当前位置:文档之家› 函数图象的三种变换

函数图象的三种变换

函数图象的三种变换
函数图象的三种变换

.

函数图象的三种变换

函数的图象变换是高考中的考查热点之一,常见变换有以下3种:

一、平移变换

2,在同一坐标系中画出:=x设f(x)例1

(1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系;

(2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图

(2)如图

点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到;

y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到;

y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到.

小结:

二、对称变换的图象,并观察两个函数图)-xy=f(x+1,在同一坐标系中画出y=f()和x例2设f(x)=象的关系.1的图象如图所示.=-x+x与y=f(-)+y解画出=f(x)=x1

由图象可得函数y=x+1与y=-x+1的图象关于y轴对称.

点评函数y=f(x)的图象与y=f(-x)的图象关于y轴对称;

函数y=f(x)的图象与y=-f(x)的图象关于x轴对称;

函数y=f(x)的图象与y=-f(-x)的图象关于原点对称.

三、翻折变换

例3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数1 / 6

.

图象的关系.

解y=f(x)的图象如图1所示,y=|f(x)|的图象如图2所

示.

点评要得到y=|f(x)|的图象,把y=f(x)的图象中x轴下方图象翻折到x轴上方,其余部分不变.例4 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=f(|x|)的图象,并观察两个函数图象的关系.

解如下图所

示.

点评要得到y=f(|x|)的图象,先把y=f(x)图象在y轴左方的部分去掉,然后把y轴右边的对称图象补到左方即可.

小结:

保留x轴上方图象y?f(x)????????y=|f(x)|. 将x轴下方图象翻折上去保留y轴右侧图象y?f(x)?????????y=f(|x|). 并作其关于y轴对称的图象如图:

y yy函数图象自身的对称性四y=f(x)y=f(|x|)y=|f(x)|a?b?f(a?x)?f(b?x)?f(a?b?(x)x)?f(x)y?f?x函数对称的图象关于直

1.2a ox cba xo c xo bcab y?f(x)(a,b)?2b?f(x)?f(2a?x)对称函数的图象关于点

2.?f(x)?2b?f(2a?x)?f(a?x)?f(a?x)?2b

f(x)??f(?x)f(x)f(x)?f(?x)f(x)的图象的图象关于原点对称,若 3.若,则,则y轴对称。关于基础训练

1.判断下面结论是否正确(请在括号中打“√”或“×”)

(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同. (×)

(×)

的图象关于原点对称f)=(2)函数yf(x与y=-(x).

(3)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称. (√)

(4)将函数y=f(-x)的图象向右平移1个单位得到函数y=f(-x-1)的图象.

(×)

2 / 6

.

如图所示的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满2.之间的关系,其中不正确的有t为止.用下面对应的图象显示该容器中水面的高度h和时间)

(

.4个个 D B.2个C.3A.1个之间的函数关系式h和时间t解析对于一个选择题而言,求出每一幅图中水面的高度既无必要也不可能,因此可结合相应的两幅图作定性分析,即充分利用数形结合.对于第一幅图,不难得知水面高度的增加应是均匀的,因此不正确;对于第二幅图,随着时间的增加,越往上,增加同一个高度,需要的水越多,因此趋势愈加平缓,因此正确;同理可分析第三幅图、第四幅图都是正确的.A. 故只有第一幅图不正确,因此选A 答案

是典型的数形结合问题,本题考查函数的对应关系.由容器的形状识别函数模型,点评近两年的高考越来越注重对”有利于克服死记硬背,更突出了思维能力的考查.“只想不算理性思维能力的考查.的函数关系的图象如图所示,与水深h3.向高为H的水瓶中注水,注满为止.如果注

水量V)

那么水瓶的形状是

(

VH0,即水深至一半时,实际注水量大于水瓶总水>=,此时注水量V′解析取水深h22 量的一半.VV00B.

、D,选V′=,故排除A、C,A中V′

1x-

1-1-=1个单位,再向上平移一个单位,解析将y即可得到函数y=的图象向右平移1

x1x-B

答案的图象.

),则图②的图象对应的函数为xfy5.已知图①中的图象对应的函数为=()(.3 / 6

.

A.y=f(|x|) B.y=|f(x)| C.y=f(-|x|) D.y=-f(|x|)

?,0,x≥f?-x???C

答案|)解析y=f(-|x=?0.<?,xf?x?2a???yxx a y与曲线.的取值范围是=1有四个交点,则________6.直线

2axy?x??是偶函数如图所示,51?a1?1?aa???44是对称;已知的图像关于__________7.已知是偶函数,则)2xff(x?2)(f(x)?.

____________对称偶函数,则函数的图像关于)(xf) ((1-x)的图象为y8.已知=f(x)的图象如图所示,则y=f

的图象按照如下变换得)的图象可以由y=f(xxf(-(x-1)),故y=f(1-解析: )Af[因为(1-x)=的图象向右平移一个)x的图象,然后将y=f(-x()的图象关于y轴翻折,得y=f(-x)到:先将y=f ](-x+1)

的图象.单位,即得y=f 分别画出下列函数的图象:9.2+x2)?1?x?2(xy(1) 3)(y |(1)y=x-2|x-1;(2)=. 1-x2??x≥0xx-2-1??.

图象如图③=.(1)y?2?0x-1?x<2x+??33个单位,再向上平移1个单位,=+y=1,先作出y 的图象,将其图象向右平移1因(2)x1x-2x+.

的图象,如图④=即得y1x-4 / 6

.

10.若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为_____.

. 的图象x+1))的图象,再得到y=-f(y=f(x)的图象可先得到y=-f(x思维启迪从轴对称xx)的图象关于需要先将y=f(x)的图象得到y=-f(x+1)的图象,y解析要想由=f(的图象,根据上述步骤可1)x+的图象,然后再向左平移一个单位得到)y=-f(得到y=-f(x ③答案正确. 知③2的单调区间,并指出其增减性;x)3|.(1)求函数f(x)=|xx-4+11.已知函数f( .有四个不相等的实根}x)=m求集合M={m|使方程f((2)2?,+∞-∞,1]∪[32?-1,x∈?x?-??=f(x)解

?2?3?1,?-2+1,x∈-?x??

作出函数图象如图.(1)函数的增区间为[1,2],[3,+∞);函数的减区间为(-∞,1],[2,3].(2)在同一坐标系中作出y=f(x)和y=m的图象,使两函数图象有四个不同的交点(如图).

由图知0

112.已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.求f(x)的解析式;(2)x 解析:(1)设f(x)图象上任一点P(x,y),则点P关于(0,1)点的对称点P′(-x,2-y)在h(x)11的图象上,即2-y=-x-+2,∴y=f(x)=x+(x≠0).

xx2-2x+3,试求f(x)在x>0xy.已知函数=f()的图象关于原点对称,且x时,f()=x R上的13表达式,并画出它的图象,根据图象写出它的单调区间.

解:∵f(x)的图象关于原点对称,∴f(-x)=-f(x),∴当x=0时,f(x)=0.

5 / 6

.

22-2x-x)=-x3.

<0x-2x+3,∴当x时,f(x时,又当x>0 f()=2?,x>032x+,x-??,0,0x=作出函数的图象如图.=)(∴函数的解析式为fx??2<0.-2x--x3,x Array根据图象可以得函数的增区间为(-∞,-1),(1,+∞);函数的减区间为(-1,0),(0,1).

6 / 6

函数的图象变换(习题)

函数的图象变换(习题) 1.函数y=-2x2的图象是由函数y=-2x2+4x+6的图象经过怎样的变换得到的? () A.向左平移1个单位长度,向上平移8个单位长度 B.向右平移1个单位长度,向上平移8个单位长度 C.向左平移1个单位长度,向下平移8个单位长度 D.向右平移1个单位长度,向下平移8个单位长度 4.若函数(1) x y a b =-+(a>0,且a≠1)的图象在第一、三、四象限,则必有()

A .0<a <1,b >0 B .0<a <1,b <0 C .a >1,b <0 D .a >1,b > 5. 若函数()y f x =与()y f x =的图象相同,则()f x 可能是( ) A .1y x -= B .2x y = C .2log y x = D .21y x =- 6. 当0<a <1时,函数()log ()a f x x =-与()1g x ax =-的图象的交点在( ) A . 第四象限 B .第三象限 C .第二象限 D .第一象限 7. 在同一平面直角坐标系内,函数1()3x f x -=与1()3x g x +=的图象关于( ) A .y 轴对称 B .x 轴对称 C .原点对称 D .直线x =1对称

f (x -1)的函数 f (-x )的函数 |f (x )|的函数 f (|x |)的函数 A B C D 10. 将()y f x =的图象向右平移1个单位长度,所得图象与y =ln x 关于y 轴对称, 则()y f x =的解析式为( ) A .()ln(1)f x x =+ B .()ln(1)f x x =- C .()ln(1)f x x =-+ D .()ln(1)f x x =-- 11. 若函数22()(1)()f x x x ax b =-++的图象关于直线x =-2对称,则a ,b 的值分 别为( ) A .15,8 B .8,15 C .3,4 D .-3,-4 12. 已知函数()y f x =的图象关于直线x =1对称,且在[1)+∞,上单调递减, (0)0f =,则(1)0f x +>的解集为( ) A . (1)+∞, B .(1)(1)-∞-+∞,, C .(1)-∞-, D .(11)-, 13. 已知函数() y f x =的图象与ln y x =的图象关于x 轴对称,则 (2)f =_____________.

函数图象变换的四种方式

函数图象变换的四种方 式 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

函数图象变换的四种方式 一,平移变换。 (1)水平平移: 要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。 (简记:左加右减,这里的a>0。) (2)上下平移: 要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。 (简记:上加下减,这里的a>0) 二,对称变换。 (1)y=f(x)与y=f(-x)的图象关于y轴对称。 所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x)的图象。(简记:左右翻折) (2)y=f(x)与y=-f(x)的图象关于 x轴对称。 所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x)的图象。(简记:上下翻折) (3)y=f(x)与y=-f(-x)的图象关于原点对称。

所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得到-f(-x)的图象。(简记:旋转180度) 三,翻折变换。 (1)如何由y=f(x)的图象得到y=f(|x|)的图象? 先画出函数y=f(x) y轴右侧的图象,再作出关于y轴对称的图形 (简记:右不动,左对称) (2)如何由y=f(x)的图象得到y=|f(x)|的图象? 先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。 (简记:上不动,下上翻) 四,伸缩变换。 (1)如何由函数y=f(x)的图象得到函数y=af(x)的图象?(a>0) 可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x)的图象。 (2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象?(a>0) 可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax)的图象。

函数图像知识点归纳梳理

函数的图像 【知识梳理】 一、函数的图像 1、作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。 2、识图:分布范围、变化趋势、对称性、周期性等等方面. 二、函数图像的变化 1、平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到; (2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. ①()y f x =h 左移→()y f x h =+; ②()y f x =h 右移→()y f x h =-; ③()y f x =h 上移→()y f x h =+; ④()y f x =h 下移→()y f x h =-. 2、对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1 ()y f x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到. ①()y f x =轴 x →()y f x =-;②()y f x =轴 y →()y f x =-;③()y f x =a x =→直线(2)y f a x =-;④()y f x =原点 →()y f x =--. 提示:()i 若()(),R f a x f b x x +=-∈恒成立,则()y f x =的图象关于2 a b x +=成轴对称图形, 若()(),R f a x f b x x +=--∈,则()y f x =的图象关于点( ,0)2 a b +成中心对称图形. ()ii 函数()y f a x =+与函数()y f b x =-的图象关于直线1 ()2 x b a =-对称. 3、翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;

函数图像变换及应用

上节课知识检测 一、基本内容 1.利用描点法作函数图像 其基本步骤是列表、描点、连线,具体为: 2、会画基本函数图像(一次(两点想x 取0,,y 取0(或X 取1))、反比例(三点(x 取1/2、1,2)对称轴、对称中心)、二次(对称轴\顶点\开口)、幂(四点x 取0,1/2,1,2对称)、指数(三点x 取-1,0,1)、对数(三点Y-1,0,1)、对勾(两部分相等时X 值点)、三角(x 取五点;对称轴、对称中心)) 3.掌握画图像的基本方法:(1)描点法(2)图像变换法.平移、伸缩、翻折 (3)讨论分段法 (1)平移变换: y =f (x ) ――――――――――→a >0,右移a 个单位a <0,左移|a |个单位 y =f (x -a ); y =f (x ) ―――――――――→b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b . (2)伸缩变换: y =f (x ) 1 011 1ωωωω <<>????????→,伸原的倍 ,短原的 长为来缩为来 y =f (ωx ); y =f (x ) ――――――――――――→A >1,伸为原来的A 倍0

函数图象的三种变换

. 函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下3种: 一、平移变换 2,在同一坐标系中画出:=x设f(x)例1 (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图 (2)如图

点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到; y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到; y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到. 小结:

二、对称变换的图象,并观察两个函数图)-xy=f(x+1,在同一坐标系中画出y=f()和x例2设f(x)=象的关系.1的图象如图所示.=-x+x与y=f(-)+y解画出=f(x)=x1 由图象可得函数y=x+1与y=-x+1的图象关于y轴对称. 点评函数y=f(x)的图象与y=f(-x)的图象关于y轴对称; 函数y=f(x)的图象与y=-f(x)的图象关于x轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数1 / 6

. 图象的关系. 解y=f(x)的图象如图1所示,y=|f(x)|的图象如图2所 示. 点评要得到y=|f(x)|的图象,把y=f(x)的图象中x轴下方图象翻折到x轴上方,其余部分不变.例4 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=f(|x|)的图象,并观察两个函数图象的关系. 解如下图所 示. 点评要得到y=f(|x|)的图象,先把y=f(x)图象在y轴左方的部分去掉,然后把y轴右边的对称图象补到左方即可. 小结: 保留x轴上方图象y?f(x)????????y=|f(x)|. 将x轴下方图象翻折上去保留y轴右侧图象y?f(x)?????????y=f(|x|). 并作其关于y轴对称的图象如图:

(完整版)三角函数的图像和性质知识点及例题讲解

三角函数的图像和性质 1、用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (2 3π ,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (2 3π,0) (2π,1) 2 sin y x = cos y x = tan y x = 图 象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最 值 当 22 x k π π=+ 时, max 1y =;当22x k ππ=- 时,min 1y =-. 当2x k π=时, max 1y =;当2x k ππ=+ 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单 调 性 在2,22 2k k π πππ?? - + ??? ? 上是增函数; 在32,22 2k k ππππ? ?++??? ? 上是减函数. 在[]2,2k k πππ-上是增函 数; 在[]2,2k k πππ+上是减函数. 在,2 2k k π πππ? ? - + ?? ? 上是增函数. 对称 性 对称中心(),0k π 对称轴2 x k π π=+ 对称中心,02k π π??+ ?? ? 对称轴x k π= 对称中心,02k π?? ??? 无对称轴 函 数 性 质

例作下列函数的简图 (1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π] 例利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合: 21sin )1(≥ x 21 cos )2(≤ x 3、周期函数定义:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做这个函数的周期。 注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做 ()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一 般称为周期) 正弦函数、余弦函数:ωπ= 2T 。正切函数:π ω 例求下列三角函数的周期: 1? y=sin(x+3 π ) 2? y=cos2x 3? y=3sin(2x +5π) 4? y=tan3x 例求下列函数的定义域和值域: (1)2sin y x =- (2)y =(3)lgcos y x =

高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1 x y -= (2)x y )21(-= (3)x y 2 log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

对数函数的图象变换及在实际中的应用苏教版

对数函数的图象变换及在实际中的应用 对数函数图象是对数函数的一种表达形式, 形象显示了函数的性质。为研究它的数量关 系提供了“形”的直观性,它是探求解题途径、获得问题结果的重要途径。 一. 利用对数函数图象的变换研究复杂函数图象的性质 (一) 图象的平移变换 y log 2(x 2)的图象 主:图象的平移变换: 1.水平平移:函数y f (x b) , (a 0)的图像,可由y f (x)的 2.竖直平移:函数y f (x) b , (b 0)的图像,可由y f (x)的图像向上(+)或向下 平移b 个单位而得到. (二) 图像的对称变换 例2.画出函数y log 2 x 2的图像,并根据图像指出它的单调区间 ? 解:当 x 0 时,函数 y log 2 x 2 满足 f ( x) log 2( x)2 log 2 x 2 f (x),所以 2 2 y log 2 x 是偶函数,它的图象关于 y 轴对称。当x 0时,y log 2 x 2 log 2 x 。因 此先画出y 2 log 2 x ,( x 0)的图象为s ,再作出&关于 y 轴对称C 2, c i 与C 2构成函数y 由图象可以知道函数 y log 2 x 2 调增区间是(0,) 例1. 画出 函数 y log 2 (x 2) 与 y log 2(x 2)的图像,并指出两个图像 之间的关系? 解:函数y log 2 x 的图象如果向右平移 到y Iog 2(x 2)的图像;如果向左平移 /pl y i. J - ■- .— w ■■ *-------- 1 ------ ~ / - 1 ] ''5 / 3 = / ' 到y log 2(x 2)的图像,所以把y log 2(x 2) 图像向左(+)或向右 平移a 个单位而得到 2个单位就得 2个单位就得 的图象向右平移4个单位得到

函数图像的四种变换形式

函数图像的四种变换 1.平移变换 左加右减,上加下减 ) ( ) (a x f y x f y+ = ?→ ? =沿x轴左移a个单位; ) ( ) (a x f y x f y- = ?→ ? =沿x轴右移a个单位; a x f y x f y+ = ?→ ? =) ( ) (沿y轴上移a个单位; a x f y x f y- = ?→ ? =) ( ) (沿y轴下移a个单位。 2.对称变换 同一个函数求对称轴或对称中心,则求中点或中心。 两个函数求对称轴或对称中心,则求交点。 (1)对称变换 ①函数) (x f y=与函数) (x f y- =的图像关于直线x=0(y轴)对称。 ②函数) (x f y=与函数) (x f y- =的图像关于直线y=0(x轴)对称。 ③函数) (a x f y+ =与) (x b f y- =的图像关于直线 2a b x - =对称 (2)中心对称 ①函数) (x f y=与函数) (x f y- - =的图像关于坐标原点对称 ②函数) (x f y=与函数) 2( 2x a f y b- = -的图像关于点(a,b)对称。 3伸缩变换 (1)) (x af y=的图像,可以将) (x f y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。 (2)) (ax f y=(a>0)的图像,可以将) (x f y=的横坐标伸长(01)到原来的1/a倍,纵坐标不变。

4.翻折变换 (1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。 (2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。 习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像

函数图像的三种变换

函数图像的三种变换 函数在中学数学及大学数学中都是极其重要的内容,函数思想是解决函数问题的理论源泉; 函数的性质是解决函数问题的基础,而函数的图象则是函数性质的具体的直观的反应。在高中阶段函数图象的变化方式主要有以下三种: 一 、平移变换 函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 1、 沿水平方向左右平行移动 比如函数)(x f y =与函数)0)((>-=a a x f y ,由于两函数的对应法则相同,x a x 与-取值范围一样,函数的值域一样。以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数)(x f y =的图象水平移动才能得到函数)0)((>-=a a x f y 的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)(a x f y -=上对应的点为),(11y a x +,因此若将)(x f y =沿水平方向向右平移a 个单位即可得到)0)((>-=a a x f y 的图象。同样,将)(x f y =沿水平方向向左平移a 个单位即可得到)0)((>+=a a x f y 的图象。 2、沿竖直方向上下平行移动 比如函数)(x f y =与函数)0()(>+=b b x f y ,由于函数)(x f y =函数)0)((>=-b x f b y 中函数y 与b y -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数)(x f y =的图象上下移动得到函数)(x f b y =-的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)0)((>=-b x f b y 上对应的点为),(11b y x +,因此若将)(x f y =沿竖直方向向上平移a 个单位即可得到)0)((>=-b x f b y 的图象。同样,将)(x f y =沿竖直方向向下平移a 个单位即可得到)0)((>=+b x f b y 的图象。 函数图象的平移变化可以概括地总结为: (1)函数)(x f y =的图象变为)0,0)((>>-=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (2)函数)(x f y =的图象变为)0,0)((>>+=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 (3)函数)(x f y =的图象变为)0,0)((>>+=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (4)函数)(x f y =的图象变为)0,0)((>>-=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 函数图象的平移的实质是有变量本身变化情况所决定的。 3、例题讲解 例1. 为了得到函数的图象,只需把函数的图象上所有的点( ) A. 向右平移3个单位长度,再向下平移1个单位长度 B. 向左平移3个单位长度,再向下平移1个单位长度 C. 向右平移3个单位长度,再向上平移1个单位长度 D. 向左平移3个单位长度,再向上平移1个单位长度 分析 把函数 x y 2=的图象向右平移3个单位,然后再向下平移1个单位,就得到函数123-=-x y 的图象。 故,本题选A 例2 把函数的图象向右平移1单位,再向下平移1个单位后,所得图象对应的函数解析式是( ). (A ) (B ) (C ) (D ) 分析 把已知函数图象向右平移1个单位, 即把其中自变量换成,得.

文科一轮复习作业手册 第12讲 函数的图象与变换

第12讲 函数的图象与变换 1.(2018·宿州期中)为了得到函数y =log 4x -34的图象,只需把函数y =1 2log 2x 的图象上所 有的点( D ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度 因为y =log 4x -34=log 4(x -3)-1,所以将y =1 2 log 2x 的图象向右平移3个单位长 度得到y =12log 2(x -3),再将y =12log 2(x -3)再向下平移1个单位长度得到y =1 2log 2(x -3)-1, 即y =log 4x -3 4 的图象. 2.函数f (x )=ln(|x |-1)+x 的大致图象是( A ) 因为|x |>1,所以x >1或x <-1.当x >1时,f (x )=ln(x -1)+x ,可知f (x )在(1,+∞)上单调递增,故排除B ,C ,D ,选A. 3.(2017·全国卷Ⅲ)函数y =1+x +sin x x 2的部分图象大致为( D ) A

B C D 当0<x <π2时,y =1+x +sin x x 2>0,故排除选项A ,C.当x →+∞时,sin x x 2→0,1 +x →+∞,y =1+x +sin x x 2→+∞,故排除选项B.故选D. 4.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( C ) A .(1,3) B .(-1,1) C .(-1,0)∪(1,3) D .(-1,0)∪(0,1) f (x )的图象如图所示. 由xf (x )>0,得????? x >0,f (x )>0,或????? x <0,f (x )<0, 所以不等式的解集为(-1,0)∪(1,3).

2二次函数图象的几何变换

一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 ()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函 数2y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”. 二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2 y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2 y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2 y a x h k =-+关于原点对称后,得到的解析式是 ()2 y a x h k =-+-; 4. 关于顶点对称 2 y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+- ; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2 y a x h k =--+. 5. 关于点()m n , 对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 知识点拨 二次函数图象的几何变换

函数图象的三种变换(可编辑修改word版)

函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下 3 种: 一、平移变换 例1 设f(x)=x2,在同一坐标系中画出: (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1 和y=f(x)-1 的图象,并观察三个函数图象的关 系.解(1)如图 (2)如图 点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移 1 个单位长度得到; y=f(x-1)的图象可由y=f(x)的图象向右平移1 个单位长度得到; y=f(x)+1 的图象可由y=f(x)的图象向上平移1 个单位长度得到; y=f(x)-1 的图象可由y=f(x)的图象向下平移1 个单位长度得到. 小结: 二、对称变换 例2 设f(x)=x+1,在同一坐标系中画出y=f(x)和y=f(-x)的图象,并观察两个函数图象的关系. 解画出y=f(x)=x+1 与y=f(-x)=-x+1 的图象如图所示. 由图象可得函数y=x+1 与y=-x+1 的图象关于y 轴对 称.点评函数y=f(x)的图象与y=f(-x)的图象关于y 轴 对称;函数y=f(x)的图象与y=-f(x)的图象关于x 轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例 3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数

将x 轴下方图象翻折上去 并作其关于y 轴对称的图象 图象的关系. 解 y =f (x )的图象如图 1 所示,y =|f (x )|的图象如图 2 所示. 点评 要得到 y =|f (x )|的图象,把 y =f (x )的图象中 x 轴下方图象翻折到 x 轴上方,其余部分不变. 例 4 设 f (x )=x +1,在不同的坐标系中画出 y =f (x )和 y =f (|x |)的图象,并观察两个函数图象的关系. 解 如下图所示. 点评 要得到 y =f (|x |)的图象,先把 y =f (x )图象在 y 轴左方的部分去掉,然后把 y 轴右边的对称图象补到左方即可. 小结: y = f (x ) ??保?留x ?轴上?方图?象?→ y =|f (x )|. y = f (x ) ???保留?y 轴右?侧?图象??→ y =f (|x |). 如图: 四 函数图象自身的对称性 1. 函数 y = f (x ) 的图象关于直 x = a + b 对称? f (a + x ) = f (b - x ) ? f (a + b - x ) = f (x ) 2 2. 函数 y = f (x ) 的图象关于点(a , b ) 对称? 2b - f (x ) = f (2a - x ) ? f (x ) = 2b - f (2a - x ) ? f (a + x ) + f (a - x ) = 2b 3.若 f (x ) = - f (-x ) ,则 f (x ) 的图象关于原点对称,若 f (x ) = f (-x ) ,则 f (x ) 的图象 关于 y 轴对称。 基础训练 1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)当 x ∈(0,+∞)时,函数 y =|f (x )|与 y =f (|x |)的图象相同. ( × ) y y=f(|x|) a o b c x y y=|f(x)| a o b c x y y=f(x) a o b c x

高一必修1函数图象变换知识点总结经典

函数的图象变换 一:函数的图像 基本函数图象 :一次,二次,反比例函数,指数,对数,幂函数 二.图象变换 函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。关键:提取系数 1. 平移变换:“左+右-” “上+下-” (1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。 (2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。 个单位 b 个单位 向左平移a 个单位向右a 平移个单位y=f x ()y=f x+a ()y=f x ()-b y=f x ()+b y=f x-a ()

2. 对称变换: (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。 (2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。 (3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。 (4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。 (5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。 (6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。 (7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x) 右侧的图象沿y 轴翻折至左侧。(实际上y = f (|x|)是偶函数) (8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x) 在x 轴下侧的图象沿x 轴翻折至上侧。 一般地:如函数y = f (x)对定义域中的任意x 的值,都满足 f (a+mx) = f (b -mx), 则函数 y = f (x)的图象关于直线2 b a x +=对称。 3. 伸缩变换: (1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m 1倍得到。(如果00)的图象可将y = f (x)图象上各点的横坐标不变,纵坐标缩小到原来的m 1倍得到。(如果0

一次函数图象的变换--对称

一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。 知识点: 1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。 2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。下面我们通过例题的讲解来反馈知识的应用: 例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。 分析:关于x轴对称时,横坐标不变纵坐标互为相反数; 关于y轴对称时,纵坐标不变横坐标互为相反数; 关于某条直线(垂直坐标轴)对称时,则相关点 解:1、关于x轴对称 设点( x , y )在直线l上,则点( x , -y )在直线y=2x+6上。 即:-y=2x+6 y=-2x-6 所以关于x轴对称的直线l的解析式为:y=-2x-6. 关于直线对称。 2、关于y轴对称 设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。 即:y=2(-x) +6 y=-2x+6 所以关于y轴对称的直线l的解析式为:y=-2x+6.

3、关于直线x=5对称(作图) 由图可知:AB=BC则C点横坐标:-x+5+5=-x+10 所以点C (-x+10, y) 设点(x,y)在直线l上, 则点(-x+10, y)在直线y=2x+6上。 即:y=2(-x+10)+6 y=-2x+26 所以关于直线x=5对称的直线l的解析式为:y=-2x+26. 总结:根据对称求直线的解析式关键在找对称的坐标点。 关于x轴对称,横坐标不变纵坐标互为相反数; 关于y轴对称,纵坐标不变横坐标互为相反数; 关于某条直线(垂直对称轴)对称,可见例题 中分析的方法去求对称点。 练习:1、和直线y=5x-3关于y轴对称的直线解析式为,和直线y=-x-2关于x轴对称的直线解析式为。 2、已知直线y=kx+b与直线y= -2x+8关于y轴对称, 求k、b的值。 答案:1、y=-5x-3;y=x+2 分析:设点(x,y)在直线上,则点(-x,y)在关于y轴对称的直线y=5x-3上,所以直线为y=-5x-3;设点(x,y)在直线上,则点(x,-y)在

二次函数图象的几何变换

二次函数图象的几何变换 知识点拨 -、二次函数图象的平移变换 (1)具体步骤: 2 先利用配方法把二次函数化成 y =a(x -h) k 的形式,确定其顶点(h,k),然后做出二次函 2 2 数y = ax 的图像,将抛物线 y = ax 平移,使其顶点平移到 (h, k) ?具体平移方法如图所示: (2)平移规律:在原有函数的基础上 左加右减” 2 y = ax ■ bx 关于顶点对称后,得到的解析式是 2 y =a x - h k 关于顶点对称后,得到的解析式是 关于点m , n 对称 2 2 y=ax-h k 关于点 m ,n 对称后,得到的解析式是 y --a x ? h -2m ? 2n -k 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变?求 抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原 抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向, 然后再写出其对称抛物线的表达式. ∕=?ιx 1+Λ 嚼gl?駕 g-*÷l?l 秋1. 2. 3. 4. 二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 关于X 轴对称 ^aX ■ b X 关于X 轴对称后,得到的解析式是 2 y =a(x-h j +k 关于X 轴对称后,得到的解析式是 关于y 轴对称 2 y =ax ■ bx 关于y 轴对称后,得到的解析式是 2 y =a(x-h j +k 关于y 轴对称后,得到的解析式是 关于原点对称 2 y = ax ■ bx 关于原点对称后,得到的解析式是 2 y = a x- h ■关于原点对称后,得到的解析式是 关于顶点对称 Y= -aχ2「bx —c ; 2 y = -a x -h ; —k ; y = ax 2 - bx C ; 2 y=a xfj 亠k ; y = -aχ2 bx -c ; 2 y = —a x h [ —k ; 2 2 b y - -ax -bx c _ a 2 y = -a x —h I 亠 k . 5. 冏上(tx>>.下(KO)平移 "I 个单位■

函数图象变换地四种方式

WORD格式可以任意编辑 函数图象变换的四种方式 一,平移变换。 (1)水平平移: 要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。 (简记:左加右减,这里的a>0。) (2)上下平移: 要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。 (简记:上加下减,这里的a>0) 二,对称变换。 (1)y=f(x)与y=f(-x)的图象关于y轴对称。 所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x) 的图象。(简记:左右翻折) (2)y=f(x)与y=-f(x)的图象关于x轴对称。 所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x) 的图象。(简记:上下翻折) (3)y=f(x)与y=-f(-x)的图象关于原点对称。 所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得 到-f(-x)的图象。(简记:旋转180度) 三,翻折变换。 (1)如何由y=f(x)的图象得到y=f(|x|)的图象? 先画出函数y=f(x)y轴右侧的图象,再作出关于y轴对称的图形 (简记:右不动,左对称) (2)如何由y=f(x)的图象得到y=|f(x)|的图象? 先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。 (简记:上不动,下上翻) 四,伸缩变换。 (1)如何由函数y=f(x)的图象得到函数y=af(x)的图象?(a>0) 可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x) 的图象。 (2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象?(a>0) 可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax) 的图象。 专业资料整理分享

函数图像的变换及其应用.

函数图像的变换及其应用 执教:嘉定区教师进修学院张桂明 教学目标: 1.熟练掌握常见函数图像的画法,记住它们的大致形状和准确位置.2.掌握函数图像的几种类型的变换,能用图像变换法解决一些有关的函数问题. 3.通过对函数图像变换与应用问题的探究及解决,提高分析问题和解决问题的能力,体会数形结合的思想方法在解决函数与方程问题中的重要作用并能初步加以应用.教学重点: 1.常见函数的图像及其画法. 2.函数图像的变换及变换后的对称性、单调性的变化.教学难点: 应用数形结合的思想方法对问题进行分析思考,寻求解题策略.教学过程: 一、引入课题 问题:设定义域为R 的函数f (x) |lg|x 1||,x 1,则关于x 的方程 0 , x 1 f 2(x) bf (x) c 0有7 个不同实数解的充要条件是( ) (A) b 0 且c 0 (B) b 0 且c 0 (C) b 0 且c 0 (D) b 0 且c 0 二、知识回顾 1.函数图像的作法,你有哪些常用的方法? 2.请说出常见函数图像的形状、位置,作出它们的草图. 3.你会用哪些函数图像的变换方法来作函数的图像?在这些变换中,如果原来的函数图像具有某种对称性,那么变换后它们的对称性有什么变化?函数的单调性在变换后又有什么变化? 4.函数f(x)的图像关于直线x a成轴对称图形的充要条件是什么?函数f(X)的图像关于点(a , b)成中心对称图形的充要条件双是什么? 三、问题探究 2, x R.

1 .若函数y x * 2 (a 2)x 3, x [a,b]的图像关于直线 x 1对称,则 b . 2.已知函数f (x) |2x 11的图像与直线y a 有且仅有一个公共点,则实数 a 的取值范围是 3. 已知函数f(x) (1) 求证:函数f(x)的图像关于点A(-,-)对称; 2 2 1 (2) 不使用计算器,试求f (丄)f 10 4. 讨论方程| x 2 4|x| 3| a 的实数解的情况. 四、方法小结 五、练习与作业 2x .2 f(-) f 10 的值 .

相关主题
文本预览
相关文档 最新文档