当前位置:文档之家› 基于单片机的智能温控风扇设计

基于单片机的智能温控风扇设计

基于单片机的智能温控风扇设计
基于单片机的智能温控风扇设计

摘要

本设计为智能温控风扇系统,该系统可以实现风扇随实时环境温度而智能变速功能。

系统主要选用STC89C52单片机作为控制中心,DS18B20数字温度传感器采集实时温度,再经单片机处理后通过三极管放大信号后驱动直流风扇的电机。用户可以预设上限、下限温度值,当测得环境温度值在预设上下限值区间中时,此时风扇以半速转动;当温度升高并大于预设上限温度值时,风扇会自动调速,以全速转动;当温度降低并低于预设的下限温度值时,这时风扇电机自动停止转动。全程实现风扇转速随外界温度而智能自变。

关键词:温控风扇,STC89C52单片机,DS18B20数字温度传感器,智能自变

Abstract

This design for the intelligent temperature control fan system, the system can realize the fan intelligent variable speed function according to the real-time environmental temperature.

STC89C52 single-chip microcomputer system is mainly used as the control center, DS18B20 digital temperature sensor to collect real-time temperature, then through single chip through triode amplifier signal after drive dc fan https://www.doczj.com/doc/1d7902584.html,ers can preset upper limit and lower limit temperature, when the environment temperature measurement in the preset upper and lower limit range, the fan rotates at half speed;When the temperature is greater than the preset limit temperature, fan speed automatically, with full rotation.When the lower limit of temperature is lower and lower than the preset value, the fan motor automatically stop running.The entire implementation and intelligence from change fan speed varies with temperature.

Key words:temperature control fan, STC89C52 Single chip microcomputer and DS18B20 digital temperature sensor, smart since the change

目录

摘要..................................................................................................... I Abstract ............................................................................................ II 1绪论. (1)

1.1 本设计的背景及意义 (1)

1.2 发展现状 (1)

1.3 本设计的主要内容 (1)

2 系统整体设计 (2)

2.1 系统整体设计框图 (2)

2.2 系统各模块选用方案论证 (2)

2.2.1 温度传感器的选用 (2)

2.2.2 主控机的选用 (4)

2.2.3 显示电路的选用 (4)

2.2.4 调速方式的选用 (4)

3 系统硬件设计 (6)

3.1 系统硬件原理图 (6)

3.2 主控芯片介绍 (6)

3.2.1 STC89C52简介 (6)

3.2.2 STC89C52主要性能参数 (7)

3.2.3 STC89C52单片机引脚说明 (8)

3.2.4 STC89C52单片机最小系统 (8)

3.3 DS18B20温度采集电路 (10)

3.3.1 DS18B20引脚功能介绍 (10)

3.3.2 DS18B20主要性能参数 (11)

3.3.3 DS18B20的工作原理及时序 (11)

3.4 数码管显示电路 (12)

3.5 风扇驱动电路 (13)

3.6 按键模块 (13)

4 系统软件设计 (15)

4.1 主程序流程图 (15)

4.2 DS18B20子程序流程图 (16)

4.3 按键子程序流程图 (16)

4.4 数码管显示子程序流程图 (18)

5 系统调试 (19)

5.1 系统功能 (19)

5.1.1 系统实现的功能 (19)

5.1.2 系统功能分析 (19)

5.2 软硬件调试 (19)

5.2.1 系统硬件实物介绍 (19)

5.2.2 按键显示部分的调试 (20)

5.2.3 温度传感器DS18B20温度采集部分调试 (20)

5.2.4 风扇调速电路部分调试 (21)

结论 (23)

致谢 (24)

参考文献 (25)

附录 (26)

1绪论

1.1 本设计的背景及意义

随着社会水平的高速发展,家用电器已经越来越智能化,紧随着物价也自然会因为设计成本的提高而上涨。单单从夏季我们用来降温的电器来看,尽管很多城市家庭如今已经用上了空调,但大多数的中国农村家庭仍还在利用电扇降温防暑。电扇虽有调节档位的功能,但仍然离不开人工手换档,灵活性太差。比如在深夜里,温度下降后风扇的风速应该降低,可是这时人已经入睡并不能及时手动换挡,就很容易感冒。为了避免这种不便情况,我们一般都会给风扇定时,让风扇定时关闭,但这依旧不是很智能化。因为如果当风扇定时时间到后,气温依旧没有明显的下降,但是这时风扇已经关闭,人就很容易会再次被热醒,而不得不起床重新打开风扇,这样人根本得不到充足的休息时间。因此,智能温控风扇是当今市场迫切需求的产品。

1.2 发展现状

截止目前,可以说社会已经完全步入了现代化电子时代,由于温度控制器能够实时监控环境温度,并能及时对机器做出调整,它被广泛的运用到各行各业。它的普及带给人们极大的方便。

温控风扇正是基于温度控制器下的一种产物。目前,这种系统在很多国内家庭都得到运用,尤其是家用电器里的自动散热。系统效率越来越高。

1.3 本设计的主要内容

本系统采用STC89C52单片机作为主控芯片,结合温度传感器DS18B20,12V直流风扇以及4个共阴极的LED数码管,可做到显示实时环境温度值和预设温度值,一旦当系统检测到当前环境温度,则会对比预设温度值,自动改变风扇的状态,动作准确。

本篇论文主要以以下思路撰写:首先介绍该设计的意义并简要说明设计中主要涉及到的一些元器件;其次对每个模块进行选择最合适的元件并论证;然后从硬件方面,依次详细介绍每个元件的性能及在本系统中的功能;紧随着再从软件设计方面,对每个模块的子程序进行说明;最后便是对整个系统软硬件的调试,发现问题并解决问题。

2 系统整体设计

2.1 系统整体设计框图

系统的整体设计框图结构如下图2-1所示:

图2-1 系统整体框图

2.2系统各模块选用方案论证

2.2.1 温度传感器的选用

温度传感器主要有以下两种方案可供选用:

方案一:选用热敏电阻作为温度传感器的核心元件。由于热敏电阻的电阻会跟着温度的变化而变化,如此就会产生模拟信号,随后再将模拟信号转换成数字信号,最终发送给单片机IN-0口进行处理。具体热敏温度采集电路如图2-2所示:

复位电路

温度采集电路 显示 驱动电路

直流风扇驱动电路

主 控 机

直流风扇

晶振电路

独立键盘电路

显示器

苏州市职业大学电子信息工程学院毕业设计

图2-2 热敏温度采集电路

方案二:选用温度传感器DS18B20作为温度传感器的核心元件。通过其传感温度,然后直接输出数字温度信号并传给单片机处理。具体DS18B20采集电路如图2-3所示:

图2-3DS18B20温度采集电路

对于方案一,热敏电阻的最大特点就是它的价廉而且很多市场上都有这种元件,但热敏电阻对温度并不敏感,在温度采集时很容易产生误差。虽然这种误差可以通过减小,但并不会避免。故本方案不适合本系统。

对于方案二,因为DS18B20是单总线,且其集成度极高,所以该传感器可以大幅度降低外部误差。其次由于其感测温度与热敏电阻的方法并不一样,使其具有较强的温度识别能力。所测到的温度直接就可以转换成具体数字值并发送给单片机。因此,本方案比较适合该系统。

IN-026ms b2-1

212-220IN-1272-3192-418IN-2282-582-615IN-312-714ls b2-817IN-4

2EOC

7IN-53ADD-A 25IN-64ADD-B 24ADD-C

23IN-7

5

AL E 22ref(-)16

ENABL E 9START 6ref(+)12

CL OCK

10U2ADC0809

R1010k

VCC

VCC

ST EOC

R8

热敏

OE P10P11P12P13P14P15P16P17AL E

ST VCC

G N D

1D Q 2V C C

3

U3

DS18B20

R1310K

2.2.2 主控机的选用

方案一:选用凌阳系列单片机来控制系统,这类单片机可以实现不同的复杂逻辑功能,它将所有元器件都集成在一块芯片上,集成度十分高,提高了稳定性。凌阳单片机的系统处理速度很快,适合用于大规模实时系统的控制。

方案二:采用ST89C52单片机控制整个系统的运行。主要通过编程的方式对测得的温度进行判断,然后输出对应的控制信号。进而实现对系统实时控制。

由于ST89C52单片机要比凌阳系列单片机的价格低得多,且本设计不需要很高的处理速度,从经济和方便使用角度考虑,本设计更倾向于选择了方案二。其次,通过单片机可以直接将测得温度在显示器上显示出来。综合来看,本系统更适合采用方案二。

2.2.3 显示电路的选用

方案一:采用数码管作为系统的显示器。尽管数码管显示的内容有限,但是对于本设计,只要显示一些基本的数字和字母就已经足够了。并且价格低廉。

方案二:采用液晶字符式显示屏作为系统的显示器。能够用软件达到很好的控制,元件器简单。

对于方案一,该方案具有成本低,功耗低的特点,显示驱动程序编写是比较简单的,唯一不足之处是其采用的是动态扫描显示方式,因此在这过程中会有短暂的闪烁,但我们可以通过增加扫描频率来避免闪烁。

对于方案二,液晶显示屏不仅可以显示字符,甚至还能够显示图形,这是LED数码管远远做不到的。但也正是因为它强大的显示功能,使得液晶显示屏的驱动程序复杂,价格相对而言比较昂贵。从实用以及价格多角度来看,方案一更适合该系统。

2.2.4 调速方式的选用

方案一:采用变压器调节方式,运用电磁感应原理进行变压,当风扇电机接到不同电压值的线圈上,电机的转速也会转变,如此就可控制风扇风力大小。

方案二:采用三极管驱动PWM控制。

对于方案一,变压器主要是调节电压,那么在变压过程中就会不可避免的存在损耗,效率不高。还有可能会发热过度起火,带来一些不必要的麻烦。

对于方案二,三极管PWM的最大长处便是无需数模转换,从处理器到被控系统信号一概都是数字形式的。而数字信号正可以在极大程度上降低噪声影响。PWM的第二大特点是它相对于模拟控制有更高的抗干扰能力,正因为如此,在特定情况下亦可以将其用于通信。当模拟信号转向PWM 时会延长通讯的距离。故本系统采用方案二。

3 系统硬件设计

3.1 系统硬件原理图

本系统主要由温度传感器DS18B20、STC89C52单片机、LED 共阴数码管、三极管驱动电路及一些其他外围器件电阻、电容、晶振、电源、按键、开关和风扇组成。系统硬件原理图如下图3-1所示:

图3-1 系统硬件原理图

3.2主控芯片介绍

3.2.1 STC89C52简介

STC89C52单片机是美国STC 公司生产的高性能COMOS 8位单片机。STC89C52使用经典的MCS-51内核片,但做了大量的改进,加入了51系列不具备的诸多功能。正因为如此,两种单片机的指令集和输出管脚都相兼容。STC89C52单片机引脚图如下图3-2所示:

R ST 9P3010P3111P3212P3313P3414P3515P3616P3717X 118X 219G ND 20

P20

21

P2122P2223P2324P2425P2526P2627P2728PS EN 29A LE 30EA 31P0732P0633P0534P0435P0336P0237P0138P0039V CC 40P101P112P123P134P145P156P167P178U 4

89C51/52

1

2

晶振1

12M

C 2

30P C 3

30P

V CC

C 110UF

V CC

V CC

M

风扇

黑色负极红色正极

V CC

Q 28550

Q 18050

e

12d p

3c 4g 5S 4

6

b

7

S 3

8S 29f 10

a

11S 1

12U 34-LE D

V CC

G N D

1D Q 2V C

C 3

U 3

D S18B20

R 1310K

3

2

1

P1

D C

112233445

5

6

6

SZ

SW IT CH

123

4

K 1

123

4

K 2

123

4

K 3

R 110k

R 2

1k R 3

10k

R 41k

V CC

R 52.2K

R 62.2K

R 72.2K

R 82.2K

b

c

e

Q 49012

b

c

e

Q 79012

b

c

e

Q 59012

b

c

e

Q 69012

V CC

123

4

K 3

苏州市职业大学电子信息工程学院毕业设计

图3-2STC89C52单片机引脚图

3.2.2 STC89C52主要性能参数

单片机的主要性能参数如下表3.1所示:

表3.1STC89C52主要性能参数

性能 参数 中断源 8个 RAM 512字节 工作电压 3.8~5.5V 通用I/O 口 32/36个 通用异步通信口 1个 工作频率范围 0~40MHZ 定时器/计数器 3个16B

机器周期 6个状态周期,12个时钟周期

I/O 口线

32位

RST 9P3010P3111P3212P3313P3414P3515P3616P3717X118X219GND 20

P20

21

P2122P2223P2324P2425P2526P2627P2728PSEN 29AL E 30EA 31P0732P0633P0534P0435P0336P0237P0138P0039VCC 40P101P112P123P134P145P156P167P178U489C51

3.2.3 STC89C52单片机引脚说明

引脚说明如下表3.2所示:

表3.2 STC89C52单片机引脚说明

VCC:供电电压;

GND:接地;

P0口:8位双向I/O口,引脚名称为P0.0-P0.7(39脚至32脚);

P1口:8位准双向I/O口,引脚名称为P1.0-P1.7(1脚至8脚);

P2口:8位准双向I/O口,引脚名称为P2.0-P2.7(21脚至28脚);

P3口:8位准双向I/O口,引脚名称为P3.0-P3.7(10脚至17脚);

P3.0:RXD串行输入口;

P3.1:TXD串行输出口;

P3.2:INT0外部中断0;

P3.3:INT1外部中断1;

P3.4:T0定时/计数器0计数输入;

P3.5:T1定时/计数器1计数输入;

P3.6:WR外部数据存储器写选通;

P3.7:RD外部数据存储器读选通;

RST:复位输入;

/PSEN:外部ROM的读选通引脚。当对外部ROM取指令时,会自动在该脚输入一个负脉冲,其他情况均为高电平。其在每个机器周

期有效两次;

/EA/VPP:单片机正常工作时,该脚为内外ROM选择端。当引脚接+5V 时,CPU可访问内部程序存储器;当引脚接地时,CPU只访问

外部程序存储器;在Flash ROM编程期间,由VPP接编程电源;

3.2.4 STC89C52单片机最小系统

STC89C52单片机结构主要包含4个组成部分,即晶振电路、复位电路、电源电路和/EA脚电路。

S TC89C52单片机最小控制系统结构如下图3-3所示:

图3-3单片机最小系统结构

1.晶振电路

晶振电路由一个晶振和两个瓷片电容构成。两个瓷片电容相连接的那一端需接地。该电路用于产生单片机工作的时钟信号。单片机正常工作离不开晶振电路,一般晶振工作在并联谐振状态。具体晶振电路如下图3-4所示:

图3-4晶振电路

2. 复位电路

复位就是使中央处理器(CPU)以及其他功能部件都恢复到初始状态,并重新从初始状态开始工作。单片机在开机时或在工作中因干扰而使程序失控或工作在一个死区的过程中需要使用复位按钮。复位电路一般有上电复位、手动复位和自动复位电路三种。1电路图如图3-5所示:

VCC

C1

10UF

R1

10k

图3-5STC89C52复位电路

3.3 DS18B20温度采集电路

DS18B20是美国DALLAS公司生产的一线式高精度数字式温度传感器。其采用单根信号线,可以传输时钟也能够传输数据,并且数据传输是双向的,其优点是结构简单、廉价、便于总线的扩展和维护等。2

3.3.1DS18B20引脚功能介绍

表3.3 DS18B20引脚功能介绍

NC 空引脚,一无连接;

VDD 可选电源电压,电源电压范围3~5.5V;

I/O 数据I/O,对于单线操作:漏极开路。当工作在寄生电源模式时用来提供电源。

DS18B20主要选用TO-92封装或SOIC及CSP封装形式。图3-6所示为DS18B20的内部结构框图:

图3-6 DS18B20的封装

3.3.2 DS18B20主要性能参数

DS18B20的主要性能参数如下表3.4所示:

表3.4 DS18B20主要性能参数

性能 参数 工作电压 3.0~5.5V 接口方式 单线接口 工作温度 -55℃~+125℃ 工作电压 3.8~5.5V 可编程分辨率

9~12位

3.3.3DS18B20的工作原理及时序

64位ROM 的结构如图3-7所示,开始一部分的8位是工厂代码;中间一部分的是每个器件唯一的48位序列号;最后一部分的是8位CRC 检验码,这也是多个DS18B20为什么可采用单线进行通信的原故。

在64位ROM 的最高有效字节中存储有循环冗余检验码(CRC )。主机根据ROM 的前56位来计算CRC 值,并与存入DS18B20的CRC 值作比较,以判断主机收到的ROM 数据是否准确。

表3.5 DS18B20主要编程指令:

Read ROM (读ROM )[33H ]:

这条命令允许总线控制读到温度采集器64位ROM 。当总线上只有一个DS18B20的时候才可以使用此条指令。

Match ROM (指定匹配芯片)[55H ]: 这条指令后面跟着由控制器发出了64位序列号,当总线上有多个DS18B20时,只有当其与控制发出的序列号相同

的芯片时才能做出反应,其它芯片要等待下一次复位。

Skip ROM (跳跃ROM

指令)[CCH ]:

单总线时,选用此指令可以节省时间。在多芯片挂接时不能使用此指令。

Alarm Search (报警芯片搜索)[ECH ]

这条指令在多芯片挂接的时,报警芯片搜索指令只对吻合温度高于TH 或小于TL 报警条件的芯片进行报警。直到重新测得温度达不到报警条件停止。

如图3-8所示,本设计是采用单独电源供电方式。

L

L

M 48位序列号

8位检验CRC

8位工厂代码图3-764位ROM 示意图

图3-8 DS18B20的工作电路

3.4 数码管显示电路

本系统的显示模块主要由一个4位一体的7段LED 数码管构成。可以显示感测到的温度和当前风扇的档位。它是一个共阴极的数码管,每一位数码管的a,b,c,d,e,f,g 和dp 端都各自连接在一起,用于接收单片机的P0口产生的显示段码。S1,S2,S3,S4引脚端为其位选端,用于接收单片机的P2口产生的位选码。具体原理图如图3-9所示

图3-9数码管显示电路

当一个共阴极数码管接至单片机的电路,它显示的每一个字符都有其对应的段码,下表3.6便是字形与段选码的关系:

OC 1

C 111

D 22D 33D 44D 55D 66D 77D 88D 9

1Q 192Q 183Q 174Q 165Q 156Q 147Q 138Q

12

U274HC573

A

B

C

D

E

F

G

e

12d p

3c 4g 5S 4

6

b

7S 3

8S 2

9f 10a 11S 1

12U34-LED

A F B

E D

C G

P 24P 25P 26P 2710

1020

VCC

表3.67段LED 的段选码表

显示字符

共阴极段码 显示字符

共阴极段码 0 3fH 8 7fH 1 06H 9 6fH 2 5bH A 77H 3 4fH B 7fH 4 66H C 39H 5 6dH D 3fH 6 7dH E 79H 7

07H

F

71H

3.5 风扇驱动电路

风扇的驱动采用的是两个三极管直接与风扇连接,因为三极管具有放大性,所以可以通过三级管来放大信号,然后直接传输到风扇,下图3-10就是该模块电路:

图3-10风扇驱动模块 图3-11 三极管引脚介绍

三极管是一个电流放大器,具有三个电极,如图3-11所示,分别叫做集电极C ,基极B ,发射极E 。

3.6 按键模块

单片机的键盘有两种主要类型,分别是独立式的键盘和矩阵式键盘。独立式键盘每个按键单独占用一个输入/输出端口。按下一个按钮,不会影

M

风扇

VCC

Q28550

Q18050

R21k

R310k

R41k

响其他的输入/输出接口。而矩阵式键盘与独立式的恰恰相反,它的每条水平线和垂直线在交叉处是通过一个按键连接。通过分析很显然独立式键盘接法更适合该设计。

独立式键盘是根据对I/O 口的高低电平进行判断按键的状态。这种按键方法一般采用查询式结构。依次对每个I/O 口查询,一旦检测到某个接口输入为低电平。即可确认该口对应的按键已按下,随后传送到该键的处理程序。3硬件电路如图3-12所示:

图3-12按键模块电路图

123

4

K 1123

4

K 2

123

4

K 3

K 1

K 2

K 3

4 系统软件设计

4.1 主程序流程图

对于本设计温控风扇,如果要实现它的理想功能:根据实时环境温度来控制风扇的转速,就必须在运作时进行不断地进行程序判断,当超过设定温度值的上下限时,相应的子程序会及时控制风扇,实时的切换关闭、弱风、大风三个状态。

显示驱动程序以查七段码取得各数码管应显数字,逐位扫描显示。主程序流程图如图4-1所示:

图4-1主程序流程图

开始

程序初始化

调用DS18B20 初始化函数

调用DS18B20 温度转换函数

调用温度读取函数

调用按键 扫描函数

调用数码管 显示函数

调用温度 处理函数

调用风扇 控制函数

结束

4.2 DS18B20子程序流程图

DS18B20的每一步操作都要按照它的工作时序执行。即首先要对元件复位,再进行ROM命令,最后才能对存储器和数据操作。如主机控制DS18B20完成温度转换这一过程就必须遵循这一规则,具体流程图如下图4-2所示:

发DS18B20复位命令

发跳过ROM命令发读取温度命令读取操作,CRC校验9字节完?

CRC校验正确?

移入温度暂存器

结束

N

Y

Y

N

图4-2 DS18B20程序流程图

4.3 按键子程序流程图

本模块硬件设计上主要通过3个按键实现,软件上由按键扫描子程序KEYSCAN子程序实现。按一下板子上的K1键即可进入系统上限温度设置,此时按“加”键K2,则上限温度+1,同理按K3便是上限温度—1;若要设置下限温度只要再按一下K1键即可,同样也可以通过K2,K3键进行设置下限的温度值。具体按键程序流程图如图4-3所示:

智能温控风扇设计-文献综述

智能温控风扇设计 摘要:本文综述了温度控制技术的有关概念以及现今温度控制技术存在的问题,同时介绍了温度控制技术的发展历史以及研究现状并指出随着温度控制技术的不断发展,温度控制技术将朝着高精度、智能化等方面快速发展 关键词:温度控制;发展;智能化

The design of Intelligent Temperature Control Fan Abstract:This paper discusses conceptions related to temperature control and points out the main problem of temperature control technology. And it also states development background and furture development of intelligent temperature control system and it points out that with these development of temperature control technology, the temperature control system will become more precise, intelligent. Key words: temperature control; development;intelligent

1.1 综述目的 随着温度控制技术与计算机、通信等技术的不断结合,使得现今的温度控制技术在过去几十年里有了极大发展。同时,随着工业化生产的不断发展,其对温度控制的提出了高精度、高智能化的发展要求。因此,介绍了解当前温度控制系统的发展状况对设计研究高精度、高 智能化的温度控制系统有其积极意义。 1.2 有关概念 PID控制——将偏差的比例、积分、微分通过线性组合构成控制量。用这一控制量对被控对象进行控制,这样的控制称为PID控制。 参数整定——通过改变控制单元参数,如比例度δ、积分时间Ti、微分时间Td等,改善系统的动态、静态特性,以求取较佳的控制效果的过程。 1.3 综述范围 本文从温度控制电路的发展、温度控制算法的改进以及温度传感器的发展方向等几个方面综述了智能温度控制系统在近几年的发展状况以及未来的发展趋势。

单片机课程设计智能温控调速风扇

摘要 本课程设计基于温度传感器和51单片机控制技术,设计了一种智能温控调速风扇。本设计的温控风扇利用温度传感器DS18B20来检测外界环境的温度,利用数码管显示境温度和风度档位,既可以通过控制按键人工调节开启温度以及风速,也可实现风速的自动控制。并可以将定时时间存入AT24C02芯片,实现数据的掉电保护。风扇共有十个档位,根据PWM来控制调节风扇速度。本论文阐述了智能温控调速风扇的工作原理、硬件设计、软件实现的过程。 电风扇的自动控制,可以更加便于人们对风扇的使用。克服了普通电风扇无法根据外界温度自动调节转速的困难。因此,智能电风扇的设计具有重要的现实意义。 关键词单片机;温度传感器;直流电机;pwm

设计任务及要求 设计内容 硬件设计 硬件设计包括:STC89C52RC单片机整体电路设计、数码管显示电路设计、温度传感器电路、独立按键电路、基于AT24C02掉电保护电路设计。软件设计 本次课程设计全部程序均为C语言编写。实现风扇风速的温度自动控制、人工按键控制、定时功能、数码管数据显示和掉电保护功能的智能风扇控制程序。 设计要求 (1)利用温度传感器DS18B20检测环境温度,通过数码管显示出来。(2)根据温度的高低,输出不同占空比的PWM控制风扇风速。 (3)可以选择人工控制还是温度自动控制。 (4)可以进行风扇开启时间的定时。 (5)为防止突然停电而使数据丢失,需要设计由单片机将数据送到 AT24C02模块中储存的模块,使其具有掉电保护功能。 (6)可以实现风扇最低开启温度的设定。 1 引言 1.1 研究背景 风扇是我们在日常生活中经常使用的设备,但传统风扇通常是由人为设定风扇的档速,季节交替时节,白天温度很高,电风扇应高转速;到了

基于单片机的温控风扇设计论文

. .. 单片机系统课程设计报告 题目:基于单片机的温控风扇的设计 专业:电子信息工程 学号: 2013131033 学生姓名:_黄家快_ 指导教师:王艳春___ 2015 年11 月15日

. .. 目录错误!未定义书签。 摘要...................................................................................................................... I Abstract ............................................................................................错误!未定义书签。第一章整体方案设计 .. (1) 1.1 前言 (1) 1.2 系统整体设计 (1) 1.3方案论证 (2) 1.3.1 温度传感器的选择 (2) 1.3.2 控制核心的选择 (3) 1.3.3 温度显示器件的选择 (3) 1.3.4 调速方式的选择 (3) 第二章各单元模块的硬件设计 (5) 2.1系统器件简介 (5) 2.1.1 DS18B20单线数字温度传感器简介 (5) 2.1.2 达林顿反向驱动器ULN2803简介 (5) 2.1.3 AT89C52单片机简介 (6) 2.1.4 LED数码管简介 (7) 2.2 各部分电路设计 (8) 2.2.1 开关复位与晶振电路 (9) 2.2.2 独立键盘连接电路 (9) 2.2.3 数码管显示电路 (10) 2.2.4 温度采集电路 (11) 2.2.5 风扇电机驱动与调速电路 (12) 第三章软件设计 (14) 3.1 程序设置 (14) 3.2 用Keil C51编写程序 (14) 3.3 用Proteus进行仿真 (15) 3.3.1 Proteus简介 (15) 3.3.2 本设计基于Proteus的仿真 (16) 第四章系统调试 (21) 4.1 软件调试 (21) 4.1.1 按键显示部分的调试 (21) 4.1.2 传感器DS18B20温度采集部分调试 (21) 4.1.3 电动机调速电路部分调试 (21) 4.2 硬件调试 (22) 4.2.1 按键显示部分的调试 (22) 4.2.2 传感器DS18B20温度采集部分调试 (22) 4.2.3 电动机调速电路部分调试 (22) 4.3 系统功能 (23) 4.3.1 系统实现的功能 (23) 4.3.2 系统功能分析 (23) 结论 (24) 参考文献 (25)

单片机的智能温控风扇的设计

单片机的智能温控风扇的设计 2 方案论证 本系统实现风扇的温度控制,需要有较高的温度变化分辨率和稳定可靠的换档停机控制部件。 2.1 温度传感器的选用 温度传感器可以下几种方案可供选择: 方案一:选用热敏电阻作为感测温度的核心元件,通过运算放大器放大于温度变化引起热敏电阻电阻的变化、进而导至的输出电压变化的微弱电压变化信号,再用AD转换芯片ADC0809将模拟信号转化为数字信号输入单片机处理。 方案二:采用热电偶作为感测温度的核心元件,配合桥式电路,运算放大电路和AD转换电路,将温度变化信号送入单片机处理。 方案三:采用数字式集成温度传感器DS18B20作为感测温度的核心元件,直接输出数字温度信号供单片机处理。 对于方案一,采用热敏电阻有价格便宜、元件易购的优点,但热敏电阻对温度的细微变化不敏感,在信号采集、放大、转换过程中还会产生失真和误差,并且于热敏电阻的R-T 关系的非线性,其本身电阻对温度的变化存在较大误差,虽然可以通过一定电路予以纠正,但不仅将使电路复杂稳定性降低,而且在人体所处温度环境温度变化中难以检测到小的

温度变化。故该方案不适合本系统。 对于方案二,采用热电偶和桥式测量电路相对于热敏电阻其对温度的敏感性和器件的非线性误差都有较大提高,其测温范围也非常宽,从-50摄氏度到1600摄氏度均可测量。但是依然存在电路复杂,对温度敏感性达不到本系统要求的标准,故不采用该方案。 对于方案三,于数字式集成温度传感器DS18B20的高度集成化,大大降低了外接放大转换等电路的误差因素,温度误差很小,并且于其感测温度的原理与上述两种方案的原理有着本质的不同,使得其温度分辨力极高。温度值在器件内部转换成数字量直接输出,简化了系统程序设计,又于该传感器采用先进的单总线技术,与单片机的接口变的非常简洁,抗干扰能力强。关于DS18B20的详细参数参看下面“硬6 件设计”中的器件介绍。 2.2 控制核心的选择 方案一:采用电压比较电路作为控制部件。温度传感器采用热敏电阻或热电偶等,温度信号转为电信号并放大,集成运放组成的比较电路判决控制风扇转速,当高于或低于某值时将风扇切换到相应档位。 方案二:采用单片机作为控制核心。以软件编程的方法进行温度判断,并在端口输出控制信号。

智能温控风扇开题报告

中北大学 毕业设计开题报告 学生姓名:韩强学号:X29 学院、系:信息商务学院、信息与通信工程系专业:电气工程及其自动化 论文题目:家用风扇控制器的设计 指导教 师:温晶晶 2014 年3月 6日

毕业设计开题报告 1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题的研究背景及意义 生活中,我们经常会使用一些与温度有关的设备。尽管空调作为日常生活家电已经 步入千万普通家庭中,但空调普遍耗能太多,而且在占中国大部分人口的农村地区依旧 使用电风扇用作降温防暑设备[1]。近些来,空调价格水平不断下降,越来越多的人开始 使用空调,对电风扇行业是个不小的冲击,但是空调的强大的功能下是以高耗能、封闭 空间为代价的。相比之下,电风扇通风较好且功耗低仍是很大的一个优势,还是具有广 阔的市场空间的,电风扇需要新型的技术功能,来满足不同的人群需求。为了提高电风 扇的市场竞争力,使之在技术含量上有所提高,且更加安全可靠,智能电风扇随之被提 出[2]。 传统电风扇具有以下缺点:风扇不能随着环境温度的变化自动调节风速,这对那些 昼夜温差大的地区是致命的缺点,尤其是人们在熟睡时,不但浪费资源,还很容易使人 感冒生病;传统电风扇机械的定时方式常常会伴随着机械运动的声音,特别是夜间影响 人们的睡眠,而且定时范围有限,不能满足人们的需求。鉴于这些缺点,我们需要设计 一款智能的电风扇温度控制系统来解决[3]。 温控风扇系统,是根据当时温度情况去自动开通和关闭电风扇,能很好的节约电能, 同时也方便用户们的使用更具人性化。而且温控风扇系统在工业生产、日常生活中都有 广泛的应用,如在工业生产中大型机械设备的散热系统,或限制笔记本电脑上的智能CPU 风扇等基于单片机的温控风扇都能够根据环境温度的高低自动启动或停止转动,并能够 根据温度的变化实现转速的自动调节,在现实生活中具非常广泛的用途,因此它的设计 具有一定的价值意义[4]。 二、本课题国内外研究现状及发展趋势 电风扇有着悠久的发展历史,它简称电扇,香港称为风扇,日本及韩国称为扇风机,

基于单片机的智能温控风扇设计

摘要 本设计为智能温控风扇系统,该系统可以实现风扇随实时环境温度而智能变速功能。 系统主要选用STC89C52单片机作为控制中心,DS18B20数字温度传感器采集实时温度,再经单片机处理后通过三极管放大信号后驱动直流风扇的电机。用户可以预设上限、下限温度值,当测得环境温度值在预设上下限值区间中时,此时风扇以半速转动;当温度升高并大于预设上限温度值时,风扇会自动调速,以全速转动;当温度降低并低于预设的下限温度值时,这时风扇电机自动停止转动。全程实现风扇转速随外界温度而智能自变。 关键词:温控风扇,STC89C52单片机,DS18B20数字温度传感器,智能自变

Abstract This design for the intelligent temperature control fan system, the system can realize the fan intelligent variable speed function according to the real-time environmental temperature. STC89C52 single-chip microcomputer system is mainly used as the control center, DS18B20 digital temperature sensor to collect real-time temperature, then through single chip through triode amplifier signal after drive dc fan https://www.doczj.com/doc/1d7902584.html,ers can preset upper limit and lower limit temperature, when the environment temperature measurement in the preset upper and lower limit range, the fan rotates at half speed;When the temperature is greater than the preset limit temperature, fan speed automatically, with full rotation.When the lower limit of temperature is lower and lower than the preset value, the fan motor automatically stop running.The entire implementation and intelligence from change fan speed varies with temperature. Key words:temperature control fan, STC89C52 Single chip microcomputer and DS18B20 digital temperature sensor, smart since the change

智能温控风扇开题报告

XXX本科毕业论文(设计)开题报告书 学生姓名学号 二级学院专业级班毕业论文 (设计)题目基于51单片机智能温控风扇 指导教师 职称 毕业论文(设计)工作期限2015年月日起至2015年月日止 毕业论文(设计)进行地点 一、选题的背景与意义: 生活中,我们经常会使用一些与温度有关的设备。尽管空调作为日常生活家电已经步入千万普通家庭中,但空调普遍耗能太多,而且在占中国大部分人口的农村地区依旧使用电风扇用作降温防暑设备。近些来,空调价格水平不断下降,越来越多的人开始使用空调,对电风扇行业是个不小的冲击,但是空调的强大的功能下是以高耗能、封闭空间为代价的。相比之下,电风扇通风较好且功耗低仍是很大的一个优势,还是具有广阔的市场空间的,电风扇需要新型的技术功能,来满足不同的人群需求。为了提高电风扇的市场竞争力,使之在技术含量上有所提高,且更加安全可靠,智能电风扇随之被提出。 传统电风扇具有以下缺点:风扇不能随着环境温度的变化自动调节风速,这对那些昼夜温差大的地区是致命的缺点,尤其是人们在熟睡时,不但浪费资源,还很容易使人感冒生病;传统电风扇机械的定时方式常常会伴随着机械运动的声音,特别是夜间影响人们的睡眠,而且定时范围有限,不能满足人们的需求。鉴于这些缺点,我们需要设计一款智能的电风扇温度控制系统来解决。 温控风扇系统,是根据当时温度情况去自动开通和关闭电风扇,能很好的节约电能,同时也方便用户们的使用更具人性化。而且温控风扇系统在工业生产、日常生活中都有广泛的应用,如在工业生产中大型机械设备的散热系统,或限制笔记本电脑上的智能CPU风扇等基于单片机的温控风扇都能够根据环境温度的高低自动启动或停止转动,并能够根据温度的变化实现转速的自动调节,在现实生活中具非常广泛的用途,因此它的设计具有一定的价值意义。 二、研究内容、拟解决的主要问题:

温控风扇系统设计

自动化系统创意设计大赛作品说明书 作品名称:温控风扇系统设计 队员: 2015年4月

目录 1、引言 (3) 2、背景 (3) 3、意义与应用 (3) 4、原理简介 (4) 5、方案设计 (4) 6、STC12C5A60S2单片机 (5) 6.1简介 (5) 6.2 PWM寄存器设置 (5) 6.3 PWM占空比计算方法 (5) 6.4 I/O工作方式设置 (6) 7、LCD液晶显示屏 (6) 8、温度传感器DS18B20 (8) 8.1 初始化 (9) 8.2 写操作 (10) 8.3 读操作 (10) 9、风扇 (10) 拓展1: (10) 拓展2: (11) 10、硬件电路设计 (12) 10.1原理图和部分电路PCB图 (12) 10.2 电机驱动电路 (13) 11、软件设计 (14) 11.1主函数流程图 (14) 11.2 温度控制风扇程序流程图 (15) 11.3 按键控制风扇程序流程图 (16) 11.4 按键设定温度程序流程图 (17) 12、结语 (18) 参考文献: (18) 附录Ⅰ:实物硬件图 (18) 附录Ⅱ:程序 (18)

摘要:本设计是基于STC12C5A60S2单片机技术与温度传感器测量外界温度的设计 原理,进行了不同设计方案的比较,给出了设计的硬件电路,同时对各种关键硬件进行 较详细的介绍,并且以流程图的方式对系统设计作出介绍。系统主要通过温度传感器控 制不同的PWM占空比输出来控制风扇的档位。而出于方便、可选择性的考虑,系统也添 加了辅助功能,就是直接手动控制风扇的档位。 关键词:STC12C5A60S2单片机,DS18B20温度传感器,PWM 1、引言 温控风扇在节能环保方面具有一定的作用,其工作原理除了普通的手动档位调节,主要是通过温度传感器感应外界温度,并自主地进行档位的调节,这样在风扇开着的情况下,不需进行手动就可以根据不同的外界温度进行自主调节风力大小,达到节能目的。 2、背景 随着空调机在日常生活中的普遍应用,很容易想到电风扇会成为空调的社会淘汰品,其实经过市场的考验和证实,真实的并不是这样的,在空调产品的冲击下,电风扇产品仍然具有很强大的生命力,电风扇在市场的考验中并没有淡出市场,反而销售在不停的复苏中,具有强大的发展空间。据市场调查,电风扇的不停复苏主要在以下原因:一,是电风扇虽然没有空调机的强大的制冷功能,但电风扇是直接取风,风力更加温和,比较适合老年人、儿童以及体质虚弱的人使用。二,是电风扇经过多年的市场使用,较符合人们的使用习惯,而且结构简单、操作方便、安装简易。三,是电风扇比起空调产品而言,其价格低廉,相对省电,更易的进入老百姓的家庭。在目前空调还没有普及,并且并不是所有的情况下空调都适合使用的情况下,智能风扇适合人体对温度的要求,智能风扇还有具有相当作用的。 3、意义与应用 1、普通电风扇的现状及存在的隐患:大部分只有手动调速,功能单一。长时间 在高负荷工作容易损坏电器,并且造成电量的损失。 2、作品可运用在家庭中,风扇的风力随温度而调节,即可以避免人因温度低吹 到冷风而着凉,也可达到节能目的,可见温控风扇更具有优越性。 3、其次将此系统装在产热多,急需排热的设备上,可以帮助它及时散掉大量的热。比如电脑散热器等。

温度控制直流电动机转速的课程设计

目录 1 1引言 (2) 2设计任务及要求 (2) 2.1设计目的 (2) 2.2设计要求 (2) 3 本课程设计的意义 (3) 4应用软件介绍 (3) 4.1Proteus仿软真件的介绍 (3) 4.2 Keil软件 (3) 5电路使用元件的介绍 (4) 5.1关于AT89C51单片机的简介 (4) 5.2关于DS18B20温度传感器的简介 (4) 5.3关于L298电机驱动芯片的简介 (4) 5.4关于LM016液晶模块的简介 (5) 6部分硬件的工作原理 (5) 6.1直流电动机的工作原理 (5) 6.2转速的测量原理 (6) 6.3直流电动机的转速控制系统的工作原理 (6) 7直流电动机的转速控制系统软件设计 (7) 7.1编程思路 (7) 7.2系统流程图 (7) 8仿真程序(C语言) (10) 9结束语 (16)

1 1引言 在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。据资料统计,现在有的90%以上的动力源自于电动机,电动机与人们的生活息息相关,密不可分。随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。 近年来由于微型机的快速发展,国外交直流系统数字化已经达到实用阶段由于以微处理器为核心的数字控制系统硬件电路的标准化程度高,制作成本低,且不受器件温度漂移的影响,且单片机具有功能强、体积小、可靠性好和价格便宜等优点,现已逐渐成为工厂自动化和各控制领域的支柱之一。其控制软件能够进行逻辑判断和复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律。所以微机数字控制系统在各个方而的性能都远远优于模拟控制系统且应用越来越广泛。 现在市场上通用的电机控制器大多采用单片机和DSP。但是以前单片机的处理能力有限,对采用复杂的反馈控制的系统,由于需要处理的数据量大,实时性和精度要求高,往往不能满足设计要求。近年来出现了各种单片机,其性能得到了很大提高,价格却比DSP低很多。其相关的软件和开发工具越来越多,功能也越来越强,但价格却在不断降低。现在,越来越多的厂家开始采用单片机来提高产品性价比。 2设计任务及要求 2.1设计目的 设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD上显示当前的温度值。 2.2设计要求 一、设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C 时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD 上显示当前的温度值。 二、画出基于温度的电动机转速控制电路的电路图; 三、所设计的电路需要在仿真软件Protues v7.5上能够运行,课程设计报告的最后必须附有在仿真软件Protues v7.5下设计的电路图和控制程序清单。

基于STM32温控风扇设计

齐齐哈尔大学 综合实践(论文) 题目基于STM32的温控风扇 学院通信与电子工程学院 专业班级 学生姓名 学生学号 指导教师朱磊

摘要:随着科技的日新月异,智能家居逐渐走入普通家庭,风扇作为基本的家用电器也将成为智能家居的一部分。这里介绍的是以STM32单片机为控制单元并结合嵌入式技术设计的一款具有温控调速、液晶显示温度等信息的智能电风扇。经过前期设计、制作和最终的测试得出,该风扇电源稳定性好,操作方便,运行可靠,功能强大,价格低廉,节约能耗,能够满足用户多元化的需求。该风扇具有的人性化设计和低廉的价格很适合普通用户家庭使用。 关键词:STM32单片机电风扇温控调速

目录 摘要............................................................................. 错误!未定义书签。 第1章绪论 (1) 1.1 概述............................................................ 错误!未定义书签。 1.2 设计目的及应用 (1) 第2章温控电风扇方案论证 (2) 2.1 温度传感器的选择 (2) 2.2 控制核心的选择 (2) 2.3 显示电路的选择 (3) 2.4 调速方式的选择 (3) 第3章温控电风扇硬件设计 (5) 3.1 硬件系统总体设计 (5) 3.2 本系统各器件简介 (5) 3.2.1 DS18B20简介 (5) 3.2.2 STM32简介 (7) 3.2.3 LCD1602液晶屏简介 (8) 3.3 各部分电路设计 (9) 3.3.1 温度传感器的电路 (9) 3.3.2 LCD1602液晶屏显示电路 (10) 第4章温控电风扇软件设计 (11) 4.1 软件系统总体设计 (11) 4.2 系统初始化程序设计 (11) 4.3 温度采集与显示程序设计..................... 1错误!未定义书签。结论 (14) 参考文献 (15) 附录1 (16) 附录2 (25)

智能温控风扇设计-开题报告

智能温控风扇设计-开题报告 一、选题的背景和意义(所选课题的历史背景、国内外研究现状和发展趋势) 历史背景及意义 温度是描述一个目标特点时最重要的数值之一,它与我们的日常生产及生活息息相关,它的测量和 [1]调整对控制产品的质量,提高生产效率和加快国家经济的发展有着非常重要的作用,特别是在冶金、化工、机械、电气等各类工业中使用的各种加热炉、热处理炉、反应炉等。因此对温度的检测和控制的技术进行研究是非常有必要的。在工业的研制和生产中,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件,而为了保证生产过程的稳定运行并提高控制精度,采用电子技术是重要的途径。以单片机为核心的温度调节系统来对温度进行控制,广泛应用于社会生活的各个领域,是用途很广的一类工业控制系统。这类系统不仅具有控制方便、组态简单、灵活性大、成本低,可靠性高等优点,而且可以大幅度提高被控温度的技术指标。 研究及发展现状 温度控制系统广泛应用于社会各个领域,但根据应用场合以及要求性能的不同使得其也不尽相同。传统的温度控制系统大多数采用模拟方法实现,主要有开关式控制法、比例式控制法等等,控制电路大都采用继电器控制电路,虽然结构简单,但由于继电器动作频繁,常导致触点不良而影响温度控制,且其反应速度慢、精度低、造价高、维修麻烦。而随着温度控制技术的不断进步以及其与计算机等技术的相结合,使得温度控制系统在各方面取得了巨大发展。其具体如下:1)在控制电路上,采用主回路无

[2]触点作为控制电路的方法,即采用无触点的可控硅或固态继电器替代传统的继电器,克服了传统继电器接触不良的问题,提高了系统的稳定性,且其造价低,维修简单;2)在温度采集方面,打破了传统的用热电阻、热电偶以及A/D转换器采集温度的思路,采用单线数字温度传感器采集温度,不仅简化了电路结构,同时有效地提高了系统的控制精度,如美国DALLAS公司1995年生产DS1820数字温度传感器,其 [3]【4】测温范围-55,+125?,标称测温精度为0.5?,从DS18B20读出或写入信息仅需1根口线(单线接口);3)采用单片机等做为中央控制核心:单片微型计算机(Single Chip Microcomputer)简称单片机,是把组成微型计算机的各功能部件:中央处理器CUP、随机存取存储器RAM、只读存储器ROM、I/O接口电路、 [5]【6】定时器/计数器等部件制作在一块集成芯片上构成的一个完整微型计算机,具有丰富的中断等资源。用单片机做为中央控制核心不仅极大地提高了温度控制系统的智能化,减化了外围电路的设计,同时结合文献[7]的算法,通过编程方法实现系统的参数自整定,提高了系统的控制精度以及反应速度,增强了系统功能,同时使得系统的适应性大大增强。与此同时,在国外随着计算机等技术的迅猛发展以及其与温度控制技术的不段结合,使得其温度控制技术在智能化、自适应、参数自整定等方面取得大量成果。从20世纪70 年代以来,先是采用模拟式组合表来采集现场信息并进行记录和控制。到80年代末出现了分布式控制系统。在此基础上,日本、美国、德国等国在温度控制领域都生产出了一批性能优异的温度控制器及仪器数字控制器等。这些温度控制系统普遍具有参数自整定功能并结合了计算机、通信等技术,运用先进的算法,具有控制精度高、抗干扰力强、鲁棒性好的特点。 而我国在温度控制技术方面尽管已经取得了一些成就,但是更多的企业仍值停留在简单的PID控制,

课程设计——基于单片机的智能电风扇控制系统

智能风扇设计报告 学院:信息工程学院 专业:自动化

基于单片机的智能电风扇控制系统 第1节引言 电风扇曾一度被认为是空调产品冲击下的淘汰品,其实并非如此,市场人士称,家用电风扇并没有随着空调的普及而淡出市场,近两年反而出现了市场销售复苏的态势。其主要原因:一是风扇和空调的降温效果不同——空调有强大的制冷功能,可以快速有效地降低环境温度,但电风扇的风更温和,更加适合老人儿童和体质较弱的人使用;二是电风扇有价格优势,价格低廉而且相对省电,安装和使用都非常简单。 尽管电风扇有其市场优势,但传统电风扇还是有许多地方应当进行改良的,最突出的缺点是它不能根据温度的变化适时调节风力大小,对于夜间温差大的地区,人们在夏夜使用电风扇时可能遇到这样的问题:当凌晨降温的时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统的机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理。鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题。 1.1 智能电风扇控制系统概述 传统电风扇是220V交流电供电,电机转速分为几个档位,通过人为调整电机转速达到改变风力大小的目的,亦即,每次风力改变,必然有人参与操作,这样势必带来诸多不便。 本设计中的智能电风扇控制系统,是指将电风扇的电机转速作为被控制量,由单片机分析采集到的数字温度信号,再通过可控硅对风扇电机进行调速。从而达到无须人为控制便可自动调整风力大小的效果。 1.2设计任务和主要内容 本设计以MCS51单片机为核心,通过温度传感器对环境温度进行数据采集,从而建立一个控制系统,使电风扇随温度的变化而自动变换档位,实现“温度高,风力大,温度低,风力弱”的性能。另外,通过键盘控制面板,用户可以在一定范围内设置电风扇的最低工作温度,当温度低于所设置温度时,电风扇将自动关

基于AT89C51单片机的智能温控风扇设计

目录 摘要 (1) 第一章绪论 (2) 1.1课题研究及应用前景 (2) 1.2本设计任务主要要求 (2) 第二章方案选择 (3) 2.1温度传感器的选择 (3) 2.2主控机的选择 (4) 2.3显示电路 (5) 2.4调速方式 (5) 第三章系统硬件设计 (7) 3.1系统总体设计 (7) 3.2主控芯片介绍 (7) 3.2.1AT89C51简介 (7) 3.2.2AT89C51主要功能和系统参数 (8) 3.2.3AT89C51单片机引脚说明 (9) 3.2.4AT89C51单片机最小系统 (11) 3.3DS18B20温度采集电路 (13) 3.3.1DS18B20温度处理方法 (13) 3.3.2DS18B20工作原理 (13) 3.4其他电路 (14) 3.4.1数码管驱动显示电路 (14) 3.4.2风扇驱动电路 (15) 3.4.3按键模块 (15) 第四章系统软件设计 (17) 4.1主程序流程图 (17) 4.2DS18B20子程序流程图 (18) 4.3数码管显示子程序流程图 (19) 4.4按键子程序流程图 (19) 第五章系统调试 (21) 5.1系统功能 (21) 5.1.1硬件调试 (21) 5.1.2系统实现的功能 (21) 5.1.3系统功能分析 (21) 总结 (22) 致谢 (23) 参考文献 (24) 附录 (25) 附录1:protel原理图 (25) 附录2:系统PCB板图 (26) 附录3:源程序 (27)

摘要 在炎热的夏天人们常用电风扇来降温,但传统电风扇多采用机械方式进行控制,存在功能单一,需要手动换挡等问题。随着科技的发展和人们生活水平的提高,家用电器产品趋向于自动化、智能化、环保化和人性化,使得智能电风扇得以逐渐走进了人们的生活中。智能温控风扇可以根据环境温度自动调节风扇的启停与转速,在实际生活的使用中,温控风扇不仅可以节省宝贵的电资源,也大大方便了人们的生活。 本设计为一种温控风扇系统,具有灵敏的温度检测和显示功能,采用单片机AT89C51为核心控制器对风扇转速进行控制,使用温度传感器DS18B20检测温度数据,通过数码管显示实时温度,根据采集的温度,实现了风扇的自起自停。可由使用者设置高、低温度值,测得温度值在高低温度之间时打开风扇弱风档,当温度升高超过所设定的温度时自动切换到大风档,当温度小于所设定的温度时自动关闭风扇,控制状态随外界温度而定。 关键词:单片机AT89C51;温度传感器DS18B20;数码管;电风扇

课程设计——智能电风扇

带温度显示的温控与手控自动风扇系统 摘要: 本设计为一种温控风扇系统,具有灵敏的温度感测和显示功能,系统AT89C52 单片机作为控制平台对风扇转速进行控制。可由用户设置高、低档位,测得温度值在高低温度之间时打开风扇强弱风档,当温度升高超过所设定的温度时自动切换到大风档,当温度小于所设定的温度时自动降低风扇档位,控制状态随外界温度而定。同时,能够由人工设定风扇档位不受温度控制,灵活性强。所设高低温值保存在温度传感器DS18B20内部E2ROM中,掉电后仍然能保存上次设定值,性能稳定,控制准确。 关键词: 自动控制单片机温控手控风扇 一.技术指标 1.1设计意义 在激烈的市场竞争下,虽然电风扇具有广阔的市场空间,但不断新生产品的出现,要使产品更具市场优势,仅仅是靠传统型的电风扇是远远不够的,因此要对传统的电风扇根据市场的需要进行不断的更新,不断的改进,以使自己的产品立于不败之地。传统的电风扇较为突出的缺点是:①风扇的风力大小不能根据温度的变化自动的调节风速,

对于那些昼夜温差比较大的地区,这个自动调节风速就显得优其的重要了,特别是人们在熟睡时常常没有觉察到夜间是温度变化,那样既浪费电资源又容易引起感冒。②传统的风扇是用机械式的定时方式,机械式的定时方式常常会伴随着很大的机械运动的声音,特别是在夜间影响人们的睡眠质量,另个机械式的定时有一定的局限性,定时范围有限,而且机械式的容易坏。③传统的电风扇没有单片机控制电风扇的功能,对平时调节风扇风速或其它对风扇的调节,而又不想走近风扇带来很多的不便。鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题。 1.2技术指标 本设计是以51单片机为主要控制核心,用51单片机系统对用户设定信号数据的采集以及分析,能过各种可控型电子元器件对电风扇各种工作状态的控制,以达到用户需求。 设计的功能要求 ①风速从高到低设置4个档位,并且每个档位都可以由用户设置或者根据温度自动调 节。 ②风扇可以自动的根据环境的温度调节风扇风速的档位,温度上升2℃自动上升一个档 位,温度每降低2℃自动下降一个档位。 ③设置数码管显示当前的工作状态以及温度,使其更具人性化。 ④加入串口控制功能,对于工业应用的风扇,可以通过RS232接口用电脑上位机控制风 扇,同时可以对控制芯片重新编程,以实现不强大的功能。 二、方案论证 2.1传感器部分 方案一:采用热敏电阻 采用热敏电阻,可满足40摄氏度至90摄氏度测量范围,但热敏电阻精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的。而且在温度测量系统中,采用单片温度传感器,比如AD590,LM35等.但这些芯片输出的都是模拟信号,必须经过A/D转换后才能送给计算机,这样就使得测温装置的结构较复杂.另外,这种测温装置的一根线上只能挂一个传感器,不能进行多点测量.即使能实现,也要用到复杂的算法,一定程度上也增加了软件实现的难度。方案二:采用DS18B20 温度传感器采用DS18B20数字温度传感器。DS18B20数字温度传感器芯片是以9位数字量的形式反映器件的温度值。DS18B20数字温度传感器通过一个单线接口发送或接受信息,

智能温控风扇地设计

综合实验报告 实验题目:智能温控风扇 学生班级: 电子14-2 学生姓名: 学生学号: 38 指导教师: 实验时间: 2016-9-15

智能温控风扇的设计 摘要 基于检测技术和单片机控制技术,设计了一种智能温控调速风扇。阐述了智能温控调速风扇的工作原理、硬件设计、软件实现的过程。系统原理简单,工作稳定,成本低,具有一定的节能效果。 通过单片机的控制我们实现了电风扇的主要功能:当按下开关键时,系统初始化默认的设定温度为25度,如果外界温度高于设定温度电风扇进行运转,如果外界温度高于低于设定温度则风页不转动,同时显示外界的温度。可以设置所需的温度,并同时显示所设定的温度,同时按加减键退出设定功能。 电风扇的自动控制,让电风扇这一家用电器变的更智能化。克服了普通电风扇无法根据外界温度自动调节转速困难。智能电风扇的设计具有重要的现实意义。 关键词AT89C52/温度传感器/直流电机/模拟风扇

1.1 引言 生活中,我们经常会使用一些与温度有关的设备。比如,现在虽然不少城市家庭用上了空调,但在占中国大部分人口的农村地区依旧使用电风扇作为降温防暑设备,春夏(夏秋)交替时节,白天温度依旧很高,电风扇应高转速、大风量,使人感到清凉;到了晚上,气温降低,当人入睡后,应该逐步减小转速,以免使人感冒。虽然电风扇都有调节不同档位的功能,但必须要人手动换档,睡着了就无能为力了,而普遍采用的定时器关闭的做法,一方面是定时时间长短有限制,一般是一两个小时;另一方面可能在一两个小时后气温依旧没有降低很多,而风扇就关闭了,使人在睡梦中热醒而不得不起床重新打开风扇,增加定时器时间,非常麻烦,不能两全其美。为解决上述问题,我们设计了这套温控自动风扇系统。本系统采用高精度集成温度传感器,用单片机控制,能显示实时温度,并根据使用者设定的温度自动在相应温度时作出小风、大风、停机动作,精确度高,动作准确。 2 整体方案的设计思路 2.1 系统整体设计 本设计的整体思路是:利用温度传感器DS18B20检测环境温度并直接输出数字温度信号给单片机AT89C52进行处理,在LED数码管上显示当前环境温度值以及预设温度值。其中预设温度值只能为整数形式,检测到的当前环境温度可精确到小数点后一位。同时采用PWM脉宽调制方式来改变直流风扇电机的转速。并通过两个按键改变预设温度值,一个提高预设温度,另一个降低预设温度值。系统结构框图:如图2-1所示。

智能电风扇控制器设计

智能电风扇控制器设计 序言 传统电风扇不能根据温度的变化适时调节风力大小,对于夜间温差大的地区,人们在夏夜使用电风扇时可能遇到这样的问题:当凌晨降温的时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统的机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理。鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题,使家用电器产品趋向于自动化、智能化、环保化和人性化,使得由微机控制的智能电风扇得以出现。 本文介绍了一种基于AT89C52单片机的智能电风扇调速器的设计,该设计主要硬件部分包括AT89C52单片机,温度传感器ds18b20,数模转换DAC0809电路,电机驱动和数码管显示电路,系统可以实现手动调速和自动调速两种模式的切换,在自动工作模式下,系统能够能够根据环境温度实现自动调速;可以通过定时切换键和定时设置键实现系统工作定时,使得在用户需求的定时时间到后系统自动停止工作。 在日常生活中,单片机得到了越来越广泛的应用,本系统采用的AT89C52单片机体积小、重量轻、性价比高,尤其适合应用于小型的自动控制系统中。系统电风扇起停的自动控制,能够解决夏天人们晚上熟睡时,由于夜里温度下降而导致受凉,或者从睡梦中醒来亲自开关电风扇的问题,具有重要的现实意义。 一、设计实验条件及任务

1.1、设计实验条件 单片机实验室 1.2、设计任务 利用DAC0832芯片进行数/模控制,输出的电压经放大后驱动小直流电机的速度进行数字量调节,并显示运行状态DJ-XX和D/ A输出的数字量。巩固所学单片知识,熟悉试验箱的相关功能,熟练掌握Proteus 仿真软件,培养系统设计的思路和科研的兴趣。实现功能如下: ① 系统手动模式及自动模式工作状态切换。 智能电风扇控制器设计 ② 风速设为从高到低9个档位,可由用户通过键盘手动设定。③ 定时控制键实现定时时间设置,可以实现10小时的长定时。 ④ 环境温度检测,并通过数码管显示,自动模式下实现自动转速控制。⑤ 当温度每降低1℃则电风扇风速自动下降一个档位,环境低于21度时,电风扇停止工作。 ⑥ 当温度每升高1℃则电风扇风速自动上升一个档位。环境温度到30度以上时,系统以最大风速工作。 ⑦ 实现数码管友好显示。 二、小直流电机调速控制系统的总体设计方案 2.1、系统硬件总体结构 图2.1系统硬件总体框图 2.2、芯片选择

智能温控风扇设计-论文

智能温控风扇设计-论文 智能温控风扇设计 摘要:实现温度控制自动化不仅能够大大提高工业生产的效率~同时还能提高产品质量~减少消耗~因此设计研究高精度、稳定、适用性强的温度控制系统对工业生产发展具有其积极意义。本文介绍了一种智能温度控制风扇的设计方案~其采用AT89S51单片机为控制器核心~通过测量温度的变化来改变风扇的转速从而达到温度控制的目的。同时实现温度采集、温度显示、温度设定等功能。经实验表明~本设计不仅稳定性好~而且温度控制精度高~反应快。 关键字:智能控制,单片机,温度 The design of Intelligent Temperature Control Fan Abstract: Automating temperature control can not only greatly increase the efficiency of production, but also improve the quality of product and reduce the cost. Therefore , a research on high precision、stability、and applicability temperature control system is significant for industry produce. This paper introduces a design of intelligent temperature control fan, which is based on AT89S51 MCU as core controller. It can control the temperature by changing the revolving speed of the fan. And it also includes the function of temperature gathering, temperature display and temperature setting. Experiment shows that the design has a good stability and high precision, and its response time is low. Keywords: Intelligent control; MCU; Temperature 目录

相关主题
文本预览
相关文档 最新文档