教育出版社出版的初中 信息技术七年级教材第一册模块二<计算机的发展》第二节教学内容。 【学情分析】 初一新生刚入学,对信息技术硬件方面的知识知道可能不多,对硬件普遍 有一种神秘感,觉得计算机高深莫测,本节课就是要对电脑软硬件进行深入 “解剖”,并对工作原理做讲解,让学生了解电脑各组成部分,更好的使用 电脑。 【教材内容分析】 本节内容是广西教育出版社初中信息技术七年级第一册模块 二《计算机的发展》第二节教学内容。本节主要让学生掌握计算机的组成, 理解计算机系统中信息的表示,了解计算机的基本工作原理。本节内容以感 性认识为主,增强学生的计算机应用意识,通过大量举例及用眼睛看、用手摸、 用脑想,对计算机的基本组成、软硬件常识、发展有一定了解和比较清晰的认 识。通过学生亲手触摸计算机组件和教师运行自主制作的多媒体课件进行教 学,打破学生对计算机的“神秘感”,觉得计算机并不难学,而且非常实际,认 识到计算机只是普通技能,提高学生学习兴趣。 【教学目标】 知识与技能:掌握计算机的组成,理解计算机系统中信息的表示,了解 计算机的基本工作原理。 过程与方法:向学生展示拆卸的旧电脑部件及未装任何系统的电脑,通过 实际观察加教师讲授的方法完成本节内容。 情感态度与价值观:培养学生的科学态度,激发学生的想象能力和探索精 神。 【教学重难点分析】 教学重点:计算机的组成,计算机系统中信息的表示。 教学难点:计算机的基本工作原理。 【教学课时】 2课时 【教学过程】 图片图片 师:观察图片结合实物并思考:从外观上来看,计算机广.般由哪些部分组成? 生:讨论、思考、回答 [设计意图】通过图片的展示,同学们对计算机的硬件有了直观的印象, 初步的了解。 (二)自主学习,探究新知 1、先请同学们自己看书P17-P20内容,边看书边思考: ①完整的计算机系统由哪两部分组成?

seasonsinthesun_中文歌词翻译_中英对照

Seasons?in?the?Sun_中文歌词翻译_中英对照 goodbye to you my trusted friend.再见了,我忠实的朋友. we're known each other we're 9 or 10.我们从孩提时就已相识相知. together we've climb hills trees.我们一起爬山上树. learned of love abc.一起学习. skinned our hearts skinned our knees.我们心意相通,情如手足. goodbye my friend it's hard to die.再见了,朋友们,我本不愿离去. when all the birds are singing in the sky.当所有的鸟儿在天空歌唱. now the spring is in the air.空气中弥漫着春天的气息. pretty girls are everywhere.到处是漂亮女孩. think of me and i'll be there.想我,我便与你同在. we had joy,we had fun.我们曾如此快乐. we had seasons in the sun.也曾充满阳光. but the hills that we climbed were just seasons out of time.那些日子已然逝去. goodbye papa please pray for me.再见了爸爸,请为我祈祷. i was the black sheep of the family.我是家里的害群之马. u tried 2 teach me right from wrong.你费尽心思教我明辨是非. too much wine too much song.我却沉醉于歌酒狂欢. wonder how i got along.真不知那些日子是如何度过. goodbye papa is hard 2 die.再见了爸爸,我本不愿离去. when all the birds are singing in the sky.当所有的鸟儿在天空歌唱. now the spring in the air.空气中弥漫着春天的气息. little children everywhere.孩子们到处嬉戏. when u see them i'll be there.当你看见他们,我便会与你同在. we had joy,we had fun.我们曾如此快乐. we had seasons in the sun.也曾有阳光季节. but the wild the song.但昔日的歌酒狂欢. like the season has all gone.犹如季节更迭已消逝. we had joy,we had fun.我们曾如此快乐. we had seasons in the sun.也曾有阳光季节. but the wild the song.但昔日的歌酒狂欢. like the season has all gone.犹如季节更迭已消逝. goodbye michelle my little one.再见了蜜雪儿,我的贝比. u gave me love help me find the sun.你给我爱,给我希望. and every time that i was down.当我意志消沉时.

.BMS和IBMS的特点分析

1.概述 目前国内的大型建筑的系统集成最热门的话题之一就是IBMS,根据建设部最新的定义其全称为建筑集成管理系统。而如何实现IBMS集成,其具体的步骤和方式却没有明确规定,如何从基础的建筑管理系统(BMS)上升到IBMS集成就成为了关键。建筑集成IBMS作为建筑或建筑群的综合管理系统,仅从定义上就应该具备两个要素:集成和管理,如何集成和如何管理本文将做出一些探讨和研究。 目前业界对BMS和IBMS的概念和区别的划分和定义有些争议,所以首先要对二者关系和概念进行介绍,以是笔者根据以往参与系统集成的经验对二者的区别和层次做出的分析。 2.BMS和IBMS的特点分析 BMS系统其是以BAS(建筑设备监控系统)为核心的一种实时域系统集成,它最大的特点就是将原来独立SAS(安全防范系统)和FAS(火灾自动报警系统)与BAS系统有机的集成起来,实现了系统联动控制和整个建筑的全局响应能力。 其纵向系统结构表明整个建筑的设备和安全防卫,火警等实时信息都反馈到BMS工作站便于集中监视和控制。纵向关系仅简单的表明了系统结构,为了实现BMS的高效率和可靠集成,各子系统之间还包含一些的横向关系,即实时域的联动响应并不完全依靠BMS的网络交换设备。如火警的报警带来的电气设备自动断电(空调,照明等),安全防范报警和照明系统的联动等等(见图2)。正是有了这些有机的纵横交织的功能管理使我们今天的建筑具备了较高智能化的集成度,作为比较成熟的集成系统BMS得以广泛的应用。 如果说BMS系统集成的为了实现事件响应的快速性、设备联动的可靠性、整个建筑的安全性的话,IBMS系统集成的目的就和BMS系统有较大的区别。IBMS 作为综合集成管理平台应构建在整个建筑或建筑群的信息域之上,服务的对象是业主或物业管理部门,它对BMS系统的功能应主要集中在监视、管理和优化资源的配置上对于实时的控制信息不建议其参与控制。 新型的现代建筑或建筑群建成之后,随之而来的人流、物流和资金流。这些信息综合成为关于建筑(群)的信息流,如何有效的管理和利用这些信息实现业

歌剧魅影全套歌词中英对照高级翻译超

Turn your face away 把你的脸转向这里 from the garish light of day Night-time sharpe ns 夜色渐浓 heighte ns each sen sati on 知觉萌动 Darkn ess stirs and wakes imag in ati on 冥冥黑暗引领想象出笼 Sile ntly the sen ses aba ndon their defe nces ... 寂静之中感觉幵始放纵 Slowly, gen tly ni ght un furls its sple ndour 夜晚显现魅力缓慢轻柔 Grasp it, sense it - tremulous and tender 抓住它感觉它 颤抖中带着温柔 tur n your thoughts away 把你的心转向这里 from cold, un feeli ng light 脱离那冰冷无情的光 and listen to the music of the night ... 尽情聆听这夜的乐章 Close your eyes and surre nder to your 闭上双眼尽情放纵 darkest dreams! 心灵深处的梦想 不要再看俗气的日光

you knew before! 全部主张! Close your eyes, 闭上双眼 let your spirit start to soar! 让你的灵魂去飞翔! And you'll live 你将拥有新的生活 as you've n ever lived before ... 在你从未生活过的地方 Softly, deftly 不知不觉中 music shall surro und you ... 音乐将你包容 Feel it, hear it, 去感受去聆听 clos ing in aro und you ... 让它进入你的心 Ope n up your mi nd 让你的思想翱翔 let your fan tasies unwind 为你的幻想松绑 in this dark ness which 在这黑暗之中 you know you cannot fight 你知道自己无力抵抗

see-you-again整理歌词中英文对照

see you again It's been a long day without you my friend 没有老友你的陪伴日子真是漫长 And I'll tell you all about it when I see you again 与你重逢之时我会敞开心扉倾诉所有 We've come a long way from where we began 回头凝望我们携手走过漫长的旅程 Oh I'll tell you all about it when I see you again 与你重逢之时我会敞开心扉倾诉所有 When I see you again 与你重逢之时 Damn who knew all the planes we flew 谁会了解我们经历过怎样的旅程 Good things we've been through 谁会了解我们见证过怎样的美好 That I'll be standing right here 我都会在这里 Talking to you about another path 与你聊聊另一种选择的可能 I know we loved to hit the road and laugh 我懂我们都喜欢速度与激情 But something told me that it wouldn't last 但有个声音告诉我这美好并不会永恒 Had to switch up look at things different see the bigger picture 如何才能改变观点用更宏观的视野看这世界 Those were the days hard work forever pays 有付出的日子终有收获的时节 Now I see you in a better place 此刻我看到你走进更加美好的未来 Now I see you in a better place 此刻我看到你走进更加美好的未来 How could we not talk about family when family's all that we got?当家人已是我们唯一的牵绊时我们怎么能忘却最可贵的亲情Everything I went through you were standing there by my side 无论历经怎样的艰难坎坷总有你相伴陪我度过 And now you gonna be with me for the last ride 而今你将陪我走完这最后一段旅程 It's been a long day without you my friend 没有老友你的陪伴日子真是漫长 And I'll tell you all about it when I see you again 与你重逢之时我会敞开心扉倾诉所有 We've come a long way from where we began

人工掘进式顶管施工方法

人工掘进式顶管施工方法 1 前言 1.1顶管施工位于----------------------的东南侧,北临新园路与---------,东临二号路,西邻-----------------用地。为配合现场施工时雨水排放,需施工排出厂外的雨水管道,管道出场地后穿过新园路进入路北侧的市政排水渠。考虑到新园路为厂区主要道路,且来往车辆频繁,为了减少管道施工对道路通行和对现场环境的影响。经过专家组评审,决定采用人工掘进式顶管施工的方法进行施工。排水管道采用钢筋混凝土顶式排水管,管径DN2000mm,管线长度为60米。 2 工法特点 2.1顶管施工就是非开挖施工方法,是一种不开挖或者少开挖的管道埋设施工技术。顶管法施工就是在工作井内借助于顶进设备产生的顶力,克服管道与周围土壤的摩擦力,将管道按设计的坡度顶入土中,并将土方运走。一节管子完成顶入土层之后,再下第二节管子继续顶进。其原理是借助于主顶油缸把管道直接从工作井内穿过土层一直推进到接收井内,埋设在工作井和接收井之间。 2.2非开挖顶管施工采用油压驱动,可以在很深的地下敷设管道,施工时噪音远远小于开槽式敷设管道,噪音以及震动都很小,几乎没有地盘沉降的现象,对周遭的影响降低到最小程度,无需隔断交通;可以安全的穿越铁路、街道等建筑障碍物,而且在较深的埋深情况下施工成本要小于开槽式敷设管道。 2.3特别适用于大中型管径的非开挖铺设。具有经济、高效,保护环境的综合功能。这种技术的优点是:不开挖地面;不拆迁,不破坏地面建筑物;不破坏环境;不影响管道的段差变形;省时、高效、安全,综合造价低。 3 适用范围 3.1该技术广泛用于城市地下给排水管道、天然气石油管道、通讯电缆等各种管道的非开挖铺设。它能穿越公路、铁路、桥梁、高山、河流、海峡和地面任何建筑物。人工掘进式顶管施工适用铺设距离在100m以内的地下管道,地质土层水分较低,无大块岩石并易于挖掘的土层中。 4 工艺原理 4.1顶管施工工艺原理就是在所施工的管线间制作一个工作井和一个接收井,借助油缸的推力,把要施工的管道分次、分节从工作井顶进到接收井的一种

BMS系统集成管理系统

BMS系统集成管理系统 根据大厦总体设计要求,将建成具有国际先进水平的5A级智能大厦,并且各系统必须具有充分的余量,使之能够随时满足业务扩展的需要。某大厦考虑按国际最新技术和集成化手段来进行设计,并按照国际先进、国内领先的智能化水平来建设。 一、概述 对本大厦智能建筑楼宇管理系统(BMS),在设计上充分考虑先进性、安全性、实用性、可扩充性和可升级性,在总体设计中,根据本大厦的建筑功能要求和行业特点,对各弱电系统进行合理设计,对各弱电系统进行有效实用的、经济合理的、兼顾发展的系统集成。 ◆先进性 采用与技术发展潮流相吻合的产品,建立一个可扩展的平台,保护前期工程和后继先进技术的衔接,使系统具有先进性。 ◆安全性 本大厦的BMS系统运行的安全性,除符合相关的安全标准外,结合行业特点,还体现在信息传输及实用过程中不丢失、不易窃取或截获。 首先有严格的网络等级操作权限和不同对象的查询范围,还通过各种措施实现网络的安全性,防止非善意的访问和恶意的破坏网络。 ◆实用性 以实用性为原则,采用合理的设计方案,充分考虑“超前”和“可扩展性”相结合,使系统的性能价格比达到最优,从而节省前期的投资。

智能化过程技术在不断发展,用户需求标准将越来越高,因而BMS系 统的设计和施工充分考虑将来扩展的需要,并提供与OA和CA的通信 接口,以便于日后需要集成时集成起来。 ◆开放性 集成后的系统为一个开放性系统,提供标准数据接口、网络接口、系 统和应用软件接口。 ◆模块化 系统要严格按照模块化结构方式开发,以满足通用性和可替换性,采 用模块化设计,分布实施的战略。 ◆可靠性 提供可靠性和容错性高的系统,使系统能不间断正常运行,采用双机 并行运行的方式,具有容错的功能;采用统一的网络接口协议和模块 化硬件,并具有全范围内的网络设备管理和子系统故障隔离能力。在 各子系统监控层采用分布式网络,增加可靠性。在BMS上采用的 WINDOWS NT操作系统具有强大的网络管理功能,它的多重加密设计,能够防止各种侵害并保障数据安全。 二、系统集成技术 1、Windows NT 本系统内所有的服务器及操作站均采用微软公司的Windows NT 32位操作平台,由于采用了微软的视窗平台,网络的管理以及所选 用的应用软件均为开放式的。Windows NT具有强大的网络管理功能,它的多重加密设计,能够防止故障侵害并保障数据安全,不同级别

中英文歌词

曲名:Big big world(中英对照版) 歌手:Emilla Big big world-Emilia 大世界(艾美丽娅) I'm a big big girl ! 我是个重要的女孩! In a big big world! 在一个大世界里! It's not a big big thing if U leave me.如果你离开我,那不是件大事。 But I do do feel.但我确实感到。 That I too too will miss U much.我将会非常想念你! Miss U much ! 太过想念你了! I can see the first leaf falling.我能看见第一片落叶。 It's all yellow & nice.是那样黄也那么的美。 It's so very cold outside.外面是那么的冷。 Like the way I'm feeling inside.就象我内心的感受。 I'm a big big girl ! 我是个重要的女孩! In a big big world! 在一个大世界里! It's not a big big thing if U leave me.如果你离开我,那不是件大事。 But I do do feel.但我确实感到。 That I too too will miss U much.我将会非常想念你! Miss U much ! 太过想念你了! Outside it's now raining.现在外面正在下雨。 And tears are falling from my eyes.而我的眼睛也在流泪。 Why did it have 2 happen ? 这一切为什么要发生? Why did it all have 2 end ? 这一切又为什么要结束? I'm a big big girl ! 我是个重要的女孩! In a big big world! 在一个大世界里! It's not a big big thing if U leave me.如果你离开我,那不是件大事。 But I do do feel.但我确实感到。 That I too too will miss U much.我将会非常想念你! Miss U much ! 太过想念你了! I have Ur arms around me ooooh like fire.我原来是躺在你如火炉般温暖的怀抱里的。 But when I open my eyes.但当我醒来张开眼睛。 U're gone ! 你却已经走了! I'm a big big girl ! 我是个重要的女孩!

空气压缩机

第+六章概述 第一节空气压缩机的用途及类型 一、压缩空气的应用 自然界的空气是可以被压缩的,经压缩后压力升高的空气称为压缩空气。空气经压缩机压缩后,体积缩小,压力增高,消耗外界的功。一经膨胀,体积增大,压力降低,并对外做功。可以利用压缩空气膨胀对外做功的性质驱动各种风动工具和机械,从事生产活动,因此压缩空气被作为动力源得到广泛的应用。 在工业生产和建设中,压缩空气是一种重要的动力源,用于驱动各种风动机械和风动工具,如风钻、风动砂轮机、空气锤、喷砂、喷漆、溶液搅拌、粉状物料输送等;压缩空气也可用于控制仪表及自动化装置、科研试验、产品及零部件的气密性试验;压缩空气还可分离生产氧、氮、氢及其他稀有气体等。上述应用,都是以不同压力的压缩空气作为动力或作为原料。 二、空气压缩机 压缩机是一种使气体体积压缩、提高气体的压力并输送气体的机器。压缩机之所以能提高气体的压力,是借助机械作用增加单位容积内的气体分子数,使分子互相接近的方法来实现的。 工业上用得最广泛的压缩机按作用原理不同,可分为容积型和速度型两大类。 (一)容积型压缩机 容积型压缩机的原理是用可以移动的容器壁来减小气体所占据的封闭工作空间的容积,以达到使气体分子接近的目的,使气体压力升高。容积型压缩机在结构上又分往复式和回转式。 往复式压缩机主要有活塞式,它是靠活塞在气缸中作往复运动,通过吸、排气阀的控制,实现吸气、压缩、排气的周期变化。实现活塞往复运动的是曲柄连杆机构。 回转式压缩机主要有滑片式压缩机和螺杆式压缩机等。 (二)速度式空压机 速度式压缩机的原理是使气体分子在机械高速转动中得到一个很高的速度,然后又让它减速运动,使动能转化为压力能。速度式压缩机又分为离心式和轴流式两种。它们都是靠高速旋转的叶片对气体的动力作用,使气体获得较高的速度和压力,然后在蜗壳或导叶中扩压,得到高压气体。 用来压缩空气的压缩机,习惯上称为空气压缩机(简称空压机)。国产空压机有活塞式、滑片式、螺杆式、轴流式和离心式(或透平式)。目前,在一般空气压缩机站中,最广泛采用的是活塞式。螺杆式和滑片式空压机最近几年也在大力发展中。在大型空气压缩机站中,较多采用了离心式和轴流式空压机。 矿山生产中常用的空压机是活塞式和螺杆式。 三、空压机在矿山生产中的作用 在矿山生产中,除电能外,压缩空气是比较重要的动力源之一。目前矿山使用着各种风动机具,如凿岩机、风镐、锚喷机及气锤等,都是利用空压机产生的压缩空气来驱动机器做功。利用压缩空气作动力源比用电能有如下优点。 ( l )在有沼气的矿井中,使用压缩空气作动力源可避免产生电火花引起爆炸,比电力源安全; ( 2 )矿山使用的风动机具,如凿岩机、风镐等大部分是冲击式机械,往复速度高、冲击强,适宜切削尖硬的岩石; ( 3 )压缩空气本身具有良好的弹性和冲击性能,适应于变负载条件下作动力源,比电力有更大的过负荷能力;

bms与ibms区分

1.概述 目前国内的大型建筑的系统集成最热门的话题之一就是IBMS ,根据建设部最新的定义其全称为建筑集成管理系统。而如何实现IBMS 集成,其具体的步骤和 方式却没有明确规定,如何从基础的建筑管理系统(BMS )上升到IBMS 集成就成 为了关键。建筑集成IBMS 作为建筑或建筑群的综合管理系统,仅从定义上就应该 具备两个要素:集成和管理,如何集成和如何管理本文将做出一些探讨和研究。 目前业界对BMS 和IBMS 的概念和区别的划分和定义有些争议,所以首先要对二者关系和概念进行介绍,以是笔者根据以往参与系统集成的经验对二者的区别 和层次做出的分析。 2.BMS 和IBMS 的特点分析 BMS 系统其是以BAS (建筑设备监控系统)为核心的一种实时域系统集成, 它最大的特点就是将原来独立SAS (安全防范系统)和FAS (火灾自动报警系统) 与BAS 系统有机的集成起来,实现了系统联动控制和整个建筑的全局响应能力。 其纵向系统结构表明整个建筑的设备和安全防卫,火警等实时信息都反馈到BMS 工作站便于集中监视和控制。纵向关系仅简单的表明了系统结构,为了实现 BMS 的高效率和可靠集成,各子系统之间还包含一些的横向关系,即实时域的联 动响应并不完全依靠BMS 的网络交换设备。如火警的报警带来的电气设备自动断 电(空调,照明等),安全防范报警和照明系统的联动等等(见图2)。正是有了这 些有机的纵横交织的功能管理使我们今天的建筑具备了较高智能化的集成度,作为 比较成熟的集成系统BMS 得以广泛的应用。 如果说BMS 系统集成的为了实现事件响应的快速性、设备联动的可靠性、整个建筑的安全性的话,IBMS 系统集成的目的就和BMS 系统有较大的区别。 IBMS 作为综合集成管理平台应构建在整个建筑或建筑群的信息域之上,服务的对 象是业主或物业管理部门,它对BMS 系统的功能应主要集中在监视、管理和优化 资源的配置上对于实时的控制信息不建议其参与控制。 新型的现代建筑或建筑群建成之后,随之而来的人流、物流和资金流。这些 信息综合成为关于建筑(群)的信息流,如何有效的管理和利用这些信息实现业务 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

相关主题
文本预览
相关文档 最新文档