当前位置:文档之家› 生物质热解液化制备生物油技术研究进展_路冉冉(精)

生物质热解液化制备生物油技术研究进展_路冉冉(精)

生物质热解液化制备生物油技术研究进展_路冉冉(精)
生物质热解液化制备生物油技术研究进展_路冉冉(精)

第44卷第3期

2010年5月生物质化学工程B iomass Che m ical Eng i n eering V o.l 44N

o .3

M ay 2010

生物质热解液化制备生物油技术研究进展

收稿日期:2010-02-03

基金项目:高等学校博士学科点专项科研基金资助(200804251020

作者简介:路冉冉(1987-,女,山东聊城人,硕士生,研究方向为微波生物质热解技术*通讯作者:商辉(1974-,女,河北保定人,副研究员,博士,从事生物能源与微波化学研究;E -m ai:l shangh l@j m sn .co m 。

路冉冉1,商辉1*,李军2

(1.中国石油大学(北京重质油国家重点实验室,北京102249;2.中国石油规划总院,北京100083

摘要:介绍了国内外生物质热解液化工艺、主要反应器及其应用现状;简述了生物质催化热解、生物质与煤共热解液化、微波生物质热解、热等离子体生物质热解几种新型热解工艺;并对目前生物质热解动力学研究进行了总结;对未来生物质热解液化技术的研究进行了展望。

关键词:生物质;热解;液化;生物油

中图分类号:TQ351 文献标识码:A 文章编号:1673-5854(201003-0054-06

Research Progress on Bi o mass Pyr ol ysis Technol ogy f or L i qui d O il Producti on

LU Ran -ran 1,SHANG H u i 1,LI Jun 2

(1.S tate K ey L aboratory of H eavy O il Processing ,China U n i versity of Pe tro leum (Be iji ng,Be iji ng 102249,Ch i na ;

2.Ch i na P etro l eu m Eng i nee ri ng and P l ann i ng Instit ute ,Be iji ng 100083,Chi na

Abstrac t :B i om ass li que facti on techno logy,m ai n reactor types for b i om ass pyro lysis and t he ir deve lop m ent status i n do m estic and aboard we re descr i

bed .Cata l y ti c py ro l y si s of b i omass ,co -li que facti on o f bio m ass and coa,l m i crowave assi sted pyro l ysis as w ell as ther m a l plas m a b i o m ass pyro l ysis techno l og ies were descri bed ,and t he curren t k i neti cs o f b i om ass pyro lysisw ere su mm ar ized .T he future o f bio m ass li que facti on techno log i es w ere prospected .

K ey word s :b i o m ass ;pyrolysis ;lique facti on ;b i o -o il

能源是社会经济发展和人类赖以生存的基础,当前社会的主要能源是化石能源,属不可再生资源。同时,化石能源的迅速消耗造成生态环境不断恶化,排放的温室气体导致全球气候变化,严重威胁人类社会的可持续发展。从能源发展和环境保护角度来看,寻找一种新型可再生的清洁能源已迫在眉

睫[1]。生物质能是以化学能形式储存的太阳能,具有分布广泛、可再生和无污染等特点,它的高效转换和清洁利用受到广泛重视。但是从自然界直接获得的生物质能量密度低,直接利用有很多缺点,如:燃烧效率低,需要寻求更为有效的方式加以

利用。生物质的利用技术主要包括生物转化技术和热化学转化技术,热化学转化包括直接燃烧、气化和热解液化技术,其中热解液化技术将生物质转化成液体生物油加以利用,是开发利用生物质能有效途径之一。该技术所得油品基本上不含硫、氮和金属成分,是一种绿色燃料,生产过程在常压、中温下进行,工艺简单,装置容易小型化,液体产品便于运输和存储。因此,在生物质转化的高新技术中,生物质热解液化技术受到广泛重视[2-6]。

1 生物质热解液化技术概述

生物质热解指生物质在隔绝氧气或有少量氧气的条件下,采用高加热速率、短产物停留时间及适中的裂解温度,使生物质中的有机高聚物分子迅速断裂为短链分子,最终生成焦炭、生物油和不可凝气体的过程。生物质快速热解技术将低品位的生物质(热值大约12~15M J/kg转化成易储存、易运输、能

量密度高的燃料油(热值高达20~22M J/kg [7-8]。该技术具有明显的优点:1热解产物为燃气、生物

第3期路冉冉,等:生物质热解液化制备生物油技术研究进展55

油和焦炭,并可根据不同需要改变产物收率加以利用;2环境污染小,生物质在无氧或缺氧的条件下热解时,NO x、SO x等污染物排放少,且热解烟气中灰量小;3生物质中的重金属等有害成分大部分被固定在焦炭中,可以从中回收金属,进一步减少环境污染;4热解可以处理不适于焚烧的生物质,如医疗垃圾等[9-11]。

2生物质热解液化工艺

2.1工艺流程

生物质热解液化包括物料的干燥、粉碎、热裂解、产物焦炭和灰分的分离、气态生物油的冷却及其收集[12]。为了减少裂解原料中水分被带到生物油中,需要对原料进行干燥,一般要求物料的含水量在10%以下。为了达到很高的升温速率,要求进料颗粒要小于一定的尺寸,不同的反应器对生物质尺寸的要求也不同。热裂解技术要求反应器具有很高的加热速率、热传递速率、严格控制的温度以及热裂解挥发分的快速冷却,这样有利于增加生物油的产率。灰分留在焦炭中,在二次反应中起催化作用,使产生的生物油不稳定,必须予以分离。挥发分产生到冷凝的时间和温度对液体产物的产量和组成有很大影响,停留时间越长,二次反应的可能性越大,为保证生物油产率,需要迅速冷凝挥发产物。此外,热解液化工艺的设计除需要保证反应工艺的严格控制外,还应在生物油收集过程中避免生物油中重组分的冷凝造成堵塞[13-15]。

2.2反应器

反应器是生物质快速热解液化工艺技术的核心,反应器的类型及其加热方式的选择在很大程度上决定了产物的最终分布,因此反应器类型的选择和加热方式是各种技术路线的关键。目前国内外达到工业示范规模的生物质热解液化反应器主要有流化床、循环流化床、烧蚀、旋转锥、引流床和真空移动床反应器等。

2.2.1流化床反应器流化床反应器是利用反应器底部的常规沸腾床物料燃烧获得的热量加热砂子,加热的砂子随着高温气体进入反应器与生物质混合并传递热量给生物质,生物质获得热量后发生热裂解反应。流化床反应器设备小巧,具有较高的传热速率和一致的床层温度,气相停留时间短,防止热解蒸气的二次裂解,有利于提高生物油产量[16]。M anuel等[17]研究了在流化床反应器中澳洲小桉树的热解情况,结果表明温度在470~475e时生物油可以得到最大产率,进料颗粒的大小会影响生物油的含氧量。Akw asi等[18]研究了紫花苜蓿秸秆在流化床反应器中快速热解过程,得到的生物油含氧量较低,具有更高的燃烧值。刘荣厚等[19]以榆木木屑为原料,在自制的流化床反应器上,进行了快速热裂解主要工艺参数优化试验,对产生的生物油成分GC-M S分析表明,最优工艺参数组合为热裂解温度500e、气相滞留时间

0.8s、物料粒径0.180mm,此时生物油最大产率为46.3%。

2.2.2循环流化床反应器循环流化床反应器同流化床反应器一样,具有高的传热速率和短暂的生物质停留时间,是生物质快速热解液化反应器的另一种理想选择。加拿大国际能源转换有限公司(RTI建立的生物质流化床热解技术示范工程,美国可再生燃料技术生产商Ensyn公司已广泛应用循环流化床反应器热解生物质生产生物油[20]。V elden等[21]模拟了循环流化床反应器的快速热解过程,结果表明最佳的反应温度为500~510e,生物油的产率可以达到60%~70%。

2.2.3烧蚀反应器烧蚀反应器很多工作均由美国国家可再生能源实验室(NREL 和法国国家科研中心化学工程实验室(CNRS公司完成。通过外界提供高压,生物质颗粒以相对于反应器较高的速率(>1.2m/s移动并热解,生物质是由叶片压入到金属表面,此反应器不受物料颗粒大小和传热速率的影响,但受加热速率的制约。L d [22]

对烧蚀反应器的性能进行研究,从烧蚀厚度值、速度、产品等方面比较了接触型和辐射型烧蚀反应器,指出了各自的优缺点,利于进一步提高反应性能。B ri d gw

ater[23]对该技术进行了进一步的优化,使其可以应用在更大规模的生产中。

2.2.4旋转锥反应器旋转锥反应器是由荷兰Tw ente大学发明研制,采用离心力来移动生物质,生物质颗粒与过量的惰性热载体同时进入旋转锥反应器的底部,当生物质颗粒和热载体构成的混合物沿着

56生物质化学工程第44卷

炽热的锥壁螺旋向上传送时,生物质与热载体充分混合并快速热解,而生成的焦炭和砂子被送入燃烧器中燃烧,从而使载体砂子得到一定预热。L d 等[24]研究在627~710e的温度条件下旋转锥反应器对不同原料的生物油产率,最佳的生物油产率为74%。李滨[25]自主研制出了ZKR-200A型旋转锥式生物质闪速热解液化制油新装置,对4种生物质进行热解液化实验,生物质的加工能力183.7kg/h,生物燃油的得率可达到75.3%,生物质能量转化率可达到75.7%,所得生物油用燃烧器喷燃,效果良好,可用作燃油锅炉燃料。

2.3几种新型热解工艺

目前,为了提高生物质热转化率和生物油的收率,研究者开发了几种新型热解工艺,包括催化热解、生物质与煤共热解液化、微波生物质热解、热等离子体生物质热解等。

2.3.1生物质催化热解催化热解是在循环流化床反应器或固定床反应器的基础上结合一个催化反应器,在催化剂的作用下,生物质快速热解形成高温蒸气。催化剂能够降低生物质热解活化能,增加生物质分子快速热解过程中的断裂部位,降低了焦炭形成几率,增加了生物油产率。选择合理的催化剂有利于提高生物油产率,是催化裂解反应的重点和关键。催化剂种类繁多,其中沸石分子筛应用较广,但极易结焦,目前已开发出不少催化剂(如H-ZS M-5、Re USY等来降低其结焦率,提高生物油产率[26]。Chen等[27]考察了8种无机添加剂(Na OH、N a2CO3、N a2S i O3、N a C l、

Ti O2、H-ZSM-5、H3P O4、Fe2(SO43对松木木屑热解产品的影响,实验表明,反应温度480e时,8种无机添加剂都明显减少了气体产物总量;H3P O4等降低C H4和CO2的产量,增加氢气产量;4种钠盐都使乙缩醛含量增加。Ad isak等[28]研究了催化剂对木薯热解反应的影响,实验表明,分子筛、亚铬酸铜等催化剂可以大大减少含氧的木质素衍生物;ZS M-5、Criteri o n-534和A-l M SU-F增加了芳香化合物和酚类化合物含量;ZS M-5和A-l M S U-F 分子筛明显增加甲酸和乙酸含量。

2.3.2生物质与煤共热解液化生物质与煤共热解液化是利用生物质的富氢将氢传递给煤分子使煤得到液化,生物质的物理和化学性质发生了很大变化,研究表明煤与生物质共液化对液体产品收率和产品性质具有积极影响。白鲁刚等[29]进行了煤与生物质加氢共热解液化试验,同时选硫铁化物为催化剂,有效降低共液化反应的苛刻度,在300~400e能明显提高生物质转化率和油品产率,反应温度350e时,油品产率最高可增加18%。陈吟颖[30]运用固定床反应器共热解不同比例生物质与煤的实验表明热解过程中相互作用明显,当生物质掺混比例为20%与褐煤共热解时,半焦产率为生物质单独热解的2.1倍,焦油产率相应降低;共热解使气体热值增加,与褐煤共热解时,得到的共热解气热值基本接近褐煤单独热解气的热值,高于生物质单独热解气的热值。

2.3.3微波生物质热解生物质的微波热解是利用微波辐射在无氧或缺氧条件下切断生物质大分子中的化学键,使之转变为较小分子的复杂化学过程,包含分子键断裂、异构化和小分子的聚合等反应,较常规加热效率更高。2001年,M iura等[31-32]研究了纤维素材料和木块的微波热解,得出焦油的主要成分是左旋葡聚糖,纤维素含量越高的原料产生的左旋葡聚糖越多;证明了微波加热较常规加热二次反应少,有利于生物油产量增加。商辉等[33]利用微波热裂解的方法将木屑转化为生物油,研究发现单模谐振腔比多模谐振腔更有助于生物质的快速热解;孔隙中的水分是微波热解生物质的主要因素,可以提高加热速率;生物质热解在微波加热与传统加热下的最大差别在于前者是由里及外的加热,可以减少二次反应的发生,提高生物油的收率和质量。微波加热与催化剂同时使用,可以相互促进提高产物选择性和加快反应进行,W an等[34]研究了在微波热解玉米秸秆和山杨木过程中几种无机催化剂对产物选择性

的影响,实验表明KAc等抑制了气体和焦炭的产生,显著提高了生物油的产量;催化

剂作为热点吸收微波,进一步加速了反应的进行。

2.3.4热等离子体生物质热解等离子体加热具有温度调节容易、射流速率可调

的优点,特别适用深入研究生物质快速热解液化的技术参数。易维明等[35]利用等离子体射流技术进行快速热解液化玉米秸秆粉的初步试验,在出口温度为400~430e时得到生物油收率为50%;对生物油成分分析,乙酸绝对含量高达26%。李志合等[36]设计了一种以等离子体为主加热热源,同时配合热电阻丝保温的新型

第3期路冉冉,等:生物质热解液化制备生物油技术研究进展57

流化床反应器。对玉米秸秆粉末的热解实验表明,生物油产率随温度升高先增大后减小,在477e左右液体产率最高。修双宁等[37]利用等离子体加热生物质快速热解玉米秸秆粉末,对热解动力学研究,实验值和模型计算预测值有很好的吻合性,所得的模型和相应的动力学参数具有广泛适用性。

3生物质热解液化动力学研究

生物质热解液化动力学主要研究热解反应过程中温度、升温速率、反应时间等参数与物料转化率之间的关系,通过动力学分析可深入了解反应机理,预测反应速率,以及反应进行的难易程度。温度是一个重要的影响因素,它对产物组分含量、产率等都有很大的影响。升温速率一般对热解有正反两方面的影响,升温速率增加,物料颗粒达到热解所需温度的响应时间变短,有利于热解;但同时颗粒内外的温差变大,由于传热滞后效应会影响内部热解的进行。除以上几个主要影响因素外,在热解过程中,反应压力、生物质种类、粒径、含水量及形状等因素也对热解反应过程和产品的产量有一定的影响[38]。

早期生物质快速热解动力学计算时,一般都采用一步反应模型来描述热解过程,认为生物质热裂解主要生成炭和挥发分两种产物,并且生物质的挥发分分析规律满足Arr hen i u s反应方程。随着研究的深入,为了更准确的描述生物质的热解挥发特性以满足研究的需要,在一步反应模型的基础上提出其它反应模型。T sa m ba等[39]

利用热重法进行椰壳和腰果壳的热解动力学研究,发现在失重曲线出现半纤维素和纤维素两个峰值;且活化能在升温速率为10和20e/m in时,分别为130~174和180~ 216kJ/m ol。V elden等[10]运用TGA和DSA研究方法确定热解反应动力学参数,对于大多数生物质而言,一级反应速率常数大于0.5s-1,反应热在207~434kJ/m o l。

与国外研究相比,国内在闪速热解机理方面研究较少,李志合等[40]以等离子体为热源,对稻壳等进行了闪速热解挥发试验,根据不同加热温度和挥发时间下的热解挥发数据计算出了Arr hen i u s一级反应动力学模型的表观频率因子和表观活化能参数的值,表明同一种生物质的热解动力学参数不随工况发生变化,不同生物质的表观频率因子和表观活化能不同,试验数据与模型具有很好的吻合性。杜海清[41]采用热失重分析法对4种木质类生物质(松树、杨树、椴树和白桦研究表明,热解反应为一级反应,4种样品的峰值温度均随升温速率的增大而升高,活化能E和指前因子A 随着升温速率的增大而增大;升温速率加倍时,最大失重速率随之加倍。催化剂的加入影响了热解反应历程,催化剂含量增加,活化能呈现出递减的趋势,活化能降低的幅度为3.8~7kJ/m o l。Lu等[42]运用C-R方法分析热解动力学参数,证明热解并非简单的一级反应,生物质非线性衰减的反应机理可以用三个连续方程表示,即:一维扩散反应(Friedm an自由扩散模型,一级表面反应和二维扩散反应,利用该反应机理,可以确定动力学参数和反应方程。

虽然研究者们根据自己的实验结果和推算,建立了各种热解反应动力学模型,但这些模型在来源和形式上差别很大,而且大部分模型都是在热重仪慢速热解的实验基础上提出的,是否对生物质在快速加热条件下的热裂解有效需要进一步验证,生物质热解动力学仍没有公认的理论。因此,对模型建立、理论分析和实验验证手段的研究等仍需进行大量的研究。

4展望

生物质热解液化技术是生物质能源利用较为有效的途径之一。其存在和发展的重要意义不仅仅局限在能提供高利用价值的液体燃料,而是因为该工艺将可再生资

源高品位利用、生态环境的低污染以及绿色能源的持续供应等有机地结合在一起,实现了资源、能源和环境的高效统一,因此该技术具有广泛的应用前景。

在欧美等发达国家,生物质热解液化已经得到广泛的工业应用,并取得了一定的经济效益。欧洲在1995年专门成立了一个Py NE(Pyro lysis N et w ork for Europe组织,2001年成立了Gas Net组织,在快速热解液化技术的开发以及生物油的利用方面做了大量富有成效的工作。2009年6月,芬兰综合林产品公司斯道拉恩索集团(Stora Enso和耐思特石油公司(Neste O il在瓦尔考斯建造的生物燃料示范工厂

58生物质化学工程第44卷

落成,该厂将林业废料进行液化,流程单元涵盖:生物质干燥、气化、气体净化以及F ischer-Tropsch催化剂测试等阶段。与发达国家相比,我国生物质热解液化技术方面的研究起步较晚,但是近几年也得到迅速发展,2008年3月,国内首创的产业化设备YNP-1000A生物质热解液化装置达到国际先进水平。2009年6月,安徽易能生物能源有限公司自主研发的YNP-1000B型生物质炼油设备在山东滨州投产,生物油的产业化进入了实质性阶段。

生物质热解液体燃料可在一定程度上替代石油,生物原油可直接用作各种工业燃油锅炉的燃料,也可对现有内燃机供油系统进行简单改装,直接作为内燃机、引擎的燃料;此外,生物油中含有许多常规化工合成路线难以得到的成分。当前,生物质热解液化技术工业应用应以生产化学产品和高附加值物质为主;但从长远角度考虑,随着技术的发展、生产规模的扩大、成本的下降,生物油作为燃料和动力用油会更具有竞争性,同时生物油的利用可大大减少SO x、NO x以及CO2的排放,综合效益更显著[43]。基于我国生物质资源丰富,石油资源匮乏的国情,我国应该加大投入力度,研究符合我国国情、具有独立知识产权的热解液化技术,加强对各种热解机理的研究和新型热解工艺以及高效反应器的开发,同时,进一步加强生物油精制升级的研究,提高生物油的质量,对生物油进行分类使用,使之应用范围更广,增加市场竞争力。

随着化石燃料的日益枯竭,生物质的开发与利用已成为世界各国的共识,虽然当今生物质快速热解液化技术已经取得了较大的进展,但是仍然存在一定的不足,今后

研究主要集中在以下方面:1寻求合适的原料,降低成本,提高生物油产率;2开发更经济高效的转化技术和反应器;3加强反应机理的研究;4改善生物油的性能;5建立一个针对于不同用途的生物油品质的评定标准。生物油作为燃料应用还存在着技术和经济性上的限制,但是受能源危机等因素的驱使,生物油升级精制后代替化石燃料将会有良好的发展趋势和应用前景,生物质能作为可再生的洁净能源其开发利用已势在必行。

参考文献:

[1]宋春财,王刚,胡浩权.生物质热化学液化技术研究进展[J].太阳能学

报,2004,25(2:242-247.

[2]陈孙航,黄亚继.生物质液体燃料的特性和转化利用技术[J].能源与环

境,2008(5:27-29.

[3]王琦.生物质热裂解制取生物油及其后续应用研究[D].杭州:浙江大学博士学位论文,2008.

[4]郭艳,王垚,魏飞,等.生物质快速裂解液化技术的研究进展[J].化工进

展,2001,20(8:13-17.

[5]刘荣厚,张春梅.我国生物质热解液化技术的现状[J].可再生能源,2004(3:12-14.

[6]章芸,陈秋波.我国生物质能源开发的研究和分析[J].现代农业科

技,2007(12:172-176.

[7]乔国朝,王述洋.生物质热解液化技术研究现状及展望[J].林业机械与木工设备,2005,33(5:4-7.

[8]常杰.生物质液化技术的研究进展[J].现代化工,2003,23(9:13-18.

[9]刘康,贾青竹,王昶.生物质热解技术研究进展[J].化学工业与工

程,2008,25(5:459-463.

[10]VELDEN M V,BAEYENS J,BREM S A,et a.l Funda m entals,k i netics and endot her m icit y of the b io m ass pyrol ys i s reacti on[J].Rene w ab le

Energy,2009,35(1:232-242.

[11]L U Q,L IW Z,Z HU X F.Overvie w of f uel p roperties of b i o m ass fast pyrol ys i s oils[J].Energy Convers i on and M anage m en t,2009,50(5:

1376-1383.

[12]袁振宏,吴创之,马隆龙.生物质能利用原理与技术[M].北京:化学工业出版社,2004.

[13]张瑞霞,仲兆平,黄亚继.生物质热解液化技术研究现状[J].节能,2008,27(6:16-19.

[14]孔晓英,武书彬.农林废弃物热解液化机理及其主要影响因素[J].造纸科学与技术,2001,20(5:22-26.

[15]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版

社,2004.

[16]王富丽,黄世勇,宋清滨,等.生物质快速热解液化技术的研究进展[J].广西科学院学报,2008,24(3:225-230.

[17]M ANUEL G P,W ANG X S,S H EN J,et a.l Fast pyro l ysis of oilm all eew oody b i omass:E ffect of t e m perat u re on t h e yiel d and quality ofpyroly-

sis product s[J].Industrial&Engi n eeri ng C he m istry Researc h,2008,47(6:1846-1854.

[18]AK W AS I A B,MULLEN C A,GOLDBERG N M,et a.l Produ cti on of b i o-o il fro m alf alfa ste m s by fl u i d iz ed-bed f ast pyrol ys i s[J].Industrial&

Engi n eeri ng C he m istry Researc h,2008,47(12:4115-4122.

[19]刘荣厚,栾敬德.榆木木屑快速热裂解主要工艺参数优化及生物油成分的研究[J].农业工程学报,2008,24(5:187-190.

[20]BOUK IS I,GYFTOPOULOU M E,PAPAM I CHAEL I.Progres s i n Ther moche m i cal B i o m ass C onvers i on[M].Oxford:B l ackw ell Publi sh i ng

Ltd.,2001:25-32.

第 3期路冉冉 , 等 : 生物质热解液化制备生物油技术研究进展 59 [ 21 ] V ELDEN M V, BA EY EN S J , BOUK I S I . M od eling CFB b iom ass pyrolysis reactors[ J] . B iom ass B ioenergy, 2008, 32( 2 : 128 - 139. [ 22 ] L* D* J . Com parison of contact and rad iant ab lativepyrolys is of b iom ass [ J]. Jou rnal of A nalytical and A ppl ied Pyrolys is , 2003, 70( 3 : 601 618 . [ 23 ] BR I DGW ATER A V. Th e production of b iofuels and renewable chem icals by fast pyrolys is of b iom ass [ J] . International Journal of G lob al Energy Issues , 2007 , 27 ( 2 : 160- 203 . [ 24 ] L* D* J , BROU S F, N D I AY E F T. Properties of b io-oi ls p roduced by b iomass fast pyro lysis in a cyclon e reactor[ J]. Fue, l 2007, 86( 12 /13 : 1800 - 1810 . [ 25 ] 李滨. 转锥式生物质闪速热解装置设计理论及仿真研究 [ D ]. 哈尔滨 : 东北林业大学博士学位论文 , 2008 . [ 26 ] 杜洪双 , 常建民 , 王鹏起 , 等 . 木质生物质快速热解生物油产率影响因素分析 [ J] . 林业机械与木工设备 , 2007, 35 ( 3 : 16- 21 . [ 27] CHEN M Q, W ANG J , ZHANG M X, et a. l C atalyt ic effects of eigh t inorgan ic addit ives on pyro lysis of p ine w ood saw dust bym icrowave heat ing [ J] . Jou rnal of A nalytical and A pp lied Pyrolysis , 2008 , 82( 1 : 145 - 150 . [ 28 ] A D ISAK P, J AM ES O T, BR I DG E W ATER A V. Evaluat ion of catalytic pyrolys is of cassava r h izom e by principal com ponen t analys is [ J ]. Fu e,l 2010 , 89 ( 1 : 1 - 10 . [ 29 ] 白鲁刚 , 颜涌捷 , 李庭深 . 煤与生物质共液化的催化反应 [ J] . 化工冶金 , 2000 , 21( 2 : 198 - 203. [ 30 ] 陈吟颖 . 生物质与煤共热解试验研究 [ D ] . 北京 : 华北电力大学博士学位论文 , 2007. [ 31 ] M I URA M , KA GA H, YO SH I DA T. M icrow ave pyro lysis of cellu losic materials for the produ ct ion of

anhydrosugars [ J ] . Th e Japan W ood R esearch Soeiety , 2001, 47 ( 6 : 502- 506. [ 32 ] M I URA M , KA GA H, SAKU RA IA. R ap id pyrolysis of w ood b lock by m icrow ave h eating [ J] . Journal of A nalyt ical and A pp lied Pyrolys is , 2004 , 71 ( 1 : 187- 199 . [ 33 ] 商辉, K I NGMAN S, ROB I N SON J . 微波热裂解木屑的基础研究 [ J]. 生物质化学工程 , 2009, 43( 6 : 18 - 22 . [ 34] WAN Y Q, CHEN P, ZHAN G B , et a. l M icrow ave -assisted pyrolys is of b iom ass : Catalysts to i m prove produ ct selectivity[ J] . Journal of A nalyti cal and A pp lied Pyro lysis , 2009 , 86( 1 : 161 - 167 . [ 35 ] 易维明 , 柏雪源 , 何芳 , 等 . 利用热等离子体进行生物质液化技术的研究 [ J] . 山东工程学院学报 , 2000 , 14 ( 1 : 9 - 12 . [ 36 ] 李志合 , 易维明 , 李永军 . 等离子体加热流化床反应器的设计与实验 [ J] . 农业机械学报 , 2007 , 38 ( 4 : 66 - 68 . [ 37 ] 修双宁 , 易维明 , 李保明 . 秸秆类生物质闪速热解规律 [ J] . 太阳能学报 , 2005 , 26( 4 : 538 - 542. [ 38 ] 马承荣 , 肖波 , 杨家宽 , 等 . 生物质热解影响因素研究 [ J] . 环境生物技术 , 2005 , 23( 5 : 10 - 15. [ 39 ] TSAM BA A J , YAN G W H, BLA SI AK W. Pyrolysis characteristics and global k inetics of coconu t and cashew nu t shel ls[ J] . Fuel Process ing Technology, 2006, 87( 1 : 523 - 550. [ 40 ] 李志合 , 易维明 , 高巧春 , 等 . 生物质闪速热解挥发特性的研究 [ J] . 可再生能源 , 2005( 4 : 26 - 29. [ 41 ] 杜海清 . 木质类生物质催化热解动力学研究 [ D ] . 哈尔滨: 黑龙江大学硕士学位论文 , 2008 . [ 42 ] LU C B , SONG W L, LI N W G. K inet ics of b iom ass catalytic pyro lysis [ J] . B iotechnology A dvances , 2009 , 27( 4 : 583 - 587 . [ 43 ] 廖艳芬 , 王树荣 , 谭洪 , 等 .

生物质热裂解制取液体燃料技术的发展 [ J] . 能源工程 , 2002( 2 : 1 -5 .

生物质热解技术研究现状及其进展

能源研究与信息 第17卷第4期 Energy Research and Information Vol. 17 No. 4 2001 文章编号 1008-8857(2001)04-0210-07 生物质热解技术研究现状及其进展 李伍刚,李瑞阳,郁鸿凌,徐开义 (上海理工大学上海 200093)  摘要生物质热解技术是把低能量密度生物质转化为高能量密度气、液、固产物的 一种新型生物质能利用技术。其中液体产物具有便于运输、储存等优点,可替代燃料 油用于发电、供暖系统以及可代替矿物油提炼某些重要的化学物质。介绍了国内外对 这一技术的各种研究及其进展,并简要介绍了上海理工大学独立研制开发的生物质闪 速液化实验装置。 关键词生物质热解; 生物油 中图法分类号 TK6文献标识码A 1 引言 能源是人类生存与发展的前提和基础,从远古时代原始人钻木取火到近代以蒸汽机为代表的工业革命,人类文明的每一跨越和进步都与所用能源种类及其利用方式紧密相连。目前人类赖以生存和进行经济建设的一次能源主要是矿物能源(煤、石油、天然气、核能等)。矿物能源的使用隐藏着两个严重问题,其一:根据目前的全球能耗量和矿物能源已探明的储量,煤、石油、天然气、核燃料可使用年限分别为220、40、60和260年[1],从长远来看人类必将面临能源危机。其二:矿物能源对环境有巨大破坏作用,矿物能源燃烧产生大量CO2、SO x、NO x等气体。CO2属温室效应气体,会造成全球变暖及臭氧层破坏。NO x、SO x等有害气体会直接对环境、设备和人体健康构成危害。故此,作为有重要长远意义和战略意义的技术储备,寻求清洁的可再生能源及其利用技术,已成为全球有识之士的共识,受到各国政府和研究机构的广泛关注。 生物质是一种清洁的可再生能源,生物质快速热解技术是生物质利用的重要途径,所谓热解就是利用热能打断大分子量有机物、碳氢化合物的分子键,使之转变为含碳原子数目较少的低分子量物质的过程。生物质热解是生物质在完全缺氧条件下,产生液体(生物油)、气体(可燃气)、固体(焦碳)三种产物的生物质热降解过程。 收稿日期:2001-6-10 基金项目:上海市重点学科建设资助项目 作者简介:李伍刚(1974-),男,上海理工大学热能工程专业硕士研究生。

秸秆热解液化制备生物油技术

秸秆热解液化制备生物油技术 石油短缺和能源结构不合理是我国的基本国情,经济的快速增长也决定我国能源消费将不断增长。面对能源紧缺特别是液体燃料的严重短缺和巨大消耗、石化能源消耗带来环境污染的多重压力,提高我国能源安全水平、缓解生态环境污染迫在眉睫。解决能源安全和环境污染问题,一方面要节约能源,减少能源消耗,但最根本的是寻求和开发来源充足、供应安全、环境友好的替代能源。 生物质能是以生物质为载体的能量,是一种可再生、资源丰富且相对较利于环保的能源。农作物秸秆主要包括粮食作物、油料作物、棉花、麻类和糖料作物等5大类,是生物质资源最重要的来源之一。据统计,我国各种农作物秸秆年产量约6亿吨,占世界作物秸秆总产量的20%~30%。 近几年,随着我国农村经济发展和农民收入增加,农村居民用能结构正在发生着明显的变化,煤、油、气、电等商品能源得到越来越普遍的应用。秸秆的大量剩余,导致了一系列的环境和社会问题,每到夏秋两季,“村村点火,处处冒烟”的现象十分普遍。据调查,目前我国秸秆利用率约为33%,其中经过技术处理后利用的仅约占2.6%。秸秆就地焚烧不仅造成大量资源和能源浪费,环境污染也不容忽视。因此,开展秸秆的能源高效转化利用技术研究和能源产品开发成为亟待解决的农业、能源和环境问题,对保障国家能源安全、国民经济可持续发展和保护环境具有重要意义。 生物质液化主要包括生物化学法制备燃料乙醇和热化学法制备生物油,前者一般指采用水解、发酵等手段将秸秆等生物质转化成燃料乙醇,后者则是通过快速热解液化、加压催化液化等进行转化。 生物质液化生物油能替代石油的前景早已引起世界各国的普遍重视,许多国家纷纷将其列为国家能源可持续发展战略的重要组成部分和21世纪能源发展战略的基本选择之一。 1热化学法制备生物油技术 1.1快速热解液化 秸秆、林业废弃物等生物质快速热解液化技术是采用常压、超高加热速率(103K/s~104K/s)、超短产物停留时间(0.5~1s)及适中的裂解温度(500℃左右),使生物质中的有机高聚物分子在隔绝空气的条件下迅速断裂为短链分子,生成含有大量可冷凝有机分子的蒸汽,蒸汽被迅速冷凝,同时获得液体燃料、少量不可凝气体和焦炭。液体燃料被称为生物油(bio-oil),为棕黑色黏性液体,基本不含硫、氮和金属成分,是一种绿色燃料。快速热解液化生产过程在常压和中温下进行,工艺简单,成本低,装置容易小型化,产品便于运输、储存。自1980年以来,秸秆、林业废弃物等生物质快速热解液化技术取得了很大进展,成为最具有开发潜力的液化技术之一。姚建中等研究了玉米秸秆粉料快速热解制备生物油的工艺条件,在480℃左右的温度下,其液体产品得率为45%。 王树荣等开展了生物质闪速热裂解制取生物油技术的研究,比较了木屑和秸秆制备生物油的效果,秸秆制取生物油的产率低于木屑,可能的原因是秸秆中灰分及其金属盐参与了催化反应,更有利于小分子气体的生成。王树荣等在流化床反应器上开展了稻秆和木屑热裂解制取生物油的试验研究,研究结果表明, 快速升温能有效缩短颗粒在低温阶段的停留时间而抑制炭的生成,有助于提高生物油的产率,低灰分含量的木屑比稻秆更适合于热裂解制取生物油。陈洪章等提出了以秸秆“组分分离、分级定向转化”为核心,将生物转化和热转化有机结合,多级转化生产燃料酒精与生物油的构想。其研究结果表明,秸秆经过汽爆处理后,利用纤维素酶发酵制备乙醇,发酵剩余物再经快速热解液化制备生物油,不但热解温度较原秸秆单纯热解液化明显降低,而且所得生物油品质有明显改观。廖艳芬等研制了以流化床反应器为主体的可连续运行的秸秆、木屑热裂解制取液体燃料系统,成功地制取了产率高达60%的生物油。余春江等对稻秆在热解过程中钾元素的析出过程进行了研究,通过计算得到了钾元素随热解过程析出的定量描述,认为采

生物质热解液化制备生物油技术研究进展_路冉冉(精)

第44卷第3期 2010年5月生物质化学工程B iomass Che m ical Eng i n eering V o.l 44N o .3 M ay 2010 生物质热解液化制备生物油技术研究进展 收稿日期:2010-02-03 基金项目:高等学校博士学科点专项科研基金资助(200804251020 作者简介:路冉冉(1987-,女,山东聊城人,硕士生,研究方向为微波生物质热解技术*通讯作者:商辉(1974-,女,河北保定人,副研究员,博士,从事生物能源与微波化学研究;E -m ai:l shangh l@j m sn .co m 。 路冉冉1,商辉1*,李军2 (1.中国石油大学(北京重质油国家重点实验室,北京102249;2.中国石油规划总院,北京100083 摘要:介绍了国内外生物质热解液化工艺、主要反应器及其应用现状;简述了生物质催化热解、生物质与煤共热解液化、微波生物质热解、热等离子体生物质热解几种新型热解工艺;并对目前生物质热解动力学研究进行了总结;对未来生物质热解液化技术的研究进行了展望。 关键词:生物质;热解;液化;生物油 中图分类号:TQ351 文献标识码:A 文章编号:1673-5854(201003-0054-06 Research Progress on Bi o mass Pyr ol ysis Technol ogy f or L i qui d O il Producti on

LU Ran -ran 1,SHANG H u i 1,LI Jun 2 (1.S tate K ey L aboratory of H eavy O il Processing ,China U n i versity of Pe tro leum (Be iji ng,Be iji ng 102249,Ch i na ; 2.Ch i na P etro l eu m Eng i nee ri ng and P l ann i ng Instit ute ,Be iji ng 100083,Chi na Abstrac t :B i om ass li que facti on techno logy,m ai n reactor types for b i om ass pyro lysis and t he ir deve lop m ent status i n do m estic and aboard we re descr i bed .Cata l y ti c py ro l y si s of b i omass ,co -li que facti on o f bio m ass and coa,l m i crowave assi sted pyro l ysis as w ell as ther m a l plas m a b i o m ass pyro l ysis techno l og ies were descri bed ,and t he curren t k i neti cs o f b i om ass pyro lysisw ere su mm ar ized .T he future o f bio m ass li que facti on techno log i es w ere prospected . K ey word s :b i o m ass ;pyrolysis ;lique facti on ;b i o -o il 能源是社会经济发展和人类赖以生存的基础,当前社会的主要能源是化石能源,属不可再生资源。同时,化石能源的迅速消耗造成生态环境不断恶化,排放的温室气体导致全球气候变化,严重威胁人类社会的可持续发展。从能源发展和环境保护角度来看,寻找一种新型可再生的清洁能源已迫在眉 睫[1]。生物质能是以化学能形式储存的太阳能,具有分布广泛、可再生和无污染等特点,它的高效转换和清洁利用受到广泛重视。但是从自然界直接获得的生物质能量密度低,直接利用有很多缺点,如:燃烧效率低,需要寻求更为有效的方式加以 利用。生物质的利用技术主要包括生物转化技术和热化学转化技术,热化学转化包括直接燃烧、气化和热解液化技术,其中热解液化技术将生物质转化成液体生物油加以利用,是开发利用生物质能有效途径之一。该技术所得油品基本上不含硫、氮和金属成分,是一种绿色燃料,生产过程在常压、中温下进行,工艺简单,装置容易小型化,液体产品便于运输和存储。因此,在生物质转化的高新技术中,生物质热解液化技术受到广泛重视[2-6]。

生物质热解技术

生物质压缩成型技术 1 压缩成型原理 生物质主要有纤维素、半纤维素和木质素组成。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。在冷却以后强度增加,成为成型燃料。压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。 对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。 2 压缩成型生产工艺 压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。 生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料 主要操作步骤如下: (1)干燥 生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料

的含水率降低至8%-10%。如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。 (2)粉碎 木屑及稻壳等原料的粒度较小,经筛选后可直接使用。而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。 (3)调湿 加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。 (4)成型 生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。生物质压缩成型的设备一般分为螺旋挤压式、活塞冲压式和换模滚压成型。 螺旋挤压机源于日本,是目前国内比较常见的技术,生产的成型燃料为棒状,直径50-70mm。将已经粉碎的生物质通过螺旋推进器连续不断推向锥形成型筒的前端,挤压成型。因为生产过程是连续进行的,所以成型燃料的质量比较均匀,外表面在挤压过程中发生炭化,容易点燃。但是,由于螺杆处在较高温度和压力下工作,螺杆与物料始终处于摩擦状态,导致压缩区螺纹的磨损非常严重。当螺杆磨损到一定程度,螺杆与出料筒失去尺寸配合,原料就无法完成成型。因此,压缩区螺纹的磨损决定了螺杆的使用寿命,螺杆使用寿命成为生物质压缩成型技术实用化决定性因素。对螺杆磨损,由于受工艺技术的制约,目前没有从根本上解决问题,平均寿命仅为60-80h。

生物质快速热解技术

生物质快速热解技术 摘要:生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为2l世纪研究的重要课题。本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以度其产物——生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。 生物质是地球上绿色植物通过光合作用获得的各种有机物质,它是以化学方式储存太阳能,也是以可再生形式储存在生物圈的碳。主要包括林业生物质、农业废弃物、水生植物、能源作物、城市垃圾、有机废水和人、畜粪便等。 据统计,世界每年生物质产量约l460亿吨,其中农村每年的生物质产量就有300亿吨,而生物质的利用却仅占世界能源消耗总量的l4%,发达国家占3%,发展中国家占35%,是继石油、煤炭、天然气等化石能源之后,当今全球第四大能源。但随着化石能源利用中产生诸如“酸雨”、“温室效应”等环境问题的日益突出,以及化石燃料本身可开采量的逐渐减少,生物质能源凭借其是一种环境友好型能源,及其利用中较低的SO、NO产出和CO净排放量为零等优点,引起了越来越多人的关注。 不言而喻,生物质能源将是未来可持续发展能源体系的重要组成部分,无论是从环境,还是从资源方面考虑,研究生物质能源的转化与利用都是一项迫在眉睫的重大课题。 1生物质转化利用方法 1.1生物法或称为微生物法 生物质(主要是农作物秸秆、粪便、有机废水等)在厌氧条件下发酵制得沼气,主要成分是甲烷;糖类、淀粉类原料水解发酵制取酒精。 1.2化学处理法 生物质中的半纤维素在酸l生条件下加热水解获得重要的化工原料糠醛;利用稻壳生产白炭黑等。 1.3热化学转化法 1.3.1热解生物质在隔绝或少量氧气的条件下,热解反应获得气体、固体、液体3类产品。近几十年来国外研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,其得率高达70%以上,是一种很有开发前景的生物质应用技术。 1.3.2液化分直接液化和间接液化两类,直接液化是生物质在高压设备中,添加适宜的催化剂,反应制得液化油,作为汽车用燃料,或者分离加工成化工用品,这是近年来生物质能利用研究的热点。间接液化是把生物质先气化成气体后,再进一步合成液体产品;或者把生物质中的纤维素、半纤维素水解,然后再发酵制取酒精。 1.3.3气化生物质在较高的温度(700—900℃)下,与气化剂(如空气、氧气或水蒸气)反应得到小分子可燃气体的过程。目前使用最广泛的是空气作气化剂,产生的气体主要作为燃料使用,可用于锅炉、民用炉灶、发电等场合,也可作为合成甲醇、氨的化工原料。气化技术在国外已实现大规模工业化,主要有气化发电技术,目前我国在此方面已基本完成中试与小规模生产,现正走向大型产业化生产阶段。 1.3.4直接燃烧生物质在充足氧气的环境下直接燃烧,把化学能转变为热能。近年来还出现了生物质固化成型技术,通过机械加压的方法将分散、无定形生物质转化为一定形状和密度的固体燃料,然后再燃烧。 热化学转化法可用图1表示:

生物质热裂解液化技术

第六章生物质热裂解液化技术 第1节生物质热裂解原理 1.1 概念 ⑴生物质热裂解 生物质通过热化学转换,生成液体生物油、可燃气体和固体生物质炭3类物质的过程。 控制热裂解条件(反应温度、升温速率、添加助剂等)可以得到不同热裂解产品。 ⑵生物质热裂解液化 是在中温(500~650℃)、高加热速率(104~105℃/s)和极短停留时间(小于2s)的条件下,将生物质直接热解,产物再迅速淬冷(通常在0.5s内急冷到350℃以下),使中间液态产物分子在进一步断裂生成气体之前冷凝,从而得到液态的生物油。 生物油产率可高达70%~80%(质量分数)。气体产率随温度和加热速率的升高及停留时间的延长而增加;较低的温度和加热速率导致物料炭化,生物质炭产率增加。 生物质热裂解液化技术最大的优点在于生物油易于存储和运输,不存在产品就地消费的问题。 1.3生物质热裂解原理分析 (一)反应进程分析 生物质的热裂解(慢速)大致分为4个阶段: ⑴脱水阶段(室温~150℃):物料中水分子受热蒸发,物料化学组分几乎不变 ⑵预热裂解阶段(150~300℃):物料热分解反应比较明显,化学组成开始发生变化。半纤维素等不稳定成分分解成CO、CO2和少量醋酸等物质。

⑶固化分解阶段(300~600℃):物料发生复杂的物理、化学反应,是热裂解的主要阶段。物料中的各种物质相应析出,生成的液体产物中含有醋酸、木焦油和甲醇,气体产物中有CO、CO2、H2、CH4等。物料虽然达到着火点,但由于缺氧而不能燃烧,不能出现气相火焰. ⑷炭化阶段:C—H、C—O键进一步断裂,排出残留在木炭中的挥发物质,随着深层挥发物向外层的扩散,最终形成生物炭。 以上几个阶段是连续的,不能截然分开。快速裂解的反应过程与此基本相同,只是所有反应在极短的时间内完成,原料快速产生热裂解产物,因为迅速淬冷,使初始产物来不及进一步降解成不冷凝的小分子气体,从而增加了液态产物生物油。 (二)热解过程中生物质成分分析 ⑴生物质中主要成分及其分解产物 生物质主要由纤维素、半纤维素和木质素3种主要组成物,及一些可溶于极性或弱极性溶剂的提取物。3种组份常被假设独立进行热分解,半纤维素主要在225~350℃分解,纤维素主要在325~375℃分解,木质素在250~500℃分解。 纤维素是β-D-葡萄糖通过C1—C4苷键连接起来的链状高分子化合物,半纤维素是脱水糖基的聚合物。当温度高于500℃,纤维素和半纤维素将挥发成气体并形成少量炭; 木质素是具有芳香族特性的、非结晶性的、具有三维空间结构的高聚物。木质素隔绝空气高温分解可得到木炭、焦油、木醋酸和气体产物。产品的得率取决于木质素的化学组成、反应最终温度、加热速度和设备结构等。木质素的稳定性较高,热分解温度是350~450℃,而木材开始强烈热分解的温度是280~290℃。木质素中的芳香族成分受热时分解比较慢,主要形成炭。 热分解时形成的主要气体成分为:CO29.6%,CO50.9%,甲烷37.5%,乙烯和其它饱和碳氢化合物2.0%;液体提取物主要有萜烯、脂肪酸、芳香物和挥发性油组成。 ⑵纤维素分解过程与途径 纤维素是多数生物质最主要的组成物(在木材中平均占43%)同时组成相对简单,因此被广泛用作生物质热裂解基础研究的实验原料。 ①纤维素受热分解,聚合度下降,甚至发生炭化反应或石墨化反应,这个过程大致分为4个阶段: 第1阶段:25~150℃,纤维素的物理吸附水解吸; 第2阶段:150~240℃,纤维素大分子中某些葡萄糖开始脱水; 第3阶段:240~400℃,葡萄糖苷键开始断裂,一些碳氧和碳碳键也开始断裂,并产生一些新的产物和低分子的挥发性化合物; 第4阶段:400℃以上,纤维素大分子的残余部分进行芳环化,逐步形成石墨结构。 纤维素的石墨化可用于制备耐高温的石墨纤维材料。 ②纤维素分解途径 最广泛接受的纤维素热分解反应途径模式见图1:

生物质快速热裂解工艺及其影响因素

Ξ 生物质快速热裂解工艺及其影响因素 黑龙江省人民政府农村能源办公室 潘丽娜 摘 要 介绍了目前生物质快速热裂解的工艺及其影响因素,表明了生物质快速热裂解工艺及技术是目前生物质能利用各种方式中很有前途的利用方式。以小型流化床为例着重介绍了生物质快速裂解装置组成及设备工作原理,并分析了影响生物质快速热裂解过程及产物的主要因素,分析表明,温度是影响热裂解过程中最主要因素。 关键词 生物质快速热裂解 应用 工艺类型 装置组成 影响因素 中图分类号:Q941 文献标识码:A 文章编号:1009—3230(2004)02—0007—02 0 前言 生物质是一种潜在的能源资源,是人类未来能源和化学原料的重要来源,生物质资源包括:农作物秸秆,柴薪、水生植物、油料作物和各种有机废弃物。在我国农村能源消费中生物质占70%。而在我国生物质能利用技术的研究和开发较晚,农村能源中的生物质的很大部分都以直接燃烧的形式利用,这种利用方式不仅能源利用率低,平均热效率不到25%,而且燃烧带来的大量烟雾给空气造成严重的污染。 1 生物质热裂解概念及其基本原理 111 生物质热裂解的概念 生物质热裂解(热分解)是指在隔绝空气或只通入少量空气的条件下,使生物质受热而发生分解的过程。生物质发生热裂解时将生物质分解成3种产物:气体(不可冷凝的挥分份)、液体(可冷凝的挥发份)和固体(炭)。 2 生物质热裂解的工艺 流化床快速热裂解的工艺流程较为简单,结合图1所示流程图对其工艺流程加以分析:上线为生物质颗粒一定的速率进入流化床反应器,在反应器内与高温的砂子流化充分接触,高温发生热裂解反应,反应生成的固体小颗粒随气流向上流入旋转分离器,在旋风分离器中因离心力,器壁摩擦力,以及小颗粒自身的重力作用下落入旋风分离器底部的集炭箱中,并收集。下线为气相流,空气经压缩机打入贫氧发生器,再经反应得贫氧气体充当载气,在压力的作用下,载气先通入螺旋进料器以保持进料器系统有一个足够的送风压力以保证预料顺利进入反应器,两路气体在床内一起流化砂子和原料混合物,经热裂解之后生成的气体与载气一起通过旋风分离器分离,从旋风分离器流出的气体在金属冷凝器,球型玻璃管冷凝可液化的气体,之后,剩余的气体由转子流量计再经过滤器进入收集装置。 3 生物质快速热裂解工艺主要影响因素分析 不同的工艺类型对产物及产物的比例有着重要的影响,不同的反应条件对热裂解的过程和产物亦有不同的影响。就目前的研究而言,总的讲来,影响热裂解的主要因素包括化学和物理两大方面。化学因素包括一系列复杂的一次反应和二次化学反应;物理因素主要是反应过程中的传热、传质以及原料的物理特性等。在具体的操作方面表现为:温度、升温速率、物料特征以及反应的滞留时间和压力等等。 311 滞留时间的影响 滞留时间在生物质快速热裂解反应中有生物质颗粒的固相滞留时间和气相滞留时间之分,而 7 2004年第2期(总第86期) 应用能源技术 Ξ收稿日期:2004—01— 21

生物质热解技术的研究及应用展望

生物质热解技术应用及展望 摘要:概述了生物质热解技术的原理及反应过程,介绍了热解工艺类型及热解产物类型,并对对生物质热解技术的发展前景进行了展望。 关键词:生物质;热解;热解工艺;热解产物 Application and prospects of biomass pyrolysis technology Zhao Shibin (Shijiazhuang Tiedao University,Shijiazhuang ,050043,China) Abstract: This article mainly discusses the principle of biomass pyrolysis technology and reaction process, pyrolysis types and analysis the products of it, and the rightness of biomass pyrolysis technology development foreground is prospected. Key words: biomass; pyrolysis; pyrolysis process; pyrolysis products 0 前言 人类世界正在面临着前所未有的能源危机。当前,人类社会所需要的能源主要来自矿物燃料,包括煤炭、石油、天然气等,但是这些资源正在逐步日益耗尽,其储量已难以在满足未来的发展需要。因此,开发和找寻新的可替代能源的任务迫在眉睫。生物质能源属于一种可再生能源,而且来源丰富,可以作为满足未来发展的一种重要的可再生能源。通过生物质能转换技术可高效地利用生物质能源,且其开发转化技术较容易实现,既可利用生物质能的热能效应又可以将简单的热效应充分转化为化学能等高品位的能源,生物质热解技术便为这种转换提供了技术保障。 生物质热解技术是指在无氧或低氧的条件下,将由高分子组成的生物质在高温下加热,通过热化学反应使之裂解为低分子化合物的技术方法。生物质热解的燃料能源转化率可达95.5%,最大限度的将生物质能量转化为能源产品,从而物尽其用,同时,热解也是燃烧和气化必不可少的初始阶段。 1 热解技术原理及反应过程 1.1 生物质热解原理 生物质在热解过程是一系列复杂的化学、物理反应,包括一系列的能量传递和物质传递。生物质通常是木材、竹材、灌木、野草、秸秆等天然有机材料的统称,其主要化学成分是纤维素、半纤维素和木质素。研究表明,3种组份常被假设独立进行热分解,纤维素在52℃时开始热解,随着温度的升高,热解反应速度加快,到350~370℃时,分解为低分子产物;半纤维素结构上带有支链,主要在225~325℃分解,比纤维素更易热分解,其热解机理与纤维素相似;木质素是具有芳香族特性的、非结晶性的、具有三维空间 结构的高聚物,主要在200~325℃分解[]1 。 在生物质热解过程中,热量首先传递到颗粒表面,再由表面传到颗粒内部。热解过程由外至内逐层进行,生物质颗粒被加热的成分迅速裂解成木炭和挥发分。其中,挥发分由可冷凝气体和不可冷凝气体组成,可冷凝气体经过快速冷凝可以得到生物油。一次裂解反应生成生物质炭、一次生物油和不可冷凝气体。在多孔隙生物质颗粒内部的挥发分将进一步裂解,形成不可冷凝气体和热稳定的二次生物油。同时,当挥发 分气体离开生物颗粒时,还将穿越周围的气相组分,在这里进一步裂化分解,称为二次裂解反应[]2 。生物 质热解过程最终形成生物油、不可冷凝气体和生物质。

生物质热解燃料油

生物质热解燃料油制备和精制技术 摘要:能源问题在世界经济中具有战略意义。据预测,地球上可利用的石油将在今后几十年内耗竭,从长远看液体燃料短缺仍将是困扰人类发展的大问题。在此背景下,生物质能作为唯一可转化为液体燃料的可再生资源,正日益受到重视。由生物质转化而来的燃料比较干净,有利于环境保护。同时使用这类燃料也有助于减少温室气体的排放。实际上这也是很多发达国家开发生物质能的主要动力。生物质能是通过光合作用以生物形态储存的太阳能,可作为能源利用的生物质包括林产品下脚料,薪柴,农作物秸秆及城市垃圾中的生物质废弃物等。目前生物质的直接燃烧已不能满足人们对能量的需求,由生物质直接液化制取燃料油将是下世纪有发展潜力的技术,它主要包括生物质的裂解和高压液化两类。此外还可将生物质气化后再由气体产品生产液体燃料,也可将生物质水解后发酵制燃料酒精。 关键词:生物质废弃物热解燃料油制备精制技术可再生 一、生物质燃料油的制备 1. 生物质裂解制燃料油 裂解是在无氧或缺氧条件下,利用热能切断生物质大分子中的化学键,使之转变为低分子物质的过程。裂解中生物质中的碳氢化合物都可转化为能源形式。和焚烧相比,热解温度相对较低,处理装置较小,便于造在原料产地附近。生物废弃物的热解是复杂的化学过程,包含分子键断裂,异构化和小分子的聚合等反应。通过控制反应条件(主要是加热速率,反应气氛,最终温度和反应时间),可得不同的产物分布。据试验,中等温度(500-600℃)下的快速裂解有利与生产液体产品,其收率可达80%。裂解中产生的少量中热值气体可用作系统内部的热源,气体中氮氧化合物的浓度很低,无污染问题。 国际上近来很重视这类技术,除了从能源利用考虑外,还因生物油含有较多的醇类化合物,作汽车用油时不必为提高辛烷值而外加添加剂。其油品基本上不含硫,氮和金属成分,可看作绿色燃料,对环境影响小。 1.1 裂解工艺

生物质热解技术

生物质热解技术 按温度,升温速率,固定停留时间(反应时间)和颗粒大小等实验条件可将热解分为炭化(慢热解),快速热解和气化。由于液体产物的诸多优点和随之而来的人们对其研究兴趣的日益高涨,对液体产物收率相对较高的快速热解技术的研究和应用越来越受到人们的重视。快速热解过程在几秒或更短的时间内完成。所以,化学反应,传热传质以及相变现象都起重要作用。关键问题是使生物质颗粒只在极短的时间内处于较低温度(此种低温利于生成焦炭),然后一直处于热解过程最优温度。要达到此目的的一种方法是使用小生物质颗粒(应用于流化床反应器),另一种方法是通过热源直接与生物质颗粒表面接触达到快速传热(这一方法应用于生物质烧蚀热解技术中)。由众多实验研究得知,较低的加热温度和较长气体停留时间会有利于炭的生成,高温和较长停留时间会增加生物质转化为气体的量,中温和短停留时间对液体产物增加最有利。 秸秆发电商品化前景分析 解决浪费性生物质能资源的唯一出路在于商品化。生物质能秸秆发电技术,不仅为农村提供更多电力,更有意义的是将使生物质能资源的商品化成为可能,一方面农民可通过出售秸秆获得更多的收入;另一方面过去农村使用直接燃烧秸秆的方式进行炊事,要为秸秆的收集、运输、储存以及在直接燃烧时花费大量的时间和劳力。如果能使用秸秆发电,农村使用更多的商品能源,农民将获得更多的时间从事生产性劳动,以尽早脱贫致富。因此,将秸秆发电进行能源方式转化,是一件利国利民的好事。 1 生物质能秸秆发电的工艺流程 农作物秸秆在很久以前就开始作为燃料,直至1973年第一次石油危机时丹麦开始研究利用秸秆作为发电燃料。在这个领域丹麦BWE公司是世界领先者,第一家秸秆燃烧发电厂于1998年投入运行(Haslev,5Mw)。此后,BWE公司在西欧设计并建造了大量的生物发电厂,其中最大的发电厂是英国的Elyan发电厂,装机容量为38Mw。 1.1 秸秆的处理、输送和燃烧 发电厂内建设两个独立的秸秆仓库。每个仓库都有大门,运输货车可从大门驶入,然后停在地磅上称重,秸秆同时要测试含水量。任何一包秸秆的含水量超过25%,则为不合格。在欧洲的发电厂中,这项测试由安装在自动起重机上的红外传感器来实现。在国内,可以手动将探测器插入每一个秸秆捆中测试水分,该探测器能存储99组测量值,测量完所有秸秆捆之后,测量结果可以存入连接至地磅的计算机。然后使用叉车卸货,并将运输货车的空车重量输入计算机。计算机可根据前后的重量以及含水量计算出秸秆的净重。 货车卸货时,叉车将秸秆包放入预先确定的位置;在仓库的另一端,叉车将秸秆包放在进料输送机上;进料输送机有一个缓冲台,可保艚崭?分钟;秸秆从进料台通过带密封闸门(防火)的进料输送机传送至进料系统;秸秆包被推压到两个立式螺杆上,通过螺杆的旋转扯碎秸秆,然后将秸秆传

第十章 生物质热解技术

第十章生物质热解技术 1 概述 热化学转化技术包括燃烧、气化、热解以及直接液化,转化技术与产物的相互关系见图10-1。热化学转化技术初级产物可以是某种形式的能量携带物,如,木炭(固态)、生物油(液态)或生物质燃气(气态),或者是能量。这些产物可以被不同的实用技术所使用,也可通过附加过程将其转化为二次能源加以利用。 图10-1 热化学转化技术与产物的相互关系 生物质热解、气化和直接液化技术都是以获得高品位的液体或者气体燃料以及化工制品为目的,由于生物质与煤炭具有相似性,它们最初来源于煤化工(包括煤的干馏、气化和液化)。本章中主要围绕热解展开。 1.1生物质热解概念 热解(Pyrolysis又称裂解或者热裂解)是指在隔绝空气或者通入少量空气的条件下,利用热能切断生物质大分子中的化学键,使之转变成为低分子物质的过程。可用于热解的生物质的种类非常广泛,包括农业生产废弃物及农林产品加工业废弃物、薪柴和城市固体废物等。 关于热解最经典的定义源于斯坦福研究所的J. Jones提出的,他的热解定义为“在不向反应器内通入氧、水蒸气或加热的一氧化碳的条件下,通过间接加热使寒潭有机物发生热化学分解,生成燃料(气体、液体和固体)的过程”。他认为通过部分燃烧热解产物来直接提供热解所需热量的情况,严格地讲不应该称为部分燃烧或缺氧燃烧。他还提出将严格意义上的热解和部分燃烧或缺氧燃烧引起的气化、液化等热化学过程统称为PTGL(Pyrolysis,Thermal Gasification or Liquification)过程。 生物质由纤维素、半纤维素和木质素三种主要组分组成,纤维素是β-D-葡萄糖通过C1-C4苷键联结起来的链状高分子化合物,半纤维素是脱水糖基的聚合物,当温度高于500℃时,纤维素和半纤维素将挥发成气体并形成少量的炭。木质素是具有芳香族特性的,非结晶性的,具有三度空间结构的高聚物。由于木质素中的芳香族成分受热时分解较慢,因而主要形成炭。此外,生物质还含有提取物,主要由萜烯、脂肪酸、芳香物和挥发性油组成,这些提取物在有机和无机溶剂中是可溶的。三种成分的含量茚生物质原料的不同而变化,生物质热裂解产

生物质热解制取生物油的研究进展

生物质热解制取生物油的研究进展 生物质热解制取生物油的研究进展 摘要:文章介绍了国内外生物质热解的发展现状与趋势,概述了我国生物质热解制取生物油的潜力。文章对生物质热解制取生物油进行了展望,并指出了生物质热解制取生物油的发展战略。 关键词:生物质热解生物油 一、引言 维持现代文明社会正常运转的主要能源来自石油、煤和天然气。然而,这些化石燃料的广泛使用造成了严重环境污染和温室效应。为了保护环境,实现温室气体减排,缓解能源供需的紧张状况,世界各国均在加紧开发包括生物质能在内的各种可再生能源。 我国农林废弃资源丰富,直接燃烧对环境污染大。利用生物质热解技术原理可以将麦秸秆、玉米杆、谷壳等废气生物质转化为生物油。生物油是一种褐色液体,热值约为15MJ/kg,能够用于工业锅炉或窑炉燃烧供热,也可用于涡轮机或透平中燃烧发电。生物油经过品质提升后(如催化加氢、催化裂解和气化-费托合成),可以转化为汽油或柴油。该文主要对生物质热解液化研究进展进行介绍,综述了这类可再生资源的利用现状、潜力及今后发展的方向。 二、国内外生物质热解研究现状 20 世纪70年代的石油危机,世界各国纷纷寻求可替代化石能源的可再生能源,“生物质”渐渐引起人们的注意,因此对生物质的研究由此开始,尤其是对生物质热解的研究更是引起广大研究者的重视。上世纪80年代早期,北美首先开展了热解技术的研究工作。此后,世界各国先后建立了多种热解装置和相关工艺路线,力图实现热解技术的产业化。 生物质快速热解技术是生物质利用的重要途径,许多研究者用闪解来增加热解的液体产物和气体产物。任铮伟等[1]在最大进料速率为5kg/h的快速裂解流化床内进行了快速热解生物质制取液体燃料 的研究。反应在常压和420~525℃温度范围内进行,以木屑为原料,

【创新案例】生物质热解气化技术

【创新案例】生物质热解气化技术 1背景 随着日益严峻的环境污染问题,各国政府都越发重视可再生能源的开发与应用。生物质气化技术作为新一代生物质利用技术,具有能源转化效率高、设备简单、投资少、易操作、占地面积小、不受地区、燃料类型和气候限制等特点,在为工业生产提供生产必须的电和热(热水/蒸汽)的同时,副产品可被用于制备炭基肥、活性炭及冶金行业保温材料等。项目环保性能和经济性能俱佳,对于降低工业生产用能成本,促进我国能源利用朝着绿色可持续方向迈进具有重要意义。 2解决方案 费曼能源采用国际领先的全新一代生物质气化技术,该技术通过精准控制热解可以将生物质转化为高品质合成气,合成气可用于燃烧生产工业生产必须的电能及热能(热水/蒸汽),副产品生物炭具有较高的商业利用价值。由于副产品的高效利用可显著降低电能及热能的生产制备成本,在帮助工业企业实现低碳化绿色生产的同时,显著降低工业企业用能成本。目前,可利用的生物质原料包括:稻壳、竹屑、木屑、烟叶梗、山核桃壳、棕榈壳、椰子壳、玉米芯渣、甘蔗渣、柚子壳、酒糟、制药残渣、造纸剩余物、干化污泥、高聚物废弃物等。3生物质热解气化反应原理4设备示意图5技术对比与其他

生物质供热应用方式相比,生物质热解气化的优势如下:6案例根据国家及江苏省政府清洁能源替代燃煤锅炉的相关政策,江苏泰兴化工园区内的多家化工企业,急需淘汰燃煤锅炉。费曼能源作为项目所有者及实施方,以“生物质天然气”多能互补方式,以稻壳为原料,为园区企业提供热蒸汽等清洁能源,副产物稻壳炭作为保温材料销售给钢厂或有机肥公司。 项目地点:江苏泰兴项目规模:18t/h(15t/h 备用)原料用量:2.66万吨/年蒸汽产量:6.45万吨/年稻壳碳/灰分量:0.63 万吨/年客户类型:食品、化工、印染、电池等所有生产用热企业解决问题:(1)降低企业用能成本,吨蒸汽使用成本降低20元/吨以上(2)降低企业清洁化改造成本,蒸汽管网直接连通各用热企业 (3)帮助企业实现绿色生产,彻底杜绝自备锅炉环保不达标而造成的非生产性停产。技术创新:“生物质天然气”多能互补方式该项目的产品分为能源产品(热蒸汽)和副产品(稻壳炭)。其中能源产品是客户主要的需求,副产品销往附近钢厂用于熔炼工艺保温材料,为项目创造另一部分收益。稻壳炭还可进一步深加工,做成炭基肥等,真正实现(农业能源环保)循环经济生态圈。

生物质热解总结

一、热解分类 根据反应温度和加热速率的不同,生物质热解工艺可分成慢速、常规、快速或闪速几种。慢速裂解工艺已经具有了几千年的历史,是一种以生成木炭为目的的炭化过程川,低温和长期的慢速裂解可以得到30%的焦炭产量;低于600℃的中等温度及中等反应速率(0.1-1℃)的常规热 裂解可制成相同比例的气体、液体和固体产品: 快速热裂解大致在10-200℃/S的升温速率,小于5秒的气相停留时间;闪速热裂解相比于快速热裂解的反应条件更为严格,气相停留时间通常小于1秒,升温速率要求大于1护'C/S.并以102-1护Vs的冷却速率对产物进行快速冷却。但是闪速热裂解和快速热裂解的操作条件并没有严格的区分,有些学者将闪速热裂解也归纳到快速热裂解一类中,两者都是以获得最大化液体产物收率为目的而开发。 事实上,现在人们在考虑生物质的热解机理时,常常假设生物质的三种主要组成物独立进行裂解。纤维素主要在325℃-375℃之间裂解,半纤维素主要在225℃-325℃之间发生裂解,而木质素则在250℃-500℃之间发生裂解(大多数木质素裂解发生在310℃-400℃之间)(shafizadch和Chin. 1977)。纤维素和半纤维素的裂解产生大多数的挥发物,而木质素裂解产生大多数的碳。 二、纤维素热解机理 1、纤维素结构 纤维素是由D-葡萄糖通过β(1-4)一糖苷键相连形成的高分子聚合物。不同的分子通过氢键形成大的聚集结构。目前的研究表明纤维素存在五种结晶变体,即纤维素I,Ⅱ,Ⅲ, IV和V。其中纤维素I是纤维素的天然存在形式。 纤维素是自然界中大量存在的天然高分子物质,是自然界分布最广、含量最多的一种多糖。纤维素是植物细胞壁的主要成分,它是由吡喃葡萄糖普通过0-1, 4-搪昔联结成的线性大分子,一般可用通式(C6HioO5)n表示, n称为聚合度,通常情况下在104左右. 纤维素是由β-D-葡萄糖为聚合单元构成的直状高聚物, 分子通式为(C6H10O5)n。它是具有饱和糖结构的典型碳水化合物,为生物质细胞壁的主组成部分。在高温作用下, 纤维素会发生一系列复杂的脱水、解聚、脱挥发分和结构重整等变化。纤素热解动力学涉及这一系列复杂变化中包含的各反应机理。但是, 由于热解过程中并行或者顺序发生的反应数目众多,实际上不可能、对工程应用来说没有必要建立一个考虑了所有这些反应的详尽的动力学模型. 因此, 该领域内的研究者关注的大多是谓的“准机理模型(pseudo-mechanistic model) ”, 在这一类模型中, 热解产物被笼统地划分为挥发分、固定碳等几大类. 总体上, 准机理模型有两种:单步全局模型和半全局动力学模型[]。 [ 7 ]余春江, 骆仲泱, 方梦祥, 廖燕芬, 王树荣, 岑可法;一种改进的纤维素热解动力学模型;浙江大学学报(工学板),2002:36,509-515 2、纤维素热解机理 由于纤维素在生物质原料中占据了几乎一半的含量,其热裂解行为在很大程度上体现出生物质整体的热裂解规律,纤维素具有最为简单的结构且在不同的材质中其结构和化学特性变化最小,因而当前研究基本上都从纤维素的热解行为入手开展工作。 纤维素热解动力学模型体现了纤维素热解化学反应的本征过程,是整个热解模型的核心部分。动力学模型的可靠性对于颗粒热解模型是否能正确反映真实过程至关重要。 2.1源于对纤维素燃烧过程的研究 纤维素热裂解机理的探索,最早源于对纤维素燃烧过程的研究,通过纤维素燃烧试验,Broido发现纤维素在低温加热条件下,经由吸热反应一部分纤维素转化为脱水纤维素。热裂解

生物质热解制备生物油的经济性分析

山西师范大学本科毕业论文 山西师范大学本科毕业论文 生物质热解制备生物油的经济性分析 作者: 院系: 专业: 年级: 学号: 指导教师: 答辩日期:

山西师范大学本科毕业论文 致谢 光阴似箭,岁月如梭,不知不觉我即将走完大学生涯的第四个年头,回想这一路走来的日子,父母的疼爱关心,老师的悉心教诲,朋友的支持帮助一直陪伴着我,让我渐渐长大,也慢慢走向成熟。 首先,我要衷心感谢一直以来给予我无私帮助和关爱的老师们,特别是我的导师,班主任老师、专业课老师,学院老师,党政办老师。谢谢你们这四年以来对我的关心和照顾,从你们身上,我学会了如何学习,如何工作,如何做人。 其次,我还要真诚地谢谢在我的学习和生活中给予关怀和帮助的同学和学姐,在这四年当中,你们给予了我很多帮助,在我的学习工作生活各个方面,你们给我提出了很多宝贵的建议,我的成长同样离不开你们。 再次,我还要认真地谢谢我身边所有的朋友和同学,你们对我的关心、帮助和支持是我不断前进的动力之一,我的大学生活因为有你们而更加精彩。 最后,我要感谢我的父母及家人,没有人比你们更爱我,你们对我的关爱让我深深感受到了生活的美好,谢谢你们一直以来给予我的理解、鼓励和支持,你们是我不断取得进步的永恒动力。

山西师范大学本科毕业论文 目录 本科毕业论文 .............................................................................错误!未定义书签。致谢 ...........................................................................................错误!未定义书签。中文内容摘要 (3) Abstract (3) 一概述 (5) 二原料收集和预处理 (5) 2.1收集原料 (5) 2.2预处理 (6) 2.21 新工艺的应用 (6) 2.22 生物反应器 (6) 三热解液化转化过程经济性分析、产品的市场分析 (7) 3.1热解工艺方案 (7) 3.11 热解液化规模 (7) 3.12 经济性分析的财务评价参数 (7) 3.13 秸秆收集半径计算 (8) 3.2技术经济性分析 (8) 3. 12 热解液化工厂投资估算 (8) 3.13 热解液化工厂财务评价 (9) 3.14 生物油生产成本分析 (10) 四综合分析 (13) 参考文献 (14)

相关主题
文本预览
相关文档 最新文档