当前位置:文档之家› 函数图象的几何变换教案

函数图象的几何变换教案

函数图象的几何变换教案
函数图象的几何变换教案

函数图象的几何变换教案

【教学目标】1.让学生熟练掌握各种图象变换,能迅速作出给定的函数图象;

2.让学生了解用数形结合法解决方程、不等式、含参问题的讨论; 3.培养学生主动运用数形结合方法解题的意识.

【教学重点】函数图象的几何变换

【教学难点】1.各种图象变换之间的区别及灵活应用;

2.运用数形结合方法解题.

【例题设置】例1(平移易错点剖析),例2、4(函数作图),例3(找中心),例5(图

象法解不等式)

【教学过程】

第一课时

一、复习九种基本函数及圆锥曲线的图象. ⑴ 正比例函数 kx y =,)0,(≠∈k R k

⑵ 反比例函数

k

y =

, )0,(≠∈k R k

☆ 其图象是以原点为中心,以直线y x =和y x =-为对称轴的双曲线.

⑶ 一次函数

b kx y +=,)0,(≠∈k R k

⑷ 一元二次函数 )0(2

≠++=a c bx ax y ⑸ 指数函数 ,0x y a a =>且1≠a (特征线:1=x )

⑹ 对数函数 0,

log >=a x y a 且1≠a (特征线:1=y )

⑺ 正弦函数 R x x y ∈=,sin ,周期π2=T

⑻ 余弦函数 x y cos =,R x ∈,周期π2=T

⑼ 正切函数

),2

(,tan Z k k x x y ∈+

≠=π

π 周期π=T

☆一个小结论:在区间)2

,

0(π

上恒有x x x sin tan >>(证明文科留至《三角函数》一节

再给出,理科用导数证明如下) 证明:① 记()tan f x x x =-,则2

1

()10cos f x x '=

->在)2

,0(π上恒成立,故()f x 在)2

,0(π上为增函数,所以()(0)0f x f >=,即当(0,)2x π

∈时,恒有tan x x >

② 记()sin g x x x =-,则()1cos 0g x x '=->在)2,

0(π

上恒成立,故()g x 在)2

,0(π

上为增函数,所以()(0)0g x g >=,即当(0,)2

x π

∈时,恒有sin x x >

综上所述,在区间)2

,0(π

上恒有x x x sin tan >>

⑽ 椭圆 X 型:12222=+b y a x ; Y 型: 122

22=+b x a y

⑾ 双曲线 X 型:12222=-b y a x ; Y 型: 122

22=-b x a y

⑿ 抛物线

px y 22=)0(>p ;px y 22-= )0(>p ; py x 22=)0(>p ;py x 22-= )0(>p .

★注意:1.牢记九种基本函数及圆锥曲线图象是进行函数图象变换的基础,也是提高用数形结合方法解题速度的关键.

2.理解各种曲线图象的较为精确的画法,这在用数形结合法解题,涉及两个图象之间关系时,才不至于造成误解. 二、图象的初等变换 A 、平移变换

1.要作出函数)(a x f y +=的图象,只需将函数)(x f y =的图象向左)0(>a 或向右

)0(

2.要作出函数h x f y +=)(的图象,只需将函数)(x f y =的图象向上)0(>h 或向下

)0(

〖例1〗 sin(2)3

y x π

=-

的图象可由sin 2y x =的图象经过如何变换得到?

误解:将sin 2y x =的图象往右平移

3π个单位可得到sin(2)3

y x π

=-的图象 ★点评:该种解法是学生中最常见的一种错误解法,造成这个错误的主因还是对变换规

则理解不透,规则中强调的是将x 换成x a +.而必须将sin 2y x =中的x 换成6

x π

-才会

得到sin(2)3

y x π

=-

,故应是将sin 2y x =的图象往右平移

6

π

个单位可得到sin(2)3

y x π

=-的图象.

B 、局部对称变换

3.要作函数)||(x f y =的图象,只需将函数)(x f y =在y 轴左侧的图象擦掉,再将

)(x f y =在y 轴右侧的图象作关于y 轴对称,并保留()y f x =在y 轴右边部分即可得到.

4.要作函数|)(|x f y =的图象,只需将函数)(x f y =的图象x 轴下方的部分沿着x 轴对折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到. ★点评:① 区别这两种变换的一种方法――)||(x f y =为偶函数,故其图象关于y 轴对称;|)(|x f y =的函数值非负,故在x 下方无图象.

② 作函数)||(x f y =与|)(|x f y =的图象亦可用零点分区间法将其化为分段函数形式再进行作图.如:||2y x =+

③ 并不是所有含绝对值的函数图象均可用这两种变换作出,如:||y x x =-,此时只能

将其化为分段函数:0

020x y x x ≥?=?-

,再作出其图象.

C 、整体对称变换

5.要作)(x f y -=的图象,只需将函数)(x f y =的图象以y 轴为对折线进行翻转即可得到.

6.要作函数)(x f y -=的图象,只需将函数)(x f y =的图象以x 轴为对折线进行翻转即可得到.

7.要作函数()y f x =--的图象,只需将函数)(x f y =的图象作关于原点对称即可得到. 8.要作函数1()y f x -=的图象,只需将函数)(x f y =的图象作关于直线y x =对称即可得到.

★点评:)(x f y -=与)(x f y =比较:若y 值一样,则x 值相反,故)(x f y -=与

)(x f y =的图象关于y 轴对称.其它同理可知.

D 、伸缩变换

9.要作函数)(ax f y =)0(>a 的图象,只需将函数)(x f y =图象上所有点的横坐标缩.短.)1(>a 或伸长...)10(<

1

(纵坐标不变)即可(若0

10.要作函数)(x Af y =)0(>A 的图象,只需将函数)(x f y =图象上所有点的纵坐标伸长..)1(>A 或缩短...)10(<

★点评:伸缩变换叙述时一定要注意用辞,注意“缩短”与“缩短为”的区别.

E 、按向量平移

11.若将函数按向量(,)a m n =r 平移,则可依据向量图象将平移转化为:先向左(0m <)

或向右(0m >)平移||m 个单位,再向上(0n >)再向下(0n <)平移||n 个单位.如按向量)1,2(=a 平移可转化为先向右平移2个单位,再向上平移1个单位.

〖热身训练〗

1.函数2

(1)2y x =++的图象按(1,2)a =--r

平移后得到的图象的函数解析式

为 .(答案:2(2)y x =+)

解析:即向左平移1个单位,再先向下平移2个单位.

2.利用函数图象变换,快速作出下列函数图象. ⑴ 131x y +=- ⑵ lg()y x =--

⑶ ||tan x y = ⑷ |tan |x y =

2.0⑹ 0.2|log |y x =

⑺ 2sin 2y x = ⑻

1cos 22

x y =

〖例2〗 利用函数图象变换,快速作出下列函数图象.

⑴ 2

|23|y x x =-- ⑵ 3||22

--

=x x y

⑶ |1|

31x y +=+

解:|1||1|||31333x x x x y y y y ++=+←

=←=←=

⑷ 231x y --=-

法一:22211131()1()()333

x x x x y y y --++=-=-←=←= 法二:2

2

3

13

3x x x

y y y -----=-←=←=

法三:22231333x x x x y y y y -----=-←=←??=←=①

〖课后练习〗 ⑴ 2sin(3)4

y x π

=-

法一:2sin(3)sin(3)sin3sin 44

y x y x y x y x π

π

=-←=-←=←= 法二:2sin(3)sin(3)sin()sin 444

y x y x y x y x π

ππ

=-←=-←=-←=

⑵ 3log (2)1y x =--++

法一:33333log (2)1log (2)log (

2)

log log (2)y x y x y x y x y x =--+

+←=--+←=-+↑

=→=+

法二:33333log (2)1log (2)log (2)

log log ()

y x y x y x y x y x =--++←=--+←=-+↑

=→=-法三: 3333log (2)1log (2)log ()log y x y x y x y x =--++←=--+←=--←=

⑶ 2||21y x =-+

法一:2||212||22||222y x y x y x y x =-+←=-←=-←=-法二:2||212||22222y x y x y x y x =-+←=-←=-←=-

⑷ 42

21

x y x -=

+ 解: 422(21)442

2212121212

x x y x x x x -+-===-=-

++++ ∴22

2

21122

y y y x x x =-←=-←=-++

步骤①处,可能会出现与例1类似

的错误:由

2

3x y +=变

为23x y --=

【课堂小结】

1.要牢记九种基本函数与圆锥曲线图象,这是快速作图的基础;

2.通过图象变换可以解决大部分的函数图象,但还有一些函数(如高次函数、较复杂的复合函数)无法通过变换得到,此时可通过导数的知识作出其草图; 3.注意各种变换之间的区别,注意各种变换中所改变的量是什么; 4.利用图象变换作图时,一定要注意所变换的每个步骤都要能够实现.

【教后反思】

第二课时

三、几种中心(或顶点)不在原点的曲线图象的画法. 1.圆222()()x a y b r -+-=

圆心:(,)a b 2.椭圆1)()(2

2

22=-+-b n y a m x 中心:),(n m 3.双曲线

1)()(2

2

22=---b n y a m x 中心:),(n m 4.抛物线)(2)(2

m x p n y -=- 顶点:),(n m 5.函数ax b

y cx d +=+(0c ≠) 中心:(,)d a c c

-

作图步骤:①确定其图象中心(或顶点);②在其图象中心(或顶点)画一个十字架(可当作新坐标系);③在新坐标系中作出其图象.

★小结:1.证明可由坐标平移公式容易给出;

2.类比圆的方程或二次函数2()y a x h k =-+,可总结出以下规律:先将其化成为各自对应的“标准方程形式”,则x y 、减去的分别是中心(或顶点)的横纵坐标.

〖例3〗 若椭圆

14)2(9)1(22=++-y x 按向量a 平移后所得方程为14

92

2=+y x ,则向量等于( C ) A 、)2,1(-

B 、)2,1(

C 、)2,1(-

D 、)2,1(--

〖随堂练习〗椭圆的中心为点(1,0)E -,它的一个焦点为(3,0)F -,相应于焦点F 的准线

方程为7

2

x =-,则这个椭圆的方程是 .(答案:22(1)15x y ++=)

函数ax b

y cx d

+=

+的图象画法可参照例3⑻,先通过变量分

离2

b ad

a c c y d c x c

-=++

确定其图象中心,再由

2

b ad

c c -

的符号确定其图象位置.

解析:依题意,25

2,2

a c c ==,解得225,1a

b ==

四、无理函数的作图

形如B Ax y +=

或C Bx Ax y ++=2(A ≠0)的函数均可借助解几知识迅速而

准确地作出,从而为研究函数、方程、不等式等问题提供极大的方便. 〖例4〗 作出下列函数图象: ⑴ 12-=

x y

⑵ 2246x x y --=

解:⑴ 易知原函数的值域为[0,)+∞, 原函数可化为212()2

y x =-,在直角坐标

系中作出其图象(如下图所示)

解:⑴ 易知原函数的值域为[0,)+∞, 原函数可化为,在直角坐标系中作出其图象(如下图所示)

★小结:作无理函数的步骤:①确定原函数的值域(或定义域);②通过两边平方,化掉根式;③根据新方程,由圆锥曲线或圆的定义给出图象(根据原函数的值域(或定义域)保留题意的一部分图象).

五、利用函数图象解不等式 〖例

5〗 利用图象解下列不等式: ⑴ |2|||1x x +-≥-

⑵ 1x <+

解:原不等式可化为|2|||1x x +≥- 在同一坐标系中分别作出函数|2|y x =+与||1y x =-的图象,如下图所示:

由上图可知:原不等式的解集为:

3

{|}2

x x ≥-

1

解:在同一坐标系中分别作出函

y 1y x =+的图象,如下图所

示:

1x =+

,解得1

2

x =,即两

由上图可知:原不等式的解集为:

1

{|

2}2

x x <≤.

★小结:通过变形,将不等式两边分别看作两个函数,并在同一坐标系中分别作出这两个函数的图象,从而通过图象可以得到原不等式的解集.用同一思路,还可以解决超越方程根的个数的判断.这几年高考对不等式的解法只要“掌握简单不等式的解法”,若在高考中出现无理不等式,必定可以用淘汰法或数形结合法得以解决.

〖课后练习〗 详见第三课时

【课堂小结】

1.考察中心(或顶点)不在原点的圆锥曲线这几年高考基本不出现,只有06天津文8考查了它,值得我们加以一定的关注;

2.虽然高考对无理不等式的解法已不做要求,但在考查反函数和函数性质时还是会出现无理函数,故对无理函数的作图还是要求掌握的;

3.对于方程解的个数,同样可以将方程两侧(有些方程也需要进行一定的变形)分别看作两个函数,从而转化为两个函数交点的个数进行处理.

【教后反思】

本课时中三、四部分有超纲的嫌疑,设置这两个部分的目的更多是为了培养学生的类比思想和数形结合思想.

第三课时(习题讲评)

〖课后练习〗

1.迅速作出以下各函数图象 ⑴ 222x x y --= ⑵ 222x y --=

1y =⑷

1y =

2.解下列不等式 ⑴ |2|||0x x +-≥ ⑵ 1|1|3x <+<

⑶ 222||3|23|x x x x --<--

答:⑴ [1,)-+∞;⑵ (4,2)(0,3)--U ;⑶ (,3)-∞ ⑷ 1

2x

-≥ ⑸ 3x -⑹ |tan(2)|

3

x π

-

答:⑷ [1,0)-;⑵[1,2)

★点评:并不是所有的不等式都适用数形结合法解题,第⑹小题

反映明显,利用数形结合法解题必须基于函数图象比较容易作出.

)|

y |x

2|+

3 1

2y x =-2|y x =法二 :原不等式等价于: tan(2)3x π

-<∴23

3

3

k x k π

π

π

ππ-

<-

<+

解得:

223

k k x πππ<<+

六.判断以下各方程根的个数. ⑴ 22log 2x x =- ⑵ lg ||220x x -+=

log (4)3x x +=

有2根 有3根

有2根

⑷ 34x - ⑸ sin

lg x x =

变式:若方程2log 2x x =-与3log 2x x =-的根分别为αβ、,试比较α与β的大小. 解析:由图易知1βα>>

★点评:画对数函数log a y x =图象时,至少要画 两点:(1,0)和(,1)a 〖课后练习〗详见第四课时 【课堂小结】

数图象都要容易给出. 【教后反思】

第四课时〖思考题〗 当实数a 取何值时,关于x 的方程3x -+ 法一:原方程可化为33x x a -=,记3()3f x x x =- ∴2()33f x x '=-,令()0f x '<,解得11x -<<,列表

2x 3x

x

当x →-∞时,()f x →+∞,且当x →+∞时,()f x →-∞ 由上表可知,当2a =±时,方程33x x a -=有2个不同的解 ∴当2a =±时,关于x 的方程330x x a -++=恰有两解.

法二:记3()3f x x x a =-++,则2()33f x x '=-+令()0f x '>,解得11x -<<,列表

由上表可知,当()20f x a =-=极小值时,曲线()f x 与x 轴恰有二个交点,即原方程恰有两解;当()20f x a =+=极大值时,曲线

()f x 与x 轴恰有二个交点,即原方程恰有两解. ∴当2a =±时,关于x 的方程330x x a -++=恰有两解.

变式:⑴ 讨论关于x 的方程330x x a -++=解的个数.

⑵ 当实数a 取何值时,函数32y x x =-与y x a =+有两个不同的交点.

★点评:函数、方程、不等式这三者完全可以根据图象将其联系在一起.

七.含参问题的讨论

⑴ 若关于x 的不等式|1|x kx +≥恒成立,则实数k ∈ .

⑵ 方程||a x x a =+(01a a >≠且)有两个相异的实根,则a ∈ .

由图可知

101a

<

< 故(1,a ∈+∞1|+ kx

1

1

x a

=+||y x =

⑶ 方程2|43|x x ax -+=有四个不同的实根,则a ∈ .

联立243y x x y px ?=-+-?=?

消去y 得2(4)30x p x +-+=

令2(4)120p ?=--=

,解得4p =±

故切线斜率为4-

∴(0,4a ∈-

⑷ 当|1|()2x f x m --=-的图象与x 轴有交点时,m ∈ . 即方程|1|20x m ---=有解 ∴(0,1)m ∈

⑸ 解关于x 的不等式:||2x a x a ->-

当0a >时,x R ∈,当0a =时,0x <;当0a <时,32

x a <.

【课堂小结】

高考中问题以几类基本初等函数的图象为基础来考查函数图象的,题型主要是选择题与填空题,考查的形式主要有:知式选图,知图选式,图象变换,以及自觉地运用图象解题,属于每年改考内容之一.

数形结合,即用形研究数,用数研究形,相互结合,互为补充,相得益彰,使问题变得直观、简捷,思路易寻.形是数的直观反映,数是形的抽象概括,今后的高考中仍将加强对形的考查.

【教后反思】

x

x

函数的图象教学设计教案设计

函数()0,0)sin(>>+=ω?ωA x A y 的图象教学设计 教学目标 1.知识与技能 (1)结合物理中的简谐振动,了解()0,0)sin(>>+=ω?ωA x A y 的实际意义; (2)用“五点法”作出()0,0)sin(>>+=ω?ωA x A y 的图象, 并借助图形计算器 动态演示三角函数图象,研究参数?ω,,A 对函数图象变化的影响,让学 生进一步了解三角函数图象各种变换的实质和内在规律. (3)考察参数A 、?、ω对()0,0)sin(>>+=ω?ωA x A y 图象影响的过程中认识 到函数x y sin =与()0,0)sin(>>+=ω?ωA x A y 的联系. 2.过程与方法 (1)经历x y sin =到()0,0)sin(>>+=ω?ωA x A y 图象变换探究的过程,培养学生 的数学发现能力和概括总结能力. (2)让学生经历三角函数图象各种变换的探求和运用,体验各种变换的内在联系, 提高学生的推理能力、分析问题和解决问题的能力. (3)在研究各种变换的过程中,让学生体验由简单到复杂、由特殊到一般的化归 思想,渗透数形结合的思想. 3.情感、态度、价值观 (1)通过三角函数图象各种变换的探求,培养学生的探索能力、钻研精神和科学 态度. (2)通过合作学习,探求三角函数图象各种变换,培养学生团结协作的精神. 教学重点与难点 教学重点:函数()0,0)sin(>>+=ω?ωA x A y 的图象以及参数?ω,,A 对图象变换的影响.函数x y sin =的图象与函数()0,0)sin(>>+=ω?ωA x A y 的图象之间的变换关系. 教学难点:函数()0,0)sin(>>+=ω?ωA x A y 的图象与函数x y sin =的图象与之间的变

高三数学一轮复习第11讲三角函数的图像与性质教案

三角函数的图像与性质

π??

据正弦函数单调性写出函数的值域(如本例以题试法(2)); (3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)). 以题试法 1. (1)函数y = 2+log 1 2 x +tan x 的定义域为________. (2)(2012·山西考前适应性训练)函数f (x )=3sin ? ????2x -π6在区间??????0,π2上的值域为( ) A.??????-32,32 B.??????-32,3 C.??????-332,332 D.???? ??-332,3 解析:(1)要使函数有意义 则????? 2+log 1 2 x ≥0, x >0,tan x ≥0, x ≠k π+π2 ,k ∈Z ?? ???? 0

第10讲函数图像及其变换(教案)

函数图像与变换 教学目标:掌握常见函数图像及其性质(高考要求B ),熟悉常见的函数图像(平移、对称、翻折)变换(高考要求B ). 教学重难点:掌握常见函数图像及其性质,会用“平移、对称、翻折”等手段进行函数图像变换。 教学过程: 一.知识要点: 1.常见函数图像及其性质: (1)平移变换: ①y =f (x ) →y =f (x ±a )(a >0)图象 横向 平移a 个单位,(左+右—). ②y =f (x ) →y =f (x )±b (b >0)图象 纵向 平移b 个单位,(上+下—) ③若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; ④若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. (2)对称变换: ①y =f (x ) →y =f (-x )图象关于 y 轴 对称; 若f (-x )=f (x ),则函数自身的图象关于y 轴对称. ②y =f (x ) →y =-f (x )图象关于x 轴 对称. ③y =f (x ) →y =-f (-x )图象关于原点 对称; 若f (-x )=-f (x ),则函数自身的图象关于原点对称. ④y =f (x ) →y =f -1(x )图象关于直线y =x 对称. ⑤y =f (x ) →y =-f -1(-x )图象关于直线y =-x 对称. ⑥y =f (x ) →y =f (2a -x )图象关于直线x =a 对称; ⑦y =f (x ) →y =2b -f (x )图象关于直线y =b 对称. ⑧y =f (x ) →y =2b -f (2a -x )图象关于点(a ,b ) 对称. 若f (x )=f (2a -x )(或f (a +x )=f (a -x ))则函数自身的图象关于直线x =a 对称. 若函数()y f x =的图象关于直线2 a b x +=对称()()f a mx f b mx ?+=- ()()f a b mx f mx ?+-= (3)翻折变换主要有 ①y =f (x ) →y =f (|x |)的图象在y 轴右侧(x >0)的部分与y =f (x )的图象相同,在y 轴左侧部分与其右侧部分关于y 轴对称. ②y =f (x ) →y =|f (x )|的图象在x 轴上方部分与y =f (x )的图象相同,其他部分图象为y =f (x )图象下方部分关于x 轴的对称图形. 二.基础练习: 1.若把函数f (x )的图象作平移变换,使图象上的点P (1,0)变换成点Q (2,-1), 则函数y =f (x )的图象经此变换后所得图象的函数解析式为 ( A ) A.y =f (x -1)-1 B.y =f (x +1)-1 C.y =f (x -1)+1 D.y =f (x +1)+1 2.已知函数y =f (x )的图象如图2—3,则下列函数所对应的图象中,不正确的是( B ) A.y =|f (x )| B.y =f (|x |) C.y =f (-x ) D.y =-f (x ) 解: y =f (|x |)是偶函数,图象关于y 轴对称. 图2—3

三角函数的图象

电教优质课教案 《三角函数图象》 舞钢市第二高级中学 李培林

《三角函数图象》教案 舞钢市第二高级中学 李培林 一、教材分析: 1、地位与作用 本节内容是《普通高中课程标准实验教科书〃数学必修4》(人教A 版)第一章第5节内容,是高一年级课程,三角函数的图象既是函数图象知识的延伸,也是物理简谐波和交流电的图象,还是自然界的生命线,广泛应用于医学领域的心电图,脑电图,多普勒,核磁共振等。同时三角函数的图象对于研究三角函数的性质起到了非常重要的作用,是历年来高考的热点和重点。 2、知识与技能 掌握由函数sin y x =的图象到函数sin()y A x ω?= +的图象的变换原理, 理解振幅变换、周期变换和平移变换,区分先周期后平移,先平移后周期两种变换的联系与区别,灵活应用三种变换解答三角函数的图象问题。 二、学情分析 对高一的学生来说,已经学习了函数图象的平移、伸缩、对称和翻折四种变换,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习自主性和主动性,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。 三、设计思想:

本节课采用自主学习的课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“三角函数的图象”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。 四、教学目标: A.课堂目标 1、理解三角函数“几何”作图法 2、掌握三角函数“五点”作图法 3、掌握三角函数图像变换原理与方法 4、能用三种变换解答三角函数的图象问题 B.过程与方法 让学生从已有的知识出发,通过学生自主探索、合作交流,亲身体验数学规律的发现,由特殊到一般归纳出数学规律,并用规律解决数学问题,让学生掌握数形结合的思想方法。 C.情感态度与价值观 培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣,培养学生合情合理探索数学规律的数学思想方法,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。

函数图象的几何变换教案

函数图象的几何变换教案 【教学目标】1.让学生熟练掌握各种图象变换,能迅速作出给定的函数图象; 2.让学生了解用数形结合法解决方程、不等式、含参问题的讨论; 3.培养学生主动运用数形结合方法解题的意识. 【教学重点】函数图象的几何变换 【教学难点】1.各种图象变换之间的区别及灵活应用; 2.运用数形结合方法解题. 【例题设置】例1(平移易错点剖析),例2、4(函数作图),例3(找中心),例5(图 象法解不等式) 【教学过程】 第一课时 一、复习九种基本函数及圆锥曲线的图象. ⑴ 正比例函数 kx y =,)0,(≠∈k R k ⑵ 反比例函数 k y = , )0,(≠∈k R k ☆ 其图象是以原点为中心,以直线y x =和y x =-为对称轴的双曲线. ⑶ 一次函数 b kx y +=,)0,(≠∈k R k ⑷ 一元二次函数 )0(2 ≠++=a c bx ax y ⑸ 指数函数 ,0x y a a =>且1≠a (特征线:1=x ) ⑹ 对数函数 0, log >=a x y a 且1≠a (特征线:1=y ) ⑺ 正弦函数 R x x y ∈=,sin ,周期π2=T ⑻ 余弦函数 x y cos =,R x ∈,周期π2=T ⑼ 正切函数 ),2 (,tan Z k k x x y ∈+ ≠=π π 周期π=T ☆一个小结论:在区间)2 , 0(π 上恒有x x x sin tan >>(证明文科留至《三角函数》一节

再给出,理科用导数证明如下) 证明:① 记()tan f x x x =-,则2 1 ()10cos f x x '= ->在)2 ,0(π上恒成立,故()f x 在)2 ,0(π上为增函数,所以()(0)0f x f >=,即当(0,)2x π ∈时,恒有tan x x > ② 记()sin g x x x =-,则()1cos 0g x x '=->在)2, 0(π 上恒成立,故()g x 在)2 ,0(π 上为增函数,所以()(0)0g x g >=,即当(0,)2 x π ∈时,恒有sin x x > 综上所述,在区间)2 ,0(π 上恒有x x x sin tan >> ⑽ 椭圆 X 型:12222=+b y a x ; Y 型: 122 22=+b x a y ⑾ 双曲线 X 型:12222=-b y a x ; Y 型: 122 22=-b x a y ⑿ 抛物线 px y 22=)0(>p ;px y 22-= )0(>p ; py x 22=)0(>p ;py x 22-= )0(>p . ★注意:1.牢记九种基本函数及圆锥曲线图象是进行函数图象变换的基础,也是提高用数形结合方法解题速度的关键. 2.理解各种曲线图象的较为精确的画法,这在用数形结合法解题,涉及两个图象之间关系时,才不至于造成误解. 二、图象的初等变换 A 、平移变换 1.要作出函数)(a x f y +=的图象,只需将函数)(x f y =的图象向左)0(>a 或向右 )0(h 或向下 )0(

高中数学三角函数的图象与性质题型归纳总结

三角函数的图象与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4π C .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1- D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数 D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

函数图象变换的四种方式

函数图象变换的四种方 式 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

函数图象变换的四种方式 一,平移变换。 (1)水平平移: 要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。 (简记:左加右减,这里的a>0。) (2)上下平移: 要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。 (简记:上加下减,这里的a>0) 二,对称变换。 (1)y=f(x)与y=f(-x)的图象关于y轴对称。 所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x)的图象。(简记:左右翻折) (2)y=f(x)与y=-f(x)的图象关于 x轴对称。 所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x)的图象。(简记:上下翻折) (3)y=f(x)与y=-f(-x)的图象关于原点对称。

所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得到-f(-x)的图象。(简记:旋转180度) 三,翻折变换。 (1)如何由y=f(x)的图象得到y=f(|x|)的图象? 先画出函数y=f(x) y轴右侧的图象,再作出关于y轴对称的图形 (简记:右不动,左对称) (2)如何由y=f(x)的图象得到y=|f(x)|的图象? 先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。 (简记:上不动,下上翻) 四,伸缩变换。 (1)如何由函数y=f(x)的图象得到函数y=af(x)的图象?(a>0) 可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x)的图象。 (2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象?(a>0) 可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax)的图象。

函数图象的变换教学设计

“函数B x A y ++=)sin(?ω的图像”教学设计 教材分析 本节选自《普通高中课程标准实验教科书》(人教A 版)必修4 “函数B x A y ++=)sin(?ω的图像”这一节作为示范课课题。它是在前面学习了正弦函数和余弦函数的图象和性质的基础上对正弦函数图象的深化和拓展。根据学生实际情况,为了更好地化解难点,本节分三个课时进行教学,这里是针对第一个课时的教学设计,主要是通过实践探究、归纳总结等方式让学生掌握sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图像变化规律,明确常数A 、ω、?、B 对图像变化的影响,进而是学生对函数sin()y A x B ω?=++的图像变化有个感性认识,为继续学习函数sin()y A x B ω?=++与sin y x =的图象间的变换关系打下坚实的基础,同时有助于学生进一步理解正弦函数的图象和性质,加深学生对其他函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识,使学生领会由简单到复杂,特殊到一般的化归思想,同时也为相关学科的学习打下扎实的基础。 由于本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要,因此这节课的内容是本章的重点、难点之一。 教学分析 一.设计理念 根据“诱思探究教学”中提出的教学模式,设计的教学过程,遵循“探索—研究—运用”亦即“观察—思维—迁移”的三个层次要素,侧重学生的“思”“探”“究”的自主学习,由旧知识类比得新知识,自主探究图象与图象之间的变换关系,让学生动脑思,动手探,教师的“诱”要在点上,在精不用多。整个教学过程始终贯穿“体验为主线,思维为主攻”,学生的学习目的要达到“探索找核心,研究获本质”。 二.教学目标 1.知识与技能: (1)熟练掌握五点法作图; (2)掌握sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图像变化规律, 明确常数A 、ω、?、B 对图像变化的影响; (3)对函数sin()y A x B ω?=++的图象变化有个感性认识。 2.过程与方法: 通过学生自己动手画图,使学生知道列表、描点、连线是作图的基本要求;通过在同一个坐标平面内对比相关的几个函数图象,发现规律、总结提炼、加以应用;通过用《几何画板》软件进行验证,加深学生对自己探究的成果的理解和认可,进而鼓励学生积极思考、勤于动手进行实践探索的良好学习品质。 3.情感态度与价值观 通过本节的学习,渗透数形结合思想;培养学生发现问题、研究问题、解决问题的能力和总结、归纳的能力;让学生在实践中领会由简单到复杂、由特殊到一般的化归思想;让学生体会实践与探索带来的成功与喜悦。 三.教学重点和难点 1.教学重点:考察参数A 、ω、?、B 对函数图象变化的影响,理解函数sin y x =图象到 sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图象的变化过程。 2.教学难点:ω对sin()y A x ω?=+的图象的影响规律的概括。

三角函数图像变换教学设计

§5 创新课堂教学设计模式 在情境教学设计中,创立了课堂教学八步骤: (1)创设情境(2)提出问题(3)学生探究(4)构建知识 (5)变式练习(6)归纳概括(7)能力训练(8)评估学习 数学情境设计实验案例 《函数y=Asin的图象》教学设计 模块名称:数学新课程必修4 (苏教版) 一课时 一、设计思想: 按照新课程理念,通过计算机辅助教学创设情境,实施信息技术与学科课程整合教学设计。引发学生学习兴趣,从而较好地完成教学任务。动画效果的展示形成对视觉的强刺激,把通常惯用的语言描述生动形象地刻画出来,促进学生对重点难点的知识理解掌握。 本课教学设计重点是学习环境的设计,通过几何画板创设动态直观情境,引导学生主动参与、乐于探究、培养学生处理信息的能力。

二、教学内容分析 本课教学内容是能通过变换和五点法作出函数y=Asin的图像,理解函数y=Asin(A>0, ω>0)的性质及它与y=sinx的图象的关系。本节内容是在三种基本变换的基础上进行的,进一步深入研究正弦函数的性质,y=Asin的图像变换是函数图像变换的综合,充分体现利用数形结合研究函数解决问题的思想,对前面的基础和知识有很好的小结作用,这种函数在物理学和工程学中应用比较广泛,有实际生活背景,它能为实际问题的解决提供良好的理论保证。同时,本课的教材也是培养学生逻辑思维能力、观察、分析、归纳等数学能力的重要素材。 教学重点:掌握函数y=Asin的图像和变换 教学难点:学生能通过自主探究掌握对函数图象的影响。 三、教学目标分析 1认知目标: (1)结合具体实例,理解y=Asin的实际意义,会用“五点法”画出函数y=Asin的简图。会用计算机画图,观察并研究参数,进一步明确 对函数图象的影响。 (2)能由正弦曲线通过平移、伸缩变换得到y=Asin的图象。 (3)教学过程中体现由简单到复杂、特殊到一般的化归的数学思想。 2 能力目标: (1)为学生创设学习数学的情境氛围,培养学生的数学应用意识和创新意识。 (2)在问题解决过程中,培养学生的自主学习能力。 (3)让学生经历列表、描点、连线成图的作图过程,体会数形结合、整体与局部的数学思想,培养学生的科学探索精神,归纳、发现的能力。 3 情感目标:

高中数学_正弦型函数图象变换第二课时教学设计学情分析教材分析课后反思

教学设计

【学情分析】

从知识方面看: ①学生已经具备的:(1)正弦函数图象的三种变换规律(2)上学期已经学习了函数 图象 的平移,有“左加右减”这样一些粗略的关于图象平移的认识,对函数图像的对称性已具备了初步认识,具备将“数”与“形”相结合及转化的意识。但对于本节内容,学生需要理解并掌握三个参数变化对正弦型函数图像的影响,还要研究正弦型函数图像变换规律以及变形应用,知识密度较大,理解掌握起来难度较大。 ②学生所缺乏的:(1)应用数学知识解决问题的能力还不强;(2)数形结合的思想还有 待提 高。 从学习情感方面看: 高一的学生具有一定的知识基础,有强烈的求知欲,喜欢探求真理,自主学习与合作学习意识较强,具有积极的情感态度,。 从学习能力上看: 这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难。尤其是我所任教班级的学生,尽管思维活跃、敏捷,却缺乏冷静、深刻,因而片面,不够严谨,系统地分析问题和解决问题的能力有待提高。 由于三角函数图象变换是高中数学的难点,学生的数学思维能力与思想方法有待继续培养、提高、完善,要结合学生的实际情况,分解难点,逐一突破。针对上述情况,在教学中,我注意面向全体,发挥学生的主动性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。利用几 何画板进行动画演示,让学生体会 sin() y A x ω? =+中的,ω?均是针对x而言的,其他因 素暂时不考虑,帮助学生从形的角度更好的理解变换规律。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。 【效果分析】 这是一节新授课,从课前准备、课堂气氛、课后调查反馈的情况看,学生基本上能掌握

由三角函数图象求解析式

已知函数()f x =Acos(x ω?+)的图象如图所示,2 ()2 3 f π =- ,则(0)f =( ) (A )23- (B) 23 (C)- 12 (D) 1 2 2π 3,于是f(0)【解析】选B.由图象可得最小正周期为 =f(2π3),注意到2π3与π2关于7π12对称, 所以f(2π3 ) =-f(π2)=23. 如果函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称,那么||?的最小值 为( ) (A ) 6π (B )4π (C )3π (D) 2 π 【解析】选A. 函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称w.w.w.k.s.5.u.c.o.m 4232k ππφπ∴? +=+13()6k k Z πφπ∴=-∈由此易得min ||6 π φ=. 已知函数y=sin (ωx+?)(ω>0, -π≤?<π)的图像如图所示,则 ?=________________ 【解析】由图可知, ()544,,2,1255T x πωπ??? = ∴=+ ??? 把代入y=sin 有: 89,510ππ???? +∴= ??? 1=sin 已知函数()2sin()f x x ωφ=+的图像如图所示,则712 f π ?? = ??? 。

【解析】由图象知最小正周期T = 32(445ππ-)= 32π=ωπ2,故ω=3,又x =4 π时,f (x )=0,即2φπ +? 4 3sin()=0,可得4 π φ= ,所以,712f π ?? = ? ?? 2)41273sin(ππ+?=0。 )已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的图象与x 轴的 交点中,相邻两个交点之间的距离为2 π ,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式; (Ⅱ)当[ ,]122 x ππ ∈,求()f x 的值域. 【解析】(1)由最低点为2(,2)3 M π -得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2 π ,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上得242sin(2)2,)133ππ ???+=-+=-即sin( 故42,32k k Z ππ?π+=-∈ 1126 k π?π∴=- 又(0, ),,()2sin(2)266f x x π ππ ??∈∴= =+故 (2)7[,],2[,]122636x x πππππ ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266 x ππ+= 即2 x π =时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4 π )的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( ) A.向右平移 4π B.向左平移4 π

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

函数图象的三种变换

. 函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下3种: 一、平移变换 2,在同一坐标系中画出:=x设f(x)例1 (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图 (2)如图

点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到; y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到; y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到. 小结:

二、对称变换的图象,并观察两个函数图)-xy=f(x+1,在同一坐标系中画出y=f()和x例2设f(x)=象的关系.1的图象如图所示.=-x+x与y=f(-)+y解画出=f(x)=x1 由图象可得函数y=x+1与y=-x+1的图象关于y轴对称. 点评函数y=f(x)的图象与y=f(-x)的图象关于y轴对称; 函数y=f(x)的图象与y=-f(x)的图象关于x轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数1 / 6

. 图象的关系. 解y=f(x)的图象如图1所示,y=|f(x)|的图象如图2所 示. 点评要得到y=|f(x)|的图象,把y=f(x)的图象中x轴下方图象翻折到x轴上方,其余部分不变.例4 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=f(|x|)的图象,并观察两个函数图象的关系. 解如下图所 示. 点评要得到y=f(|x|)的图象,先把y=f(x)图象在y轴左方的部分去掉,然后把y轴右边的对称图象补到左方即可. 小结: 保留x轴上方图象y?f(x)????????y=|f(x)|. 将x轴下方图象翻折上去保留y轴右侧图象y?f(x)?????????y=f(|x|). 并作其关于y轴对称的图象如图:

函数图像的四种变换形式

函数图像的四种变换 1.平移变换 左加右减,上加下减 ) ( ) (a x f y x f y+ = ?→ ? =沿x轴左移a个单位; ) ( ) (a x f y x f y- = ?→ ? =沿x轴右移a个单位; a x f y x f y+ = ?→ ? =) ( ) (沿y轴上移a个单位; a x f y x f y- = ?→ ? =) ( ) (沿y轴下移a个单位。 2.对称变换 同一个函数求对称轴或对称中心,则求中点或中心。 两个函数求对称轴或对称中心,则求交点。 (1)对称变换 ①函数) (x f y=与函数) (x f y- =的图像关于直线x=0(y轴)对称。 ②函数) (x f y=与函数) (x f y- =的图像关于直线y=0(x轴)对称。 ③函数) (a x f y+ =与) (x b f y- =的图像关于直线 2a b x - =对称 (2)中心对称 ①函数) (x f y=与函数) (x f y- - =的图像关于坐标原点对称 ②函数) (x f y=与函数) 2( 2x a f y b- = -的图像关于点(a,b)对称。 3伸缩变换 (1)) (x af y=的图像,可以将) (x f y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。 (2)) (ax f y=(a>0)的图像,可以将) (x f y=的横坐标伸长(01)到原来的1/a倍,纵坐标不变。

4.翻折变换 (1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。 (2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。 习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像

三角函数图像变换.docx

龙文教育一对一个性化辅导教案

三角函数图象变换 考点分析:三角函数图象及性质是高考必考内容,主要是函数图像变换及函数性质。重点:①熟练地对y=simr进行振幅和周期变换;②会用相位变换画函数图彖; ③“五点法”画尸力sin(Gx+?)的图象、图象变换过程的理解; 难点:①理解振幅变换和周期变换的规律;②理解并利用相位变换画图象;③多种变换的顺序 一、教学衔接: 1、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。 2、检查学生的作业,及时指点; 3、59错题讲解 1)错题重现及讲解: 2)讲透考点: 3)相似题练习: 4、课前热身练习: 二、本次课主要内容 知识点一振幅变换 例1画出函数y=2sinx XG R; y=gsinx xwR的图象(简图). 解:画简图,我们用“五点法” ???这两个函数都是周期函数,且周期为2〃 ???我们先画它们在[0, 2刀]上的简图?列表: 作图: 知识点二周期变换 例2 iUlj出函数y=sin2x XG R; y=sin*x xwR的图象(简图)? TT 解:函数y=sin2%, xGR的周期T=——=JI 2 我们先画在[0,兀]上的简图,在[0,兀]上作图,列表: 作图:

知识点三图像平移 例画出函数 yr yr * * y=sin(x+—), xWRy=sin(x ——), xGR 的简图. 3 4 解:列表 描点画图: 【同步训练】 1、(l)y=sin(x+—y=sinx 向平移个单位得到的. (2) y=sin(x ——)是由y=siwc 向平移个单位得到的? ? 4 (3) y=sin(x —兰)是由y=sin(x+— )|nj 平移个单位得到的. 4 4 2?若将某函数的图彖向右平移兰以后所得到的图彖的函数式是y=sm(x+-)f 则原来的 2 41 函数表达式为( ) SIT 7T TT . 77 A ?y=sin(x+ —) B ?y=sin(x+ — )Cj=sin(x — —) D ?y=sin(x+ —— 「 4 ° 2 4 4 4 3、 将函数y=/(x)的图彖沿兀轴向右平移彳,再保持图象上的纵坐标不变,而横坐标变为原 来的2倍, 得到的曲线与y=siwc 的图象相同,贝ijy=/(x)是() 7T TT . 2TT 2TT A.j=sin(2x+y) B.j=sin(2x — y ) C.>j =sin(2x+ —) D ?y=sin(2x ——) 4、 把函数y=cos(3尢+ ◎的图象适当变动就可以得到y=sin(-3x)的图彖,这种变动可以是 4 ( ) A ?向右平移仝 B ?向左平移仝 C ?向右平移三 4 4 12 5、 若函数y=f{x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将 整个图象 沿%轴向左平移兰个单位,沿y 轴向下平移1个单位,得到函数y=-sin^的图彖, 2 2 3 -1 6 4 2 3 D ?向左平移醫

函数y=Asin(wx+φ)的图象 精品教案

1.5函数y=Asin(ωx+?)的图象教学设计 福州金山中学 数学组 林继枫 一.教学构想 《高中数学新课程标准》提出,数学学习要积极倡导自主、合作、探究的学习方式,全面提高学生的数学素养.高中数学传统教学模式往往呈现教师教的辛苦、学生学得费劲、收效又小的困境,本节课拟在(DIS )网络实验室进行,利用数字化教学平台,引导学生主动参与学习,充分发挥学生的主体作用和教师的主导作用,切实提高数学教学的实效性. 二.教材分析 本节课内容是人教A 版数学必修4第一章第五节《函数()?ω+=x A y sin 的图象》,是在学生已经学习了正、余弦函数的图象和性质的基础上,进一步研究生活生产实际中常见的函数类型: ()?ω+=x A y sin 函数的图象.本节内容从一个物理问题引入,根据从具体到抽象的原则,通过参数赋 值,从具体函数的讨论开始,把从函数x y sin =的图象到函数()?ω+=x A y sin 的图象的变换过程,分解为先分别考察参数A 、、ω?对函数图象的影响,然后整合为对()?ω+=x A y sin 的整体考察. 并充分利用多媒体的演示,揭示由正弦曲线x y sin =如何得到函数 sin()y A x ω?=+的图象.这样借助具 体函数图象的变化,领会由简单到复杂、特殊到一般的化归数学思想.同时还力图向学生展示观察、归纳、类比、联想等数学思想方法,通过本节内容的学习可以使学生将已有的知识形成体系,对于进一步探索、研究其他数学问题有很强的启发与示范作用. 三.学情分析 函数 sin()y A x ω?=+的图象是三角函数中的一个重要问题,本节内容将三角函数的知识作了 进一步的整合,对由简单到复杂、特殊到一般的化归数学思想作了进一步的提升,同时也对后续知识的学习起到引领的作用. 从学生的知能状况来看,在本课之前,学生已经学习了正、余弦函数的图象和性质,在知识储备上已具备学习本节课程的条件.虽然我们学生的基础知识不扎实、理解能力较差,但对数学的学习还是比较重视,也肯学. 从本课的学习内容来看,属于探究部分.在网络环境下,学生充分借助计算机,在几何画板软件的支持下,探究参数A 、、ω?对函数sin()y A x ω?=+图象变化,并充分利用多媒体的演示,揭示由 正弦曲线x y sin =如何得到函数 sin()y A x ω?=+的图象,通过课堂上学生的自主探究,教师适时

三角函数图像的变换

1、函数y=sin(x+π),x∈R和y=sin(x- 6- O 3 ),x∈R的图象与y=sin x的图象有什么联系?2 个单位所得的曲线是 2 sin x的图象,试求y=f(x)的解析式。 3 )y=sin2x 3 ) 3 ) 3 ) 3 ) 3 ),x∈R的简图。 π2 3 ),x∈R 6 ),x∈R 三角函数图像的变换 题型归纳: 系? π 34 ),x∈R的图象与y=sin x的图象有什么联 - π-π 3 1y π5ππ 6 34x 2、函数y=3sin(2x+π (1)y=sin x(2)y=sin x y=sin(x+π 4、函数f(x)的横坐标伸长为原来的2倍,再向左平移 π y=1 5、函数y=Asin(ωx+φA>0,ω>0,|φ|<π) 的图象如图,求函数的表达式. y=sin(2x+π y=3sin(2x+π y=sin(2x+π y=3sin(2x+π ★☆作业:(A组) 1、画出下列函数在长度为一个周期的闭区间上的简图: 3、画出函数y=3sin(2x+π y 2x+ 3 x 3sin(2x+π) 3 (3)y=4sin(x- π (4)y=sin(2x+π 第1页共2页

6 ) ,x ∈R (2) y = 1 sin( 3 x - (1) y = 5 sin( 1 x + 4 ) ,x ∈R 6、把函数 y =cos(3x + π A.向右平移 π 4 C.向右平移 12 (3) y = 3sin(2 x - ) ,x ∈R (4) y = 2 cos( x + π ) ,x ∈R 3 ,φ =- 6 B.A =1,T= 2 3 ,φ =- 4 D.A =1,T= 3 sin(2x + 3 sin(2x + (1) y = 8sin( - ) ,x ∈[0,+∞) (2) y = 1 7 ) ,x ∈[0,+∞) 2 的图象的一部分,求这个函数的解析式。 4、(1)y =sin(x + π (2)y =sin(x - π (3)y =sin(x - π 4 )是由 y =sin(x + 4 )向 5、若将某函数的图象向右平移 π 10、设函数 y = sin (x - π A.y =sin(x + 3π B.y =sin( x + π C.y =sin(x - π D.y =sin(x + π 2、说明下列函数的图像由正弦函数或余弦函数经过了怎样的变换。 π 2 2 π 4 )的图象适当变动就可以得到 y =sin(-3x )的图象,这种变动 可以是( ) π π π 4 B.向左平移 D.向左平移 12 ★★☆☆作业( B 组): 7、如图:是函数 y =A sin(ω x +φ )+2 的图象的一部分,它 的振幅、周期、初相各是 ( ) π 1 1 6 4 A.A =3,T= 4π π 4π 3π 3 ,φ =- 4 C.A =1,T= 2π 3π 4π π 3 ,φ =- 6 8、如左下图是函数 y =A sin (ω x +φ )的图象的一段,它的 解析式为 ( ) A. y = 2 π 2 x 3 ) B. y = 3 sin( 2 + π 2 π 4 ) C. y = 3 sin(x - 3 ) D. y = 2 2π 3 ) 3、不画简图,直接 写出下列函数的振幅、周期和初相,并说明这些 函数的图象可由正弦曲 线经过怎样的变化得出(注意定义域): x π 4 8 3 cos(3x + π 4 )是由 y =sin x 向 平移 个单位得到的. 4 )是由 y =sin x 向 平移 个单位得到的. π 平移 个单位得到的. 2 以后所得到的图象的函数式是 y =sin(x + 表达式为( ) 4 ) 2 ) π 4 )- 4 4 ) π 4 ),则原来的函数

相关主题
文本预览
相关文档 最新文档