当前位置:文档之家› 机械设计部分知识点.

机械设计部分知识点.

机械设计部分知识点.
机械设计部分知识点.

机械设计基础总结

1、

2普通螺纹(三角形螺纹:分为粗牙和细牙

特点:自锁性能好,螺纹牙抗剪强度高。

应用:连接多用粗牙,细牙用于薄壁零件,也用于变载震动及冲击载荷的连接

矩形螺纹:

特点:传动效率高,但制造困难,对中精度低,牙根强度较低。

应用:用于力的传递

梯形螺纹:

特点:α=30°与矩形螺纹相比传动效率较低,但工艺性能好牙根强度较高,对中性好

应用:用于传动螺旋。丝杠刀架等。,

锯齿形螺纹

特点:工作面的牙型角为3°非工作面的为30°综合了矩形螺纹和梯形螺纹的牙根强度特点

应用:用于单向受力的传力螺旋。轧钢机的压力螺旋,螺旋压力机,起重机。

3、螺栓连接

4普通螺栓连接特点及其应用:被连接件不需切制螺纹,结构简单装拆方便,适用广泛用于被连接件不太厚和便于加工通孔的场合。

5双头螺柱连接特点及应用:螺柱的一端旋紧在被连接件之一的螺纹孔中另一端则穿过被连接件的孔中通常用于被连接件之一太厚不宜制作通孔的场合

6螺钉连接特点及其应用:不用螺母,它适用于被连接件之一太厚且不经常拆卸的场合

7紧定螺钉连接特点应用:螺钉的末端顶住零件表面或顶入该零件的凹坑中将零件固定,它可以传递不大的载荷

8预紧的概念及其目的:螺纹连接在装备时都必须拧紧,是连接在承受工作载荷之前,预先收到力的作用

9放松的概念:螺纹连接在静载荷和工作温度变化不大时,螺纹连接不会自动

放松方法:分摩擦放松和机械放松

摩擦放松:轴向压紧和径向压紧

机械放松开口销放松止动垫片放松圆螺母金属丝放松。

其他还有焊接铆住冲点粘合等

10、键

键可分为:平键,半圆键、钩头楔键

键的长度由轮毂长度确定键长应比轮毂长短5~10mm。

相隔180°装两个平键只能按1.5个键做强度计算。

花键的分类:矩形花键、渐开线花键

11、摩擦带传动的主要特点

优点:可缓冲和吸振、传动平稳,噪声小。起过载保护作用、用于中心距较大的传动。结构简单装拆方便成本低。

缺点:传动比不准确、外廓尺寸大、传动效率低、带的寿命短不宜于高温、易燃场合。

V带带轮的选择:d≤200mm 选择实心式;200mm≤d≤500mm选择孔板式;

d≥500mm选择轮辐式

弹性滑动的概念:由于带的弹性变形而引起的带和带轮之间的滑动称为弹性滑动。弹性滑动不可避免

打滑的概念:由于过载所引起的带在带轮上的全面滑动,是必须避免的。

带中最大应力发生处在带的紧边

带的失效形式:打滑和疲劳破坏

带的设计准则:在保证带传动不打滑的前提下,具有一定的疲劳强度和寿命。

选择带型:根据功率和小带轮的转速选择

带轮直径愈小,结构愈紧凑,但带的弯曲应力增大,寿命降低,而且带的速度也降低单根带的基本功率减小,所以小带轮的基准直径不宜选得太小。

张紧的目的:增加张紧力、

12、链传动的特点

1与带传动相比没有滑动现象,平均传动比准确对轴的压力小传递功率较大效率较高低速时传递较大的圆周力。

1与齿轮传动相比结构简单安装发方便成本低廉传动中心距使适用范围较大,能在高温,多尘等恶劣条件下工作

1链传动的瞬时传动比不准确传动平稳性较差,工作时有振动冲击噪声较大。

链传动的实效形式:疲劳破坏磨损胶合拉断

两链轮的齿数应该取整互质

链条节数应为整数偶数

13、齿轮的实效形式

齿根折断、齿面磨损、点蚀、胶合。塑性变形

直齿圆柱齿轮设分类:闭式传动和开式传动

主要设计参数的选择:软齿面齿数Z推荐取24~40、硬齿面Z推荐去17~24

斜齿轮传动特点:传动较直齿轮传动平稳,承载能力大。

蜗杆传动的失效形式:同齿轮传动失效形式主要实效形式为胶和磨损

蜗杆传动的特点:传动效率低发热量大

若蜗杆圆周速度≤5m/s 采用蜗杆下置,若蜗杆圆周速度>5m/s的时候采用蜗杆上置

14、轴承

轴承润滑的目的:主要是降低摩擦和减少磨损,同时还可以起到冷却、吸振、防尘、防锈等。3

3号轴承:圆锥滚子轴承。可以同时承受径向载荷和轴向载荷

7号轴承:角接触球轴承。可以同时承受轴向及径向载荷,能在高速下正常工作。

滚动轴承的代号

例:6203 6、表示轴承类型为深沟球轴承其中宽度系列代号为0 省略2 为直径

系列代号03为轴承内径一般×5为准特殊查表

30310/P6X :3表示为圆锥滚子轴承0表示宽度系列代号为0 :3表示直径系列代号为中系列;10表示轴承内径为50mm;/P6X 表示公差等级为6X

轴承的类型选择应考虑的因素:

2轴承所受的载荷

2轴承的转速

2调心的要求

1允许的空间

1安装于拆卸

1公差等级

1价格

轴承的寿命计算公式:L h10=ε

ε:为寿命指数n为轴承的工作转速,r/min C为基本额定动载荷,对向心轴承为C r,推力轴承为C a,N; P为当量动载荷

对于同时承受径向载荷和轴向载荷的深沟球轴承和角接触轴承:

P=XF r+YF a 式中X、Y分别为径向载荷系数和轴向载荷系数

关于角接触球轴承的计算和圆锥滚子轴承的计算

滚动轴承的预紧是指在轴承安装时,采取某种结构措使滚动体和套圈滚道在装备时即处于压紧力的作用下,并使之产生预变形,

作用:消除轴承内部间隙,提高轴承的旋转精度每增加轴承的组合刚性,家少振动及噪声。

滚动轴承的配合:

滚动轴承为标准件,起内圈与轴颈的配合采用基孔制,外圈与轴承座孔的配合采用基轴制

15、轴

轴的功用与分类

轴主要用来支撑作旋转运动的零件,以传动运动和动力。轴分为直轴、曲轴、挠性轴。

轴上零件的周向固定目的是为了传递转矩和防止零件与轴产生相对转动。常用的固定方法有:键、花键、销、过盈配合

轴上零件的轴向固定:轴肩与轴环、套筒轴端挡圈、圆锥面、圆螺母、弹性挡圈、紧定螺钉与锁紧挡圈

轴的结构工艺性:

轴的形状应力求简单,阶梯数尽可能少。为了便于切削加工,一根轴上的圆角尽可能取相同的半径。为了便于轴上零件的装配,轴端应加工出45°倒角;为了保证轴向固定可靠,轴上各段长度一般应比相配合的轮彀长度缩短2~3mm;与零件过盈配合时,轴的装入端常需要加工出导向圆锥面。

提高轴的强度措施:

3改善轴的受力情况:传动件应尽量靠近轴承,并尽可能不采用悬臂的支撑形式,力求缩短支撑跨距

3减少应力集中:适当增大轴肩出的圆角半径,轴上尽量避免开小孔、切口和凹槽。

滚动轴承的润滑与密封:

分为脂润滑和油润滑前者适用于速度不太高及不便于经常加油的场合空隙填充量到。

后者分为油浴润滑和飞溅润滑其中前者不适用与高速后者适用于闭式齿轮传动

还有一种是喷油润滑它适用于转速高,载荷大,要求润滑可靠的轴承。

密封:避免润滑剂的流失,防止外界灰尘、水分及其他杂物侵入轴承。密封方法分为接触式密封和非接触式密封两大类。

16、计算

3-18 一刚性凸缘联轴器用四个M10的普通螺栓连接。螺栓的力学性能等级为4.6,均布在直径D0=80mm的圆周上,已知传递的转矩T=50N·m,两个半联轴器接触面间的摩擦因素f=0.15。实验算其螺栓能否满足适用要求。

3-20 一压力容器的顶盖采用普通螺栓连接,已知容易内径D=350mm,气压

P=1.1MPa,螺栓数目Z=16,材料为45钢,装配时不控制预紧力,容器凸缘厚度和盖的厚度均为30mm,是确定螺纹直径。

14-23 如图14-40所示从动锥齿轮轴,两端采用圆锥滚子轴承支撑,齿轮轴向外力Ka=960N,圆周力和径向力的合力F=2710N,转速n=500r/min,轴承预期设计寿命3000h,轴径d=35mm,试选择轴承型号。载荷轻微冲击,轴承受力支点可近似取轴承宽度重点。

机械设计基础总结讲解

机械设计基础总结 第一章平面机构的自由度和速度分析 1.1构件 ---- 独立的运动单元零件 ----- 独立的制造单元 运动副一一两个构件直接接触组成的仍能产生某些相对运动的连接。 机构——由两个或两个以上构件通过活动联接形成的构件系统。 机器一一由零件组成的执行机械运动的装置。 机器和机构统称为机械。构件是由一个或多个零件组成的。 机构与机器的区别: 机构只是一个构件系统,而机器除构件系统之外还包含电气,液压等其他装置;机构只用于传递运动和力,而机器除传递运动和力之外,还具有变换或传递能量,物料,信息的功能。 1.2运动副一一接触组成的仍能产生某些相对运动的联接。 运动副元素——直接接触的部分(点、线、面) 运动副的分类: 1)按引入的约束数分有: I 级副(F=5)、II 级副(F=4)、III 级副(F=3)、IV 级副(F=2)、V 级副 (F=1)。 2)按相对运动范围分有:平面运动副——平面运动空间运动副一一空间运动 平面机构——全部由平面运动副组成的机构。 空间机构一一至少含有一个空间运动副的机构 3)按运动副元素分有: 咼副(;禺)点、线接触,应力咼;低副()面接触,应力低 1.3机构:具有确定运动的运动链称为机构 机构的组成:机构=机架+原动件+从动件 保证机构具有确定运动时所必须给定的独立运动参数称为机构的自由度。 24y 原动件v自由度数目:不具有确定的相对运动。原动件〉自由度数目:机构中最弱的构件将损坏。 1.5局部自由度:构件局部运动所产生的自由度。出现在加装滚子的场合,计算时应去掉Fp。 复合铰链——两个以上的构件在同一处以转动副相联。m个构件,有m—1转动副虚约束对机构的运动实际不起作用的约束。 计算自由度时应去掉虚约束。 出现场合:1两构件联接前后,联接点的轨迹重合,2?两构件构成多个移动副,且导路平行。3.两构件构成多个转动副,且同轴。4 运动时,两构件上的两点距离始终不变。5.对运动不起作用的对称部分。如多个行星轮。6.两构件构成高副,两处接触,且法线重合。

机械设计_名词解释汇总(附章节习题)

第一部分; 1.1机械:机器和机构的总称。 1.2.机器:有若干个构件组成的具有确定的运动的人为组合体,可用来变换或传递能量,代替人完成有用的机械功。 1.3.机构:有若干哥构件组成的具有确定相对运动的认定为组合体,再机器中起着改变运动速度,运动方向和运动形式的作用。 1.4.构件:机器中的运动单元体。 1.5.零件:机器中的制造单元体。 1.6.失效:机械零件由于某种原因丧失了工作能力。常见的失效形式有断裂,变形。磨损。打滑,过热,强烈振动。 1.7.工作能力:零件所能安全工作的限度。 1.8.计算准则:针对各种不同的失效形式而确定的判定条件,主要有强度计算准则,刚度计算准则,耐磨计算准则和振动稳定性计算准则。 1.9.机械设计师应满足那些基本要求?a.根据使用报告要求,选择零件的构建类型,b.根据工作要求,对零件进行受力分析 c.根据受力情况对零件进行应力分析 d.根据工作条件及特殊要求选择材料 e.根据零件所受荷载,进行失效形式分析。 f.根据计算准则和设计方法选用计算公式。 g.根据数据确定零件的组要尺寸h.绘制零件工作图 2.1运动副:机构是由许多构件组合而成的,使两构件直接接触而又能产生一定的相对运动的联接称为运动服。运动副分类:高副和低副(转动副,移动副) 2.2机构运动简图:用简单的线条和符号代表构件的运动副,并按比例各运动副位置,表示机构的组成和传动情况。这样绘制出的简图就称为运动简图。 2.3机构运动简图绘制步骤:a.分析构件和运动情况 b.确定构件数目,运动副类型和数目 c.测量运动尺寸 d.选择视图平面 e.绘制机构运动简图2.4 绘制和使用机构运动简图应注意哪些:a.熟识常用的运动副的符号和表示 b.再机构运动简图中,应标出各运动副的位置机与运动有关的尺寸 c.正确地选择和使用比例尺 2.5自由度:机构的的自由度是机构所具有的独立运动的数目。 2.6约束:作平面运动的自由构件有3个自由度。当它与另一构件组成运动副后,构件间的直接接触使某些独立运动受到限制,自由度减少。这种 对独立运动所加的限制称为约束。 2.7 复合铰链:定义--两个以上的机构在同一处以 转动副相连接的运动副称为复合铰链。处理方法 —由k哥构件汇成的复合铰链应包含k-1个转动 副。 2.8局部自由度:定义--若机构中某些构件所具有 的自由度仅与其自身的局部运动有关,并不影响 其他构件的运动,则称这种自由度为局部自由 度。场合—再减小高副摩擦而将滑动摩擦变成滚 动摩擦所增加的滚子数。处理方法—可将滚子 与安装滚子的构件视为一体进行计算。或在计算 公式中减去局部自由度即可。 2.9虚约束:定义—不产生实际约束效果的重复约 束。场合—a.两构件组成多个移动副且导路相 互平行 b.两构件构成多个转动副且其轴线相互 重合 c. 轨迹重合 d.构件中对运动不起作用的 对称部分。 2.10 机构具有确定运动的条件:a.机构自有度大 于0 b.原动机数=构件自由度数 3.1平面四杆机构:平面连杆机构是由若干个构件 用低副连接,且构件在相互平行的平面内运动的 机构,又称平面低副机构。 3.2铰链四杆机构的基本类型:a.曲柄摇杆机构b. 双曲柄机构c.双摇杆机构 3.3曲柄存在的条件:a.最短杆为连架杆或机架b. 最短杆与最长杆之和小于或等于其他两杆长度 之和。 3.3铰链四杆机构3种基本形形式的判别依据: (1)当铰链四杆机构满足杆才长条件时:最短 杆为连架杆—曲柄摇杆机构。最短杆为机架时 —双曲柄机构。最短杆为连杆—双摇杆机构 (2)当铰链四杆机构不满足杆长条件—双摇杆 机构。 3.4急回特性:当原动件作匀速定轴转动,从动件 相对机架作往复运动时,从动件正反两个行程的 平均速度不相等的现象。K=180+@/180-@ 3.5压力角:不计摩擦力,惯性力和重力时。通过 连杆作用于从动件上的力与力作用点绝对速度 间所夹的锐角。 3.6最小传动位置:当以曲柄为原动件时。机构的 最小传动角出现在曲柄与机架两次共线的位置 之一处。 3.7:死点:机构在运动过程中,当从动件传动角 为0.驱动力与从动件受力点的运动方向垂直。其 有效分力等于0,这时机构不能运动,陈此位置 为死点位置。 4.1凸轮机构组成:凸轮:具有曲线轮廓或凹槽的 构件。从动件:被凸轮直接推动的构件。机架。 4.2.凸轮机构的特点:a.可使从动件实现任意给定 的运动规律 b.结构简单,紧凑工作可靠 c. 高 副接触容易磨损 d. 加工复杂e从动件行程不 宜过大,否则是凸轮变的笨重。 4.3基圆半径:以凸轮轴心为圆心,以其轮廓最小 向径为半斤的圆称为机缘。偏心距:凸轮回转中 心与从动件导路间的偏置距离。行程h:在推程 或回程中从动件的最大位移。推程运动角:与 从动件推程相对应的凸轮转角。远修止角:与 从动件远休程相对应的凸轮转角。回程运动角: 与从动件回程相对应的凸轮转角。近休止角:与 动件近休程相对应的凸轮转角。 4.4 从动件的运动规律;从动件子啊推程或回程 时,其位移s,速度v和加速度a随时间t的变换 规律。 4.5反转法:将凸轮机构绕凸轮轴线按-w 的方向 转过原来突轮所转的@脚,则相当于凸轮静止不 动,而导路和从动件以其绕凸轮反方向转了@ 角,而从动件按已选定的运动规律相对于导路移 动。这样从动件尖端的运动轨迹就是凸轮的轮廓 曲线。 5.1棘轮机构的组成,分类,场合:组成—棘轮, 棘爪,机架。分类—齿式棘轮和摩擦式棘轮。 场合—适用于转速不高,转角不大及小功率场 合。 5.2棘轮机构的工作原理,实用场合:棘轮机构用 于将原动件往复摆动转换为棘轮的单向间歇转 动,其结构简单,制作方便,运动可靠,且棘轮 的转角可以根据要求进行调整。它可以实现间歇 送进,制动,传位,分度和超离合器等工作要求, 但是机构传力小,工作有冲击和噪声。 5.3.槽轮机构运动特点,实用场合:槽轮机构用于 将运动件销轮的连续转动转化为槽轮的单向间歇 运动,其结构简单,能准确控制转角,机械效率 高。为避免槽轮再运动开始和终止时产生刚性冲 击,应注意掌握原动机上的圆销能顺利而平稳的 进入和脱离槽轮的径向槽的几何条件。锁止弧的 配合关系,转角不能调节。 5.4槽轮机构的组成,分类,场合:组成—径向槽 的槽轮,带有圆销的拨盘和机架。分类—外齿合 槽轮机构,内齿合槽轮机构。场合—中速。 第二部分: 绪论 1.机构:用来传递运动和力的、有一个构件为机架的、用构件间能够相对运动的连接方式组成的构件系统称为机构。2.一般机器包含四个基本组成部分:动力部分、传动部分、控制部分、执行部分。 3.机构与机器的区别在于:机构只是一个构件系统,而机器除构件系统以外,还包含电气、液压等其他装置,机构只用于传递运动和力,而机器除传递运动和力外,还具有变换或传递能量、物料、信息的功能。但是,在研究构件的运动和受力情况,机器与机构并无差别。所以,习惯上用“机械”一词作为机器和机构的总称。4.机械设计是指规划和设计实现预期功能的新机械或改进原有的机械的性能。 5.设计机械应满足的基本要求是:安全、可靠耐用、经济、符合环保条件。 6.机械设计包刮以下主要内容:确定机械的工作原理,选择适宜的机构;拟定方案;进行运动分析和动力分析,计算作用在各构件上的载荷;进行零部件工作能力计算、总体设计和结构设计。 第一章1.1.平面机构:所有构件都在相互平行的平面内运动的机构称为平面机构,否则称为空间机构1.2.自由度:构件相对于参考系的独立运动称为自由度。 1.3.两构件直接接触并能产生一定相对运动的连接称为运动副。 1.4低副(面接触):两构件通过面接触组成的运动副称为 低副。平面机构中的低副有转动副和移动副。 1.5转动副:若组成运动副的两构件只能在平面内 相对转动,这种运动副称为转动副,或称为铰链。 1.6移动副:若组成运动副的两个构件只能沿某一 轴线相对移动,这种运动副称为移动副。 1.7. 高副(线点接触):两构件通过点或线接触组成的 运动副称为高副。 1.8这种表明机构间相对运动 关系的简化图形称为机构运动简图。 1.9机 构中的构件可分为三类:固定构件(机架)、原动 件(主动件)、从动件。1.10固定构件:用来支撑 活动构件(运动构件)的构件。1.11.原动件:运 动规律已知的活动构件。它的运动时由外界输入 的,故称为输入构件。活塞就是原动件。 1.12 从动件:机构中随原动件运动而运动的其余活动 构件。 1.13自由度计算公式:F=3n(可移动 构件)—2PL(L为下标)(低副)—PH(H为下 标)(高副) 1.14复合铰链:两个以上构件同时 在一处用转动副相连接就构成复合铰链。 1.15. 局部自由度:机构中常出现一种与输出构件运动 无关的自由度,称为局部自由度(或称为多余自 由度),在计算机机构自由度时应予排除。1.16 . 虚约束:这种重复而对机构不起限制作用的约束 称为虚约束或消极约束。 1.17.平面机构中的虚 约束常出现在下列场合:两构件之间组成多个导 路平行的移动副时,只有一个移动副起作用,其 余都是虚约束、两个构件之间组成多个轴线重和 的转动副时,只有一个转动副起作用,其余都是 虚约束、机构中传递运动不起独立作用的对称部 分。1.18.瞬心:在任一瞬时,其相对运动可看作 是绕某一重合点的转动,该重和点称为速度瞬心 或瞬时回转中心,简称瞬心。瞬心是该两个刚体 上绝对速度相同的重和点(简称同速点) 1.19. 如果这两个刚体都是运动的,则其瞬心称为相对 瞬心;如果两刚体之一是静止的,则瞬心称为绝 对瞬心。 1.20瞬心数N=k(k-1)/2. 第二章 2.1.平面连杆机构:由若干构件用 低副(转动副、移动副)连接组成平面机构,又 称平面低副机构。 2.2.连杆机构的缺点是:不 易精确实现复杂的运动规律,且设计较为复杂; 当构件和运动副数多时,效率较低。 2.3.铰链 四杆机构:全部用转动副相连的平面四杆机构称 为平面铰链四杆机构,简称铰链四杆机构。 2.4. 铰链四杆机构分为三种基本型式:曲柄摇杆机构、 双曲柄机构和双摇杆机构。 2.5.铰链四杆机构 有整转副的条件是最短杆与最长杆长度之和小于 或等于其余两杆之和 2.6.整转副是由最短杆与 其邻边组成的。 2.7.取最短杆为机架时,机架 上有两个整转副,故得双曲柄机构。 2.8.取最 短杆的邻边为机架时,机架上只有一个整转副, 故得曲柄摇杆机架。 2.9.取最短杆的对边为机 架时,机架上没有整转副,故得双摇杆机构。这 种具有整转副而没有曲柄的铰链四杆机构常用作 电风扇的摇头机构。 2.10.K(急回运动特性)

机械设计基础第六版重点复习

《机械设计基础》知识要点 绪论;基本概念:机构,机器,构件,零件,机械 第1章:1)运动副的概念及分类 2)机构自由度的概念 3)机构具有确定运动的条件 4)机构自由度的计算 第2章:1)铰链四杆机构三种基本形式及判断方法。 2)四杆机构极限位置的作图方法 3)掌握了解:极限位置、死点位置、压力角、传动角、急回特性、极位夹角。 4)按给定行程速比系数设计四杆机构。 第3章:1)凸轮机构的基本系数。 2)等速运动的位移,速度,加速度公式及线图。 3)凸轮机构的压力角概念及作图。 第4章:1)齿轮的分类(按齿向、按轴线位置)。 2)渐开线的性质。 3)基本概念:节点、节圆、模数、压力角、分度圆,根切、最少齿数、节圆和分度圆的区别。 4)直齿轮、斜齿轮基本尺寸的计算;直齿轮齿廓各点压力角的计算;m = p /π的推导过程。 5)直齿轮、斜齿轮、圆锥齿轮的正确啮合条件。 第5章:1)基本概念:中心轮、行星轮、转臂、转化轮系。 2)定轴轮系、周转轮系、混合轮系的传动比计算。 第9章:1)掌握:失效、计算载荷、对称循环变应力、脉动循环变应力、许用应力、安全系数、疲劳极限。 了解:常用材料的牌号和名称。 第10章: 1)螺纹参数d、d1、d2、P、S、ψ、α、β及相互关系。 2)掌握:螺旋副受力模型及力矩公式、自锁、摩擦角、当量摩擦角、螺纹下行自锁条件、常用螺纹类型、螺纹联接类型、普通螺纹、细牙螺纹。 3)螺纹联接的强度计算。 第11章: 1)基本概念:轮齿的主要失效形式、齿轮常用热处理方法。 2)直齿圆柱齿轮接触强度、弯曲强度的计算。 3)直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮的作用力(大小和方向)计算及受力分析。 第12章: 1)蜗杆传动基本参数:m a1、m t2、γ、β、q、P a、d1、d2、V S及蜗杆传动的正确啮合条件。 2)蜗杆传动受力分析。 第13章: 1)掌握:带传动的类型、传动原理及带传动基本参数:d1、d2、L d、a、α1、α2、F1、F2、F0 2)带传动的受力分析及应力分析:F1、F2、F0、σ1、σ2、σC、σb及影响因素。 3)弹性滑动与打滑的区别。 4)了解:带传动的设计计算。 第14章: 1)轴的分类(按载荷性质分)。 2)掌握轴的强度计算:按扭转强度计算,按弯扭合成强度计算。 第15章: 1)摩擦的三种状态:干摩擦、边界摩擦、液体摩擦。 第16章: 1)常用滚动轴承的型号。 2)向心角接触轴承的内部轴向力计算,总轴向力的计算。 滚动轴承当量动载荷的计算。滚动轴承的寿命计算。 第17章: 1)联轴器与离合器的区别 第一章平面机构的自由度和速度分析 1、自由度:构件相对于参考系的独立运动称为自由度。 2、运动副:两构件直接接触并能产生一定相对运动的连接称为运动副。构件组成运动副后,其运动受到约束,自由度减少。

机械设计基础知识点总结

机械设计基础知识点总结 1.构件:独立的运动单元/零件:独立的制造单元 机构:用来传递运动和力的、有一个构件为机架的、用构件间能有确定相对运动的连接方式组成的构件系统(机构=机架 (1个)+原动件(》1个)+从动件(若干)) 机器:包含一个或者多个机构的系统 注:从力的角度看机构和机器并无差别,故将机构和机器统 称为机械 1.机构运动简图的要点:1)构件数目与实际数目相同2)运动 副的种类和数目与实际数目相同3)运动副之间的相对位置以 及构件尺寸与实际机构成比例(该项机构示意图不需要) 2.运动副(两构件组成运动副):1)高副(两构件点或线接触) 2)低副(两构件面接触组成),例如转动副、移动副 3.自由度(F )=原动件数目,自由度计算公式: F =3n (n为活动构件数目)-2P(P L为低副数目)-P H( P H为高副数目) 求解自由度时需要考虑以下问题:1)复合铰链2)局部自由

度3)虚约束 4.杆长条件:最短杆+最长杆w其它两杆之和(满足杆长条件则机构中存在整 转副) I)满足杆长条件,若最短杆为机架,则为双曲柄机构 II )满足杆长条件,若最短杆为机架的邻边,则为曲柄摇杆机构 川)满足杆长条件,若最短杆为机架的对边,则为双摇杆机

IV )不满足杆长条件,则为双摇杆机构 5. 急回特性:摇杆转过角度均为摆角(摇杆左右极限位置的夹 角)的大小,而曲柄转过角度不同,例如:牛头刨床、往复 式输送机 急回特性可用行程速度变化系数(或称行程速比系数) K 表 示 二为极位夹角(连杆与曲柄两次共线时,两线之间的夹角) 6. 压力角:作用力F 方向与作用点绝对速度V c 方向的夹角a 7. 从动件压力角a =90°(传动角丫 =0° )时产生死点,可用飞 轮或者构件 本身惯性消除 8. 凸轮机构的分类及其特点:I )按凸轮形状分:盘形、移动、圆 柱凸轮(端面) II )按推杆形状分:1)尖顶一一构造简单, 易磨损,用于仪表机构(只用于受力不大的低速机构) 2)滚 子一一磨损小,应用广 3)平底一一受力好,润滑好,用于高 速转动,效率高,但是无法进入凹面 川)按推杆运动分: 直动(对心、偏置)、摆动IV )按保持接触方式分:力封闭 (重力、弹簧等)、几何形状封闭(凹槽、等宽、等径、主回 凸轮) 9. 凸轮机构的压力角:从动件运动方向与凸轮给从动件的力的 方向之间所夹的 锐角a (凸轮给从动件的力的方向沿接触点 的法线方向) 压力角的大小与凸轮基圆尺寸有关,基圆半径越小,压力角 t l t 2 180 180 - — K -1 -…180 -一' '■ /t2 ■^Ttl

心得体会 机械设计基础实验体会与收获

机械设计基础实验体会与收获 机械设计基础实验体会与收获 广西科技大学鹿山学院 实验报告 课程名称: 指导教师:班级:姓名:学号:成绩评定:指导教师签字: 年月日 实验一机构运动简图的测绘与分析 一、实验目的: 1、根据各种机械实物或模型,绘制机构运动简图; 2、学会分析和验证机构自由度,进一步理解机构自由度的概念,掌握机构自由度的计算方法; 3、加深对机构结构分析的了解。 二、实验设备和工具; 1、缝纫机头; 2.学生自带三角板、铅笔、橡皮; 三、实验原理: 由于机构的运动仅与机构中所有构件的数目和构件所组成的运动副的数目、类型、相对位置有关,因此,在绘制机构运动简图时,可以撇开构件的形状和运动副的具体构造,而用一些简略符号(见教科书有关“常用构件和运动副简图符号”的规定)来代替构件和运动副,并按一定的比例尺表示运动副的相对位置,以此表明机构的运动特

征。 四、实验步骤及方法: l、测绘时使被测绘的机械缓慢地运动,从原动件开始,仔细观察机构的运动,分清各个运动单元,从而确定组成机构的构件数目;2、根据相联接的两构件的接触特征及相对运动的性质,确定各个运动副的种类; 3、选定投影面,即多数构件运动的平面,在草稿纸上徒手按规定的符号及构 件的连接次序,从原动件开始,逐步画出机构运动简图。用数字1、2、 3、……。分别标注各构件,用英文字母A、B、C、,……分别标注各运动副; 4、仔细测量与机构运动有关的尺寸,即转动副间的中心距和移动副导路的方向等,选定原动件的位置,并按一定的比例画出正式的机构运动简图。 五、实验要求: l、对要测绘的缝纫机头中四个机构即a.压布、b走针、c.摆梭、d.送布,只绘出机构示意图即可,所谓机构运动示意图是指只凭目测,使图与实物成比例,不按比例尺绘制的简图; 2、计算每个机构的机构自由度,并将结果与实际机构的自由度相对照,观察计 算结果与实际是否相符;

机械设计知识点(经典)总结..

机械设计知识点总结(一) 1.螺纹联接的防松的原因和措施是什么? 答:原因——是螺纹联接在冲击,振动和变载的作用下,预紧力可能在某一瞬间消失,联接有可能松脱,高温的螺纹联接,由于温度变形差异等原因,也可能发生松脱现象,因此在设计时必须考虑防松。措施——利用附加摩擦力防松,如用槽型螺母和开口销,止动垫片等,其他方法防松,如冲点法防松,粘合法防松。 2.提高螺栓联接强度的措施 答:(1)降低螺栓总拉伸载荷Fa的变化范围:a,为了减小螺栓刚度,可减螺栓光杆部分直径或采用空心螺杆,也可增加螺杆长度,b,被联接件本身的刚度较大,但被链接间的接合面因需要密封而采用软垫片时将降低其刚度,采用金属薄垫片或采用O形密封圈作为密封元件,则仍可保持被连接件原来的刚度值。(2)改善螺纹牙间的载荷分布,(3)减小应力集中,(4)避免或减小附加应力。 3.轮齿的失效形式 答:(1)轮齿折断,一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中,可分为过载折断和疲劳折断。(2)齿面点蚀,(3)齿面胶合,(4)齿面磨损,(5)齿面塑性变形。 4.齿轮传动的润滑。 答:开式齿轮传动通常采用人工定期加油润滑,可采用润滑油或润滑脂,一般闭式齿轮传动的润滑方式根据齿轮的圆周速度V的大小而定,当V<=12时多采用油池润滑,当V>12时,不宜采用油池润滑,这是因为(1)圆周速度过高,齿轮上的油大多被甩出去而达不到啮合区,(2)搅由过于激烈使油的温升增高,降低润滑性能,(3)会搅起箱底沉淀的杂质,加速齿轮的磨损,常采用喷油润滑。 5.为什么蜗杆传动要进行热平衡计算及冷却措施 答:由于蜗杆传动效率低,发热量大,若不及时散热,会引起箱体内油温升高,润滑失效,导致齿轮磨损加剧,甚至出现胶合,因此对连续工作的闭式蜗杆传动要进行热平衡计算。措施——1),增加散热面积,合理设计箱体结构,铸出或焊上散热片,2)提高表面传热系数,在蜗杆轴上装置风扇,或在箱体油池内装设蛇形冷却水管。

心得体会 机械设计课程设计小结

机械设计课程设计小结 课程设计实习小结 “机械制造技术基础课程设计实习小结 这次课程设计,由于理论知识的不足,再加上平时没有什么设计经验,一开始的时候有些手忙脚乱,不知从何入手。在老师的谆谆教导,和同学们的热情帮助下,使我找到了信心。现在想想其实课程设计当中的每一天都是很累的,其实正向老师说得一样,机械设计的课程设计没有那么简单,你想copy或者你想自己胡乱蒙两个数据上去来骗骗老师都不行,因为你的每一个数据都要从机械设计书上或者机械设计手册上找到出处。虽然种种困难我都已经克服,但是还是难免我有些疏忽和遗漏的地方。完美总是可望而不可求的,不在同一个地方跌倒两次才是最重要的。抱着这个心理我一步步走了过来,最终完成了我的任务。 十几天的机械原理课程设计结束了,在这次实践的过程中学到了一些除技能以外的其他东西,领略到了别人在处理专业技能问题时显示出的优秀品质,更深切的体会到人与人之间的那种相互协调合作的机制,最重要的还是自己对一些问题的看法产生了良性的变化. 在社会这样一个大群体里面,沟通自然是为人处世的基本,如何协调彼此的关系值得我们去深思和体会.在实习设计当中依靠与被依靠对我的触及很大,有些人很有责任感,把这样一种事情当成是自己的重要任务,并为之付出了很大的努力,不断的思考自己所遇到的问题.而有些人则不以为然,总觉得自己的弱势…..其实在生活中这样的事情也是

很多的,当我们面对很多问题的时候所采取的具体行动也是不同的,这当然也会影响我们的结果.很多时候问题的出现所期待我们的是一种解决问题的心态,而不是看我们过去的能力到底有多强,那是一种态度的端正和目的的明确,只有这样把自己身置于具体的问题之中,我们才能更好的解决问题. 在这种相互协调合作的过程中,口角的斗争在所难免,关键是我们如何的处理遇到的分歧,而不是一味的计较和埋怨.这不仅仅是在类似于这样的协调当中,生活中的很多事情都需要我们有这样的处理能力,面对分歧大家要消除误解,相互理解,增进了解,达到谅解…..也许很多问题没有想象中的那么复杂,关键还是看我们的心态,那种处理和解决分歧的心态,因为毕竟我们的出发点都是很好的. 课程设计也是一种学习同事优秀品质的过程,比如我组的纪超同学,人家的确有种耐得住寂寞的心态.确实他在学习上取得了很多傲人的成绩,但是我所赞赏的还是他追求的过程,当遇到问题的时候,那种斟酌的态度就值得我们每一位学习,人家是在用心造就自己的任务,而且孜孜不倦,追求卓越.我们过去有位老师说得好,有有些事情的产生只是有原因的,别人能在诸如学习上取得了不一般的成绩,那绝对不是侥幸或者巧合,那是自己付出劳动的成果的彰显,那是自己辛苦过程的体现.这种不断上进,认真一致的心态也必将导致一个人在生活和学习的各个方面做的很完美,有位那种追求的锲而不舍的过程是相同的,这就是一种优良的品质,它将指引着一个人意气风发,更好走好自己的每一步.

机械设计基础知识点

第二章平面机构的结构分析 §2.1 基本概念 构件:运动单元体 零件:制造单元体构件可由一个或几个零件组成。 ?构件:由一个或几个零件组成的没有相对运动的刚性系统。机器或机构中最小的运动单元。 ?零件:机器或机构中最小的制造单元。 ?例如:曲轴——单一零件。 ?连杆——多个零件的刚性组合体。 ?注意:构件与零件联系与区别? 一、机构的组成 机架:机构中相对不动的构件 原动件:驱动力(或力矩)所作用的构件。→输入构件 从动件:随着原动构件的运动而运动的构件。→输出构件 在任何一个机构中,只能有一个构件作为机架。在活动构件中至少有一个构件为原动件,其余的活动构件都是从动件。 二、自由度、约束 自由度:构件具有独立运动参数的数目(相对于参考系) 在平面内作自由运动的构件具有3个自由度;在三维空间作自由运动的构件具有6个自由度。约束:运动副对构件间相对运动的限制作用 ?对构件施加的约束个数等于其自由度减少的个数。 三、运动副 使两构件直接接触并能产生一定相对运动的连接成为运动副。运动副的作用是约束构件的自由度。 四、运动副类型及其代表符号 1. 低副——两构件以面接触而形成的运动副。 A.转动副:两构件只能在一个平面内作相对转动,又称作铰链。 自由度数1,只能转动; 约束数2,失去了沿X、Y方向的移动。 B.移动副:两构件只能沿某一轴线作相对移动。 自由度数1,只能X方向移动; 约束数2,失去Y方向移动和转动。

2. 高副—— 两构件以点或线接触而构成的运动副。 自由度数 2, 保持切线方向的移动和转动 约束数 1, 失去法线方向的移动。 五、运动链 运动链:若干个构件通过运动副联接而成的相互间可作相对运动的系统。 闭式运动链简称闭链:运动链的各构件首尾封闭 开式运动链简称开链:未构成首尾封闭的系统 §2.2 机构运动简图 定义:用运动副代表符号和简单线条来反映机构中各构件之间运动关系的简图。 构件均用形象、简洁的直线或小方块等来表示,画有斜线的表示机架。 §2.3 平面机构的自由度计算 机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。(与构件数目,运动副的类型和数目有关) 一、机构自由度计算公式 H L 23P P n F --= 式中,n 为活动构件个数; L P 为低副个数;H P 为高副个数。 (a)双曲线画规机构 F=3n- 2PL-PH=3×5-2×7-0=1 (b) 牛头刨床机构 F=3n- 2PL-PH=3×6-2×8-1=1 二、机构具有确定运动的条件 机构要能运动,它的自由度必须大于零。 F ≤0,构件间无相对运动,不成为机构。

《机械设计基础》复习重点、要点总结

《机械设计基础》 第1章机械设计概论 复习重点 1. 机械零件常见的失效形式 2. 机械设计中,主要的设计准则 习题 1-1 机械零件常见的失效形式有哪些? 1-2 在机械设计中,主要的设计准则有哪些? 1-3 在机械设计中,选用材料的依据是什么? 第2章润滑与密封概述 复习重点 1. 摩擦的四种状态 2. 常用润滑剂的性能 习题 2-1 摩擦可分哪几类?各有何特点? 2-2 润滑剂的作用是什麽?常用润滑剂有几类? 第3章平面机构的结构分析 复习重点 1、机构及运动副的概念 2、自由度计算 平面机构:各运动构件均在同一平面内或相互平行平面内运动的机构,称为平面机构。 3.1 运动副及其分类 运动副:构件间的可动联接。(既保持直接接触,又能产生一定的相对运动) 按照接触情况和两构件接触后的相对运动形式的不同,通常把平面运动副分为低副和高副两类。 3.2 平面机构自由度的计算 一个作平面运动的自由构件具有三个自由度,若机构中有n个活动构件(即不包括机架),在未通过运动副连接前共有3n个自由度。当用P L个低副和P H个高副连接组成机构后,每个低副引入两个约束,每个高副引入一个约束,共引入2P L+P H个约束,因此整个机构相对机架的自由度数,即机构的自由度为 F=3n-2P L-P H (1-1)下面举例说明此式的应用。 例1-1 试计算下图所示颚式破碎机机构的自由度。 解由其机构运动简图不难看出,该 机构有3个活动构件,n=3;包含4个转 动副,P L=4;没有高副,P H=0。因此, 由式(1-1)得该机构自由度为 F=3n-2P L-P H =3×3-2×4-0=1

机械设计基础知识点总结

n P t P α γ C D A B ω P 12δδt h s = 12ωδt h v = 2=a 21222δδt h s =12 1 24δδωt h v =22 124t h a δω=2122)(2δδδ-- =t t h h s )(4121 2δδδω-=t t h v 22124t h a δ ω-=绪论:机械:机器与机构的总称。机器:机器是执行机械运动的装置,用来变换或传递能量、物料、信息。机构:是具有确定相对运动的构件的组合。用来传递运动和力的有一个构件为机架的用构件能够相对运动的连接方式组成的构件系统统称为机构。构件:机构中的(最小)运动单元一个或若干个零件刚性联接而成。是运动的单元,它可以是单一的整体,也可以是由几个零件组成的刚性结构。零件:制造的单元。分为:1、通用零件,2、专用零件。 一:自由度:构件所具有的独立运动的数目称为构件的自由度。 约束:对构件独立运动所施加的限制称为约束。运动副:使两构件直接接触并能产生一定相对运动的可动联接。高副:两构件通过点或线接触组成的运动副称为高副。低副:两构件通过面接触而构成的运动副。根据两构件间的相对运动形式,可分为转动副和移动副。F = 3n- 2PL-PH 机构的原动件(主动件)数目必须等于机构的自由度。复合铰链:三个或三个以上个构 件在同一条轴线上形成的转动副。由m 个构件组成的复合铰链包含的转动副数目应 为(m-1)个。虚约束:重复而不起独立限制作用的约束称为虚约束。计算机构的自由度时,虚约束应除去不计。局部自由度: 与输出件运动无关的自由度,计算机构自由度时可删除。 二:连杆机构:由若干构件通过低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。优点:(1)面接触低副,压强小,便于润滑,磨损轻,寿命长,传力大。(2)低副易于加工,可获得较高精度,成本低。(3)杆可较长,可用作实现远距离的操纵控制。(4)可利用连杆实现较复杂的运动规律和运动轨迹。缺点:(1)低副中存在间隙,精度低。(2)不容易实现精确复杂的运动规律。铰链四杆机构:具有转换运动功能而构件数目最少的平面连杆机构。整转副:存在条件:最短杆与最长杆长度之和小于或等于其余两杆长度之和。构成:整转副是由最短杆及其邻边构成。类型判定:(1)如果:lmin+lmax ≤其它两杆长度之和,曲柄为最短杆;曲柄摇杆机构:以最短杆的相邻构件为机架。双曲柄机构:以最短杆为机架。双摇杆机构:以最短杆的对边为机架。(2)如果: lmin+lmax >其它两杆长度之和;不满足曲柄存在的条件,则不论选哪个构件为机架,都为双摇杆机构。急回运动:有不少的平面机构,当主动曲柄做等速转动时,做往复运 动的从动件摇杆,在前进行程运行速度较慢,而回程运动速度要快,机构的这种性质就是所谓的机构的“急回运动”特性。 压力角:作用于C 点的力P 与C 点绝对速度方向所夹的锐角α。传动角:压力角的余角γ,死点:无论我们 在原 动件上施加 多大的力都不能使机构运 动,这种位置我们称为死点γ=0。解决办法:(1)在机构中安装大质量的飞轮,利用其惯性闯过转折点;(2)利用多组机构来消除运动不确定现象。即连杆BC 与摇杆CD 所夹锐角。 三:凸轮: 一个具有曲线轮廓或凹槽的构件。从动件: 被凸轮直接推动的构件。机架: 固定不动的构件(导路)。凸轮类型:(1)盘形回转凸轮(2)移动凸轮 (3)圆柱回转凸轮 从动件类型:(1)尖顶从动件(2)滚子从动件(3)平底从动件(1)直动从动件 (2)摆动从动件 1基圆:以凸轮最小向径为半径作的圆,用rmin 表示。2推程:从动件远离中心位置的过 程。推程运动角δt ;3远休止:从动件在远离中心位置停留不动。远休止角δs ;4回程:从动件由远离中心位置向中心位置运动的过程。回程运动角δh ;5近休止:从动件靠近中心位置停留不动。近休止角δs ˊ;6行程:从动件在推程或回程中移动的距离,用 h 表示。7从动件位移线图:从动件位移S2与凸轮转角δ1之间的关系曲线称为从动件位移 线图。1.等 速运动规 律: 1、特点:设计简单、匀速进给。始点、末点有刚性冲击。适于低速、轻载、从动杆质量不大,以及要求匀速的情况。 2、等加速等减速运动规律: 推程等加速段运动方程: 推 程 等减速段运动方程: 柔 性冲击:加速度发 生有限值的突变(适用于中速场合) 3、简谐运动规律: 柔性冲击 四:根切根念:用范成法加工齿轮时,有时会发现刀具的顶部切入了轮齿的根部,而把齿根切去了一部分,破坏了渐开线齿廓,如图这种现象称为根切。 根切形成的原因:标准齿轮:刀具的齿顶线超过了极限啮合点N 。 不根切的条件可以表示为: 不根切的最少齿数为: 标准齿轮:指m 、α、ha*、c* 均取标准值,具有标准的齿顶高和齿根高,且分度圆齿厚s 等于齿槽宽e 的齿轮。 成型法:加工原理:成形法是用渐开线齿形的成形铣刀直接切出齿形。加工:(a) 盘形铣刀加工齿轮。(b)指状铣刀加工齿轮。缺点:加工精度低;加工不连续,生产率低;加工成本高。优点:可以用普通铣床加工。 范成法:加工原理:根据共轭曲线原理,利 用一对齿轮互相啮合传动时,两轮的齿廓互为包络线的原理来加工。加工:(a)齿轮插刀:是一个齿廓为刀刃的外齿轮。(b)齿条插刀(梳齿刀):是一个齿廓为刀刃的齿条。原理与用齿轮插刀加工相同,仅是范成运动变为齿条与齿轮的啮合运动。(c)滚刀切齿:原理与用齿条插刀加工基本相同,滚刀转动时,刀刃的螺旋运动代替了齿条插刀的展成运动和切削运动。 九:失效:机械零件由于某种原因不能正常工作时,称为失效。类型:(1)断裂。在机械载荷或应力作用下(有时还兼有各种热、腐蚀等因素作用),使物体分成几个部分的现象,通常定义为固体完全断裂,简称断裂。静力拉断、疲劳断裂。(2)变形。由于作用零件上的应力超过了材料的屈服极限,使零 1 1PN PB ≤2 sin sin * α α mz m h a ≤ α 2* min sin 2a h z = )]cos(1[212δδπt h s -=)sin(2112δδπδωπt t h v =)cos(2122122δδπ δωπt t h a =

机械设计章节练习题——齿轮机构

第6章齿轮机构 1.基本概念:节点,啮合定律 2.渐开线特性:基圆,发生线,压力角,展角 3.基本参数:模数,压力角,齿数,当量齿数,齿顶高系数,顶隙系数 4.传动类型:直齿、斜齿圆柱齿轮,圆锥齿轮,蜗轮蜗杆 5.啮合与连续传动条件:重合度 6.齿轮加工:仿形法,范成法,根切,最少齿数 【思考题】 6-1 什么就是齿廓啮合的基本定律?渐开线的性质有哪些? 6-2 齿轮正确啮合的条件就是什么? 6-3 重合度的基本概念就是什么? 6-4 常见的渐开线齿廓的切齿方法有两种?其特点就是什么? 6-5 什么就是最少齿数?有何对策? 6-6 变位齿轮的基本概念就是什么? 6-7 什么就是斜齿轮的当量齿数?如何计算? 6-8 什么就是圆锥齿轮的背锥?当量齿数如何计算? A级能力训练题 1.渐开线齿廓之所以能够保持一定的传动比传动,其传动比不仅与半径成反 比,也与其半径成反比,还与半径成反比。 2.一对共轭齿廓,在公法线上的相对速度等于,而相对速度应在。 3.一对渐开线标准直齿轮非正确安装时,节圆与分度圆大小,分度圆的 大小取决于,而节圆的大小取决于。 4.渐开线上任一点的法线与其圆,渐开线各点的曲率半径就是 的。 5.渐开线直齿圆柱齿轮传动的可分性就是指________不受中心距变化的影响。 (1)传动比 (3)啮合角 (4)节圆半径 6.标准的渐开线直齿圆柱齿轮的齿根圆______大于基圆。 (1)一定 (2)不一定 (3)一定不 7.渐开线上某点的压力角就是指该点所受正压力的方向与该点______方向线之间的锐角。 (1)绝对速度 (2)相对速度 (3)滑动速度 (4)牵连速度 8.标准渐开线外齿轮的齿数增加,则齿顶圆压力角αa将______。 (1)不变 (2)增大 (3)减小 (4)增大或减小 9.一对相啮合传动的渐开线齿轮,其压力角为______,啮合角为______。 (1)基圆上的 (2)节圆上的 (3)分度圆上的 (4)齿顶圆上的

最新整理机械结构设计基础知识复习过程

机械结构设计基础知识 1前言 1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 2机械结构件的结构要素和设计方法 2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图1。 2.3结构设计据结构件的材料及热处理不同应注意的问题 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。

机械设计知识点总结

1螺纹联接的防松的原因和措施是什么 答:原因——是螺纹联接在冲击,振动和变载的作用下,预紧力可能在某一瞬间消失,联接有可能松脱,高温的螺纹联接,由于温度变形差异等原因,也可能发生松脱现象,因此在设计时必须考虑防松。措施——利用附加摩擦力防松,如用槽型螺母和开口销,止动垫片等,其他方法防松,如冲点法防松,粘合法防松。 2.提高螺栓联接强度的措施 答:(1)降低螺栓总拉伸载荷Fa的变化范围:a,为了减小螺栓刚度,可减螺栓光杆部分直径或采用空心螺杆,也可增加螺杆长度,b,被联接件本身的刚度较大,但被链接间的接合面因需要密封而采用软垫片时将降低其刚度,采用金属薄垫片或采用O形密封圈作为密封元件,则仍可保持被连接件原来的刚度值。(2)改善螺纹牙间的载荷分布,(3)减小应力集中,(4)避免或减小附加应力。3.轮齿的失效形式答:(1)轮齿折断,一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中,可分为过载折断和疲劳折断。(2)齿面点蚀,(3)齿面胶合(4)齿面磨损(5)齿面塑性变形。 4.齿轮传动的润滑。 答:开式齿轮传动通常采用人工定期加油润滑,可采用润滑油或润滑脂,一般闭式齿轮传动的润滑方式根据齿轮的圆周速度V的大小而定,当V<=12时多采用油池润滑,当V>12时,不宜采用油池润滑,这是因为(1)圆周速度过高,齿轮上的油大多被甩出去而达不到啮合区,(2)搅由过于激烈使油的温升增高,降低润滑性能,(3)会搅起箱底沉淀的杂质,加速齿轮的磨损,常采用喷油润滑。 5.为什么蜗杆传动要进行热平衡计算及冷却措施 《 答:由于蜗杆传动效率低,发热量大,若不及时散热,会引起箱体内油温升高,润滑失效,导致齿轮磨损加剧,甚至出现胶合,因此对连续工作的闭式蜗杆传动要进行热平衡计算。措施——1),增加散热面积,合理设计箱体结构,铸出或焊上散热片,2)提高表面传热系数,在蜗杆轴上装置风扇,或在箱体油池内装设蛇形冷却水管。6.带传动的有缺点。 答,优点——1)适用于中心距较大的传动,2)带具有良好的挠性,可缓和冲击,吸收振动,3)过载时带与带轮间产生打滑,可防止损坏其他零件,4)结构简单,成本低廉。缺点——1)传动的外廓尺寸较大,2)需要张紧装置,3)由于带的滑动,不能保证固定不变的传动比,4)带的寿命短,5)传动效率较低。 8 与带传动和齿轮传动相比,链传动的优缺点 答:与带传动相比,链传动没有弹性滑动和打滑,能保持准确的平均传动比,需要的张紧力小,作用在轴上的压力也小,可减小轴承的摩擦损失,结构紧凑,能在温度较高,有油污等恶劣环境条件下工作。与齿轮传动相比,链传动的制造和安装精度要求较低,中心距较大时其传动结构简单。链传动的缺点——瞬时链速和瞬时传动比不是常数,传动平稳性较差,工作中有一定的冲击和噪声。9.轴的作用,转轴,传动轴以及心轴的区别。 答:轴是用来支持旋转的机械零件。转轴既传动转矩又承受弯矩。传动轴只传递转矩而不承受弯矩或弯矩很小。心轴则只承受弯矩而部传动转矩。 < 10.轴的结构设计主要要求。 答:1),轴应便于加工,轴上零件要易于装拆。2),轴和轴上零件要有准确的加工位置,3)各零件要牢固而可靠的相对固定,4)改善受力状况,减小应力集中。11.形成动压油膜的必要条件。 答:1)两工作面间必须有楔形形间隙,2)两工作面间必须连续充满润滑油或其他粘性流体,3)两工作面间必须有相对滑动速度,其运动方向必须使润滑油从大截面流进,小截面流出,此外,对于一定的载荷,必须使速度,粘度及间隙等匹配恰当。 13.变应力下,零件疲劳断裂具有的特征。 答:1)疲劳断裂的最大应力远比静应力下材料的强度极限低,甚至屈服极限低,2)不管脆性材料或塑像材料,疲劳断裂口均表现为无明显塑性变形的脆性突然断裂,3)疲劳断裂是损伤的积累。 14.机械磨损的主要类型——磨粒磨损,粘着磨损,疲劳磨损,腐蚀磨损。 … 15.垫圈的作用——增加被联接件的支撑面积以减小接触处的压强和避免拧紧螺母时擦伤被联接件的表面。16.滚动螺旋的优缺点。 答:优点——1)磨损很小,还可以用调整方法消除间隙并产生一定预变形来增加刚度,因此其传动精度很高,2)不具有自锁性,可以变直线运动为旋转运动。缺点——1)结构复杂,制造困难,2)有些机构中为了防止逆转而需另加自锁机构。 18 齿轮传动的功率损耗包括——啮合中的摩擦损耗,搅动润滑油的油阻损耗,轴承中的摩擦损耗。 20.轴瓦材料的性能——1)摩擦系数小,2)导热性好,热膨胀系数小,3)耐磨,耐蚀,抗胶合能力强,4)要有足够的机械强度和可塑性。 21提高螺纹连接强度的措施a降低影响螺栓疲劳强度的应力幅b改善螺纹牙上载荷分布不均的现象c减小应力集中的影响d采用合理的制造工艺方法 22提高轴的强度的常用措施 / a合理布置轴上零件以减小轴的载荷b改进轴上零件的结构以减小轴的载荷c改进轴的结构已减小轴的载荷d改进轴的表面质量以提高轴的疲劳强度

相关主题
文本预览
相关文档 最新文档