当前位置:文档之家› 《数学奥林匹克专题讲座》第01讲 数论的方法技巧

《数学奥林匹克专题讲座》第01讲 数论的方法技巧

《数学奥林匹克专题讲座》第01讲 数论的方法技巧
《数学奥林匹克专题讲座》第01讲 数论的方法技巧

第1讲数论的方法技巧(上)

数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有:

1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得

a=bq+r(0≤r<b),

且q,r是唯一的。

特别地,如果r=0,那么a=bq。这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即

其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:

d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x <y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法

对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。这些常用的形式有:

1.十进制表示形式:n=a n10n+a n-110n-1+…+a0;

2.带余形式:a=bq+r;

4.2的乘方与奇数之积式:n=2mt,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。问:红、黄、蓝3张卡片上各是什么数字?

解:设红、黄、白、蓝色卡片上的数字分别是a3,a2,a1,a0,则这个四位数可以写成

1000a3+100a2+10a1+a0,

它的各位数字之和的10倍是

10(a3+a2+a1+a0)=10a3+10a2+10a1+10a0,

这个四位数与它的各位数字之和的10倍的差是

990a3+90a2-9a0=1998,

110a3+10a2-a0=222。

比较上式等号两边个位、十位和百位,可得

a0=8,a2=1,a3=2。

所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8。

解:依题意,得

a+b+c>14,

说明:求解本题所用的基本知识是,正整数的十进制表示法和最简单的不定方程。

例3 从自然数1,2,3,…,1000中,最多可取出多少个数使得所取出的数中任意三个数之和能被18整除?

解:设a,b,c,d是所取出的数中的任意4个数,则

a+b+c=18m,a+b+d=18n,

其中m,n是自然数。于是

c-d=18(m-n)。

上式说明所取出的数中任意2个数之差是18的倍数,即所取出的每个数除以18所得的余数均相同。设这个余数为r,则

a=18a1+r,b=18b1+r,c=18c1+r,

其中a1,b1,c1是整数。于是

a+b+c=18(a1+b1+c1)+3r。

因为18|(a+b+c),所以18|3r,即6|r,推知r=0,6,12。因为1000=55×18+10,所以,从1,2,…,1000中可取6,24,42,…,996共56个数,它们中的任意3个数之和能被18整除。

例4 求自然数N,使得它能被5和49整除,并且包括1和N在内,它共有10个约数。

解:把数N写成质因数乘积的形式

由于N能被5和72=49整除,故a3≥1,a4≥2,其余的指数a k为自然数或零。依题意,有

(a1+1)(a2+1)…(a n+1)=10。

由于a3+1≥2,a4+1≥3,且10=2×5,故

a1+1=a2+1=a5+1=…=a n+1=1,

即a1=a2=a5=…a n=0,N只能有2个不同的质因数5和7,因为a4+1≥3>2,故由

(a3+1)(a4+1)=10

知,a3+1=5,a4+1=2是不可能的。因而a3+1=2,a4+1=5,即N=52-1×75-1=5×74=12005。

例5 如果N是1,2,3,…,1998,1999,2000的最小公倍数,那么N等于多少个2与1个奇数的积?

解:因为210=1024,211=2048>2000,每一个不大于2000的自然数表示为质因数相乘,其中2的个数不多于10个,而1024=210,所以,N等于10个2与某个奇数的积。

说明:上述5例都是根据题目的自身特点,从选择恰当的整数表示形式入手,使问题迎刃而解。

二、枚举法

枚举法(也称为穷举法)是把讨论的对象分成若干种情况(分类),然后对各种情况逐一讨论,最终解决整个问题。

运用枚举法有时要进行恰当的分类,分类的原则是不重不漏。正确的分类有助于暴露问题的本质,降低问题的难度。数论中最常用的分类方法有按模的余数分类,按奇偶性分类及按数值的大小分类等。

例6 求这样的三位数,它除以11所得的余数等于它的三个数字的平方和。

分析与解:三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。

设这个三位数的百位、十位、个位的数字分别为x,y,z。由于任何数除以11所得余数都不大于10,所以

x2+y2+z2≤10,

从而1≤x≤3,0≤y≤3,0≤z≤3。所求三位数必在以下数中:

100,101,102,103,110,111,112,

120,121,122,130,200,201,202,

211,212,220,221,300,301,310。

不难验证只有100,101两个数符合要求。

例7 将自然数N接写在任意一个自然数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N整除,那么N称为魔术数。问:小于2000的自然数中有多少个魔术数?

对N为一位数、两位数、三位数、四位数分别讨论。

N|100,所以N=10,20,25,50;

N|1000,所以N=100,125,200,250,500;

(4)当N为四位数时,同理可得N=1000,1250,2000,2500,5000。符合条件的有1000,1250。

综上所述,魔术数的个数为14个。

说明:(1)我们可以证明:k位魔术数一定是10k的约数,反之亦然。

(2)这里将问题分成几种情况去讨论,对每一种情况都增加了一个前提条件,从而降低了问题的难度,使问题容易解决。

例8 有3张扑克牌,牌面数字都在10以内。把这3张牌洗好后,分别发给小明、小亮、小光3人。每个人把自己牌的数字记下后,再重新洗牌、发牌、记数,这样反复几次后,3人各自记录的数字的和顺次为13,15,23。问:这3张牌的数字分别是多少?

解:13+15+23=51,51=3×17。

因为17>13,摸17次是不可能的,所以摸了 3次, 3张扑克牌数字之和是17,可能的情况有下面15种:

①1,6,10 ②1,7,9 ③1,8,8

④2,5,10 ⑤2,6,9 ⑥2,7,8

⑦3,4,10 ⑧3,5,9 ⑨3,6,8

⑩3,7,7 (11)4,4,9 (12)4,5,8

(13)4,6,7 (14)5,5,7 (15)5,6,6

只有第⑧种情况可以满足题目要求,即

3+5+5=13;3+3+9=15;5+9+9=23。

这3张牌的数字分别是3,5和9。

例9 写出12个都是合数的连续自然数。

分析一:在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96。我们把筛选法继续运用下去,把考查的范围扩大一些就行了。

解法1:用筛选法可以求得在113与127之间共有12个都是合数的连续自然数:

114,115,116,117,118,119,120,

121,122,123,124,125,126。

分析二:如果12个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数……第12个是13的倍数,那么这12个数就都是合数。

又m+2,m+3,…,m+13是12个连续整数,故只要m是2,3,…,13的公倍数,这12个连续整数就一定都是合数。

解法2:设m为2,3,4,…,13这12个数的最小公倍数。m+2,m+3,m+4,…,m+13分别是2的倍数,3的倍数,4的倍数……13的倍数,因此12个数都是合数。

说明:我们还可以写出

13!+2,13!+3,…,13!+13

(其中n!=1×2×3×…×n)这12个连续合数来。

同样,

(m+1)!+2,(m+1)!+3,…,(m+1)!+m+1是m个连续的合数。

三、归纳法

当我们要解决一个问题的时候,可以先分析这个问题的几种简单的、特殊的情况,从中发现并归纳出一般规律或作出某种猜想,从而找到解决问题的途径。这种从特殊到一般的思维方法称为归纳法。

例10 将100以内的质数从小到大排成一个数字串,依次完成以下5项工作叫做一次操作:

(1)将左边第一个数码移到数字串的最右边;

(2)从左到右两位一节组成若干个两位数;

(3)划去这些两位数中的合数;

(4)所剩的两位质数中有相同者,保留左边的一个,其余划去;

(5)所余的两位质数保持数码次序又组成一个新的数字串。

问:经过1999次操作,所得的数字串是什么?

解:第1次操作得数字串711131131737;

第2次操作得数字串11133173;

第3次操作得数字串111731;

第4次操作得数字串1173;

第5次操作得数字串1731;

第6次操作得数字串7311;

第7次操作得数字串3117;

第8次操作得数字串1173。

不难看出,后面以4次为周期循环,1999=4×499+3,所以第1999

次操作所得数字串与第7次相同,是3117。

例11 有100张的一摞卡片,玲玲拿着它们,从最上面的一张开始按如下的顺序进行操作:把最上面的第一张卡片舍去,把下一张卡片放在这一摞卡片的最下面。再把原来的第三张卡片舍去,把下一张卡片放在最下面。反复这样做,直到手中只剩下一张卡片,那么剩下的这张卡片是原来那一摞卡片的第几张?

分析与解:可以从简单的不失题目性质的问题入手,寻找规律。列表如下:

设这一摞卡片的张数为N,观察上表可知:

(1)当N=2a(a=0,1,2,3,…)时,剩下的这张卡片是原来那一摞卡片的最后一张,即第2a张;

(2)当N=2a+m(m<2a)时,剩下的这张卡片是原来那一摞卡片的第2m张。

取N=100,因为100=26+36,2×36=72,所以剩下这张卡片是原来那一摞卡片的第72张。

说明:此题实质上是著名的约瑟夫斯问题:

传说古代有一批人被蛮族俘虏了,敌人命令他们排成圆圈,编上号码1,2,3,…然后把1号杀了,把3号杀了,总之每隔一个人杀一个人,最后剩下一个人,这个人就是约瑟夫斯。如果这批俘虏有111人,那么约瑟夫斯的号码是多少?

例12 要用天平称出1克、2克、3克……40克这些不同的整数克重量,至少要用多少个砝码?这些砝码的重量分别是多少?

分析与解:一般天平两边都可放砝码,我们从最简单的情形开始研究。

(1)称重1克,只能用一个1克的砝码,故1克的一个砝码是必须的。

(2)称重2克,有3种方案:

①增加一个1克的砝码;

②用一个2克的砝码;

③用一个3克的砝码,称重时,把一个1克的砝码放在称重盘内,把3克的砝码放在砝码盘内。从数学角度看,就是利用3-1=2。

(3)称重3克,用上面的②③两个方案,不用再增加砝码,因此方案①淘汰。

(4)称重4克,用上面的方案③,不用再增加砝码,因此方案②也被淘汰。总之,用1克、3克两个砝码就可以称出(3+1)克以内的任意整数克重。

(5)接着思索可以进行一次飞跃,称重5克时可以利用

9-(3+1)=5,

即用一个9克重的砝码放在砝码盘内,1克、3克两个砝码放在称重盘内。这样,可以依次称到1+3+9=13(克)以内的任意整数克重。

而要称14克时,按上述规律增加一个砝码,其重为

14+13=27(克),

可以称到1+3+9+27=40(克)以内的任意整数克重。

总之,砝码的重量为1,3,32,33克时,所用砝码最少,称重最大,这也是本题的答案。

这个结论显然可以推广,当天平两端都可放砝码时,使用1,3,

这是使用砝码最少、称重最大的砝码重量设计方案。

练习1

1.已知某个四位数的十位数字减去1等于其个位数字,个位数字加2等于百位数字,这个四位数的数字反着顺序排列成的数与原数之和等于9878。试求这个四位数。

3.设n是满足下列条件的最小自然数:它们是75的倍数且恰有75

4.不能写成两个奇合数之和的最大偶数是多少?

5.把1,2,3,4,…,999这999个数均匀排成一个大圆圈,从1开始数:隔过1划掉2,3,隔过4,划掉5,6……这样每隔一个数划掉两个数,转圈划下去。问:最后剩下哪个数?为什么?

6.圆周上放有N枚棋子,如右图所示,B点的一枚棋子紧邻A点的棋子。小洪首先拿走B点处的1枚棋子,然后顺时针每隔1枚拿走2枚棋子,连续转了10周,9次越过A。当将要第10次越过A处棋子取走其它棋子时,小洪发现圆周上余下20多枚棋子。若N是14的倍数,则圆周上还有多少枚棋子?

7.用0,1,2,3,4五个数字组成四位数,每个四位数中均没有重复数字(如1023,2341),求全体这样的四位数之和。

8.有27个国家参加一次国际会议,每个国家有2名代表。求证:不可能将54位代表安排在一张圆桌的周围就座,使得任一国的2位代表之间都夹有9个人。

练习1

1.1987。

(a+d)×1000+(b+c)×110+(a+d)= 9878。

比较等式两边,并注意到数字和及其进位的特点,可知

a+d=8,b+c=17。

已知c-1=d,d+2=b,可求得

a=1,b=9,c=8,d=7。

即所求的四位数为1987。

2.1324,1423,2314,2413,3412,共5个。

3.432。

解:为保证n是75的倍数而又尽可能地小,因为75=3×5×5,所以可设n有三个质因数2,3,5,即n=2α×3β×5γ,其中α≥0,β≥1,γ≥2,并且

(α+1)(β+1)(γ+1)=75。

易知当α=β=4,γ=2时,符合题设条件。此时

4.38。

解:小于38的奇合数是9,15,21,25,27,33。

38不能表示成它们之中任二者之和,而大于38的偶数A,皆可表示为二奇合数之和:

A末位是0,则A=15+5n,

A末位是2,则A=27+5n,

A末位是4,则A=9+5n,

A末位是6,则A=21+5n,

A末位是8,则A=33+5n,

其中n为大于1的奇数。因此,38即为所求。

5.406。

解:从特殊情况入手,可归纳出:如果是3n个数(n为自然数),那么划1圈剩下3n-1个数,划2圈剩下3n-2个数……划(n-1)圈就剩3个数,再划1圈,最后剩下的还是起始数1。

36<999<37,从999个数中划掉(999-36=)270个数,剩下的(36=)729个数,即可运用上述结论。

因为每次划掉的是2个数,所以划掉270个数必须划135次,这时划掉的第270个数是(135×3=)405,则留下的36个数的起始数为406。所以最后剩下的那个数是406。

6.23枚。

解:设圆周上余a枚棋子。因为从第9次越过A处拿走2枚棋子到第10次将要越过A处棋子时小洪拿走了2a枚棋子,所以,在第9次将要越过A处棋子时,圆周上有3a枚棋子。依此类推,在第8次将要越过A处棋子时,圆周上有32a枚棋子……在第1次将要越过A处棋子时,圆周上有39a枚棋子,在第1次将要越过A处棋子之前,小洪拿走了[2(39a-1)+1]枚棋子,所以N=2(39a-1)+1+39a=310a-1。

若N=310a=59049a-1是14的倍数,则N就是2和7的公倍数,所以a 必须是奇数;

若N=(7×8435+4)a-1=7×8435a+4a-1是7的倍数,则4a-1必须是7的倍数,当a=21,25,27,29时,4a-1不是7的倍数,当a=23时,4a-1=91=7×13,是7的倍数。

当N是14的倍数时,圆周上有23枚棋子。

7.259980。

解:用十进位制表示的若干个四位数之和的加法原理为:

若干个四位数之和=千位数数字之和×1000+

百位数数字之和×100+

十位数数字之和×10+

个位数数字之和。

以1,2,3,4中之一为千位数,且满足题设条件的四位数有4×3×2=24(个)。这是因为,当千位数确定后,百位数可以在其余4个数字中选择;千、百位数确定后,十位数可以在其余3个数字中选择;同理,个位数有2种可能。因此,满足条件的四位数的千位数数字之和为

(1+2+3+4)×4×3×2=240。

以1,2,3,4中之一为百位数时,因为0不能作为千位,所以千位数也有3种选择;十位数也有3种选择(加上0);个位数有2种选择。因此,

百位数数字之和=(1+2+3+4)×18=180。

同理,十位数数字之和、个位数数字之和都是180。

所以满足条件的四位数之和为

240×1000+180×(1+10+100)= 259980。

8.将54个座位按逆时针编号:1,2,…,54。由于是围圆桌就座,所以从1号起,逆时针转到55,就相当于1号座;转到56,就相当于2号座;如此下去,显然转到m,就相当于m被54所除的余数号座。

设想满足要求的安排是存在的。不妨设1和11是同一国的代表,由于任一国只有2名代表,于是11和21不是同一国代表,下面的排法是:

21和31是同一国的代表;

31和41不是同一国的代表;

41和51是同一国的代表;

51和61不是同一国的代表(61即7号座)。

由此,20k+1和20k+11是同一国的代表,若20k+1,20k+11大于54,则取这个数被54除的余数为号码的座位。

取k=13,则261和271是同一国的,而261被54除的余数是45,271被54除的余数是1,这就是说,1号座与45号座是同一国的代表,而我们已设1号与11号座是同一国的代表。这样,1号、11号、45号的三位代表是同一国的,这是不可能的。所以题目要求的安排不可能实现。

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

超难奥数题之数论专题:穷举用技巧

穷举用技巧 【例1】 N是一个各位数字互不相等的自然数,它能被它的每个数字整除。N的最大值是。 【例2】 如果连续N个自然数,每个自然数的数字和都不是11的倍数,则称这连续的N个自然数为一条“龙”,n为这条龙的长度。比如1,2,3,…,28就是一条龙,它的长度是28。问:龙的长度最长可以为多少?写出一条最长的龙。 【例3】 黑板上写有1、2、3、……、100这100个自然数,甲、乙二人轮流每次每人划去一个数,直到剩下两个数为止。如剩下的两数互质则判甲胜,否则判乙胜。 ⑴乙先划甲后划,谁有必胜策略?必胜策略是怎样的? ⑵甲先划乙后划,谁有必胜策略?必胜策略是怎样的? 【例4】 如果一个自然数的2004倍恰有2004个约数,这个自然数自己最少有多少个约数?

测试题 【例1】求所有能被30整除,且恰有30个不同约数的自然数。 【例2】在1到100中,恰好有6个约数的数有多少个? 答案: 【例1】【分析】 由于30235=??,从质数的观点看整除,如果自然数N 能被30整除,那么自然数N 至少含有三个质因数2,3,5。设:312235r r r N =???。自然数N 恰有30个不同的因数,根据约数的个数公式:12311130235r r r +?+?+?==??()()()。注意 到235??是三个约数之积,由此可知自然数N 中质因数的个数恰好有3个。因此 123111235r r r +?+?+=??()()(),由此可知123r r r (,,)必是 124(, , )的一个排列。 综上所述,所求的自然数有:24235??,42235??,24235??,42235??,42235??,24235??。 【例2】【分析】 6只能表示为()51+或()()1121++,所以恰好有6个约数的数要么能表示成某个质数的5次方,要么表示为某个质数的平方再乘以另一个质数,100以内符合前者的只有32,符合后者的数枚举如下: 222222222222222232527211213217219223 8323537311 45253 2721???????????????种种种种 所以符合条件的自然数一共有1842116++++=(种)。

七年级数学竞赛讲座数论的方法与技巧(含答案详解)

数学竞赛讲座 数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得abq+r(0≤r

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)(a1+1)(a2+1)…(ak+1)。 5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x

六年级奥数-第十讲.数论之余数问题.教师版

第十讲:数论之余数问题 余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。 许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!” 余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。 知识点拨: 一、带余除法的定义及性质: 一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。这里: r=时:我们称a可以被b整除,q称为a除以b的商或完全商 (1)当0 r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商 (2)当0 一个完美的带余除法讲解模型: 如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在 要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了 c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且 可以看出余数一定要比除数小。 二、三大余数定理: 1.余数的加法定理 a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等 于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。 例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2. 2.余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。 当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 3.同余定理

初中奥数:数论问题位值原理的解题技巧

初中奥数:数论问题位值原理的解题技巧 1、一个两位数,其十位与个位上的数字交换以后,所得的两位数 比原来小27,则满足条件的两位数共有______个. 【解析】:11+12+13+14+15+16+17=98.若中心圈内的数用a表示,因三条线的总和中每个数字出现一次,只有a多用3两次,所以98+2a 应是3的倍数,a=11,12,…,17代到98+2a中去试,得到a=11,14,17时,98+2a是3的倍数. (1)当a=11时98+2a=120,120÷3=40 (2)当a=14时98+2a=126,126÷3=42 (3)当a=17时98+2a=132,132÷3=44 相对应的解见上图. 2、一个三位数,它等于抹去它的首位数字之后剩下的两位数的4倍于25之差,求这个数。 解答:设它百位数字为a,十位数字为b,个位数字为c 则100a+10b+c=4(10b+c) 化简得5(20a-6b+5)=3c 因为c为正整数,所以20a-6b+5是3的倍数 又因为0≤c≤9 所以0≤3c/5≤5.4 所以0≤20a-6b+5=3c/5≤5.4 所以3c/5=3 即c=5

所以20-6b+5=3 化简得3b-1=10a 按照同样的分析方法,3b-1是10的倍数,解得b=7 最后再算出10a=3*7-1=20 则a=2 所以答案为275。 3、a、b、c是1——9中的三个不同数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍? 解答:组成六个数之和为: 10a+b+10a+c+10b+a+10b+c+10c+a+10c+b =22a+22b+22c =22(a+b+c) 很显然,是22倍 4、有2个3位数,它们的和是999,如果把较大的数放在较小数的左边,所成的数正好等于把较小数放在较大数左边所成数的6倍,那么这2数相差多少呢? 解答:abc+def=999,abcdef=6defabc,根据位值原 理,1000abc+def=6000def+6abc 化简得994abc=5999def,两边同时除以7得142abc=857def,所以abc=857,def=142 所以857-142=715 5、将一个三位数的数字重新排列,在所得到的三位数中,用的减去最小的,正好等于原来的三位数,求原来的三位数。

费马小定理数论的证明方法

费马小定理数论的证明方法 2007年12月28日星期五 01:29 P.M. 费马小定理数论的证明方法 Mod的简单介绍 (Congruence) a=b(mod m) a和b除以m以后有相同的余数 不失一般性地另a>b 则a=km+b比如7=1 mod 2 9=4 mod 5 简单的Congruence 计算 如果a=b mod m c=d mod m 则a=km+b c=tm+d 直接可推出 a+b=c+d (mod m) a-b=c-d (mod m) ab=cd (mod m) 并且可得存在正整数c 使得ac=bc (mod mc) 当然ac=bc(mod m) 费马小定理如果a,p互质且q是质数则a^(p-1)=1 (mod p) 考虑数列An= a,2a,3a,4a…… (p-1)a 假设An中有2项ma, na 被p除以后的余数是相同的.那么必然有ma=na (mod p) 即a(m-n)=0(mod p) 由于a和p互质,所以m-n=0(mod p) 但是m,n属于集合{1,2,3..p-1} 且m不等于n,所以m-n不可能是p的倍数.和假设产生矛盾所以An中任意2项被p除 得到的余数都是不同的, 并且对于任一个整数被p除以后的余数最多有p-1个,分别是 1,2,3,….p-1 而数列An中恰好有p-1个数,所以数列中的数被p除以后的余数一定正好包含所有的1,2,3,4,5…. p-1 由此我们可以用Congruence的乘法性质, a*2a*3a*…(p-1)a=1*2*3*4..*(p-1) (mod p) 对两边进行化简,即可以得到a^(p-1)=1 (mod p) Euler’s Totient function 定义o(n)是所有比n小且和n互质的数的总数(包括1) 例如o(5)=4 o(10)=8 我们发现引入这个以后费马小定理可以改写为a^o(p)=1 (mod p) 事实上,这个结论对所有的正整数n都成立即a^o(n)=1 (mod n)

(完整版)小学奥数中的数论问题

小学奥数中的数论问题 在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。 一、小学数论究包括的主要内容 我们小学所学习到的数论内容主要包含以下几类: 整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容) 余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小) (2)同余的性质和运用 奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理 一、两个自然数分别除以它们的最大公约数,所得的商互质。 二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。 (2)约数个数决定法则(小升初常考内容) 整数及分数的分解与分拆:这一部分在难度较高竞赛中常

出现,属于较难的题型。二、数论部分在考试题型中的地位 在整个数学领域,数论被当之无愧的誉为“数学皇后”。翻开任何一本数学辅导书,数论的题型都占据了显著的位置。在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。 出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。三、孩子在学习数论部分常常会遇到的问题 数学课本上的数论简单,竞赛和小升初考试的数论不简单。 有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数? 这道题就经常在孩子们平时的作业里和单元测试里出现。可是小升初考题里则是:例2:求3600有多少个约数? 很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划

数论班100题手册

数论短期班100题手册 知识框架体系 一、奇偶性质 1.奇数和偶数的表示方法: 因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数); 因为任何奇数除以2其余数总是1,所以通常用式子21 k+来表示奇数(这里k是整数).特别注意,因为0能被2整除,所以0是偶数.最小的奇数是1,最小的偶数是0. 2.奇数与偶数的运算性质: 性质一:偶数+偶数=偶数(偶数-偶数=偶数) 奇数+奇数=偶数(奇数-奇数=偶数) 偶数+奇数=奇数(偶数-奇数=奇数) 可以看出:一个数加上(或减去)偶数,不改变这个数的奇偶性; 一个数加上(或减去)奇数,它的奇偶性会发生变化. (也可以这样记:奇偶性相同的数加减得偶数,奇偶性不同的数加减得奇数.) 性质二:偶数?奇数=偶数(推广开来还可以得到:偶数个奇数相加得偶数) 偶数?偶数=偶数(推广开就是:偶数个偶数相加得偶数) 奇数?奇数=奇数(推广开就是:奇数个奇数相加得奇数) 可以看出:一个数乘以偶数时,乘积必为偶数;几个数的积为奇数时,每个乘数都是奇数.(也可以这样简记:对于乘法,见偶(数)就得偶(数)). 性质三:任何一个奇数一定不等于任何一个偶数. 二、整除 1.整除的定义 所谓“一个自然数a能被另一个自然数b整除”就是说“商a b 是一个整数”;或者换句话说: 存在着第三个自然数c,使得a b c =?.这是我们就说“b整除a”或者“a被b整除”,其中b 叫a的约数,a是b的倍数,记作:“|b a”. 2.整除性质: ⑴传递性若|c b,|b a,则|c a. ⑵可加性若|c a,|c b,则|c a b ± (). ⑶可乘性若|c a,|d b,则| cd ab. 3.整除的特征 ⑴4,25,8,125,16,625的整除特征 能否被4和25整除是看末两位;能否被8和125整除是看末三位;能否被16和625整除是看末四位(100425 =?,10008125 =?,1000016625 =?,100000323125 =?) ⑵3,9的整除特征 能否被9整除是看数字之和是否是9的倍数,并且这个数除以9的余数和这个数数字之和除以9的余数相同,因此判断一个数除以九余几就可以先把和是9的倍数的数划掉,剩下的数是几就代表

数论的方法和技巧05整数的p进位制及其应用

整数的p 进位制及其应用 基础知识 给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m ,则此数可以简记为:021a a a A m m (其中01 m a )。 由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1 m 次多项 式 , 即 12211101010a a a a A m m m m ,其中 1,,2,1},9,,2,1,0{ m i a i 且01 m a ,像这种10的多项式表示的数常常简 记为10021)(a a a A m m 。在我们的日常生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m ,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。为了具备一般性,我们给出正整数A 的p 进制表示: 012211a p a p a p a A m m m m ,其中1,,2,1},1,,2,1,0{ m i p a i 且 01 m a 。而m 仍然为十进制数字,简记为p m m a a a A )(021 。 典例分析 例1.(2007年中国数学奥林匹克协作体竞赛试题)假定正整数N 的8进制表示为 8)43211234567765( N ,那么下面四个判断中,正确的是( ) A 、N 能被7整除而不能被9整除 B 、N 能被9整除而不能被7整除 C 、N 不能被7整除也不能被9整除 D 、N 既能被7整除也能被9整除 答 D 由于)7(mod 18 ,所以)7(m od 18 i k i k i i i i k k a a a a a a N 0 8011)7(mod 8 即N 能被7整除 N 的8进制表示下各位数字之和能被7整除。 类似的,N 能被9整除 N 的8进制表示下奇数位数字之和与偶数位数字之和的差能被9整除

初一数学竞赛培训讲座 数论的方法技巧(上)

初一数学竞赛培训讲座数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力.数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”.因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了.任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作.”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的 比重. 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆.主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r 是唯一的.特别地,如果r=0,那么a=bq.这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数. 2.若a|c,b|c,且a,b互质,则ab|c. 3.唯一分解定理:每一个大于1的自然数N都可以写成质数的连乘积, 即 (1,其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的.(1)式称为N的质因数分解或标准分解. 4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)=(a1+1)(a2+1)…(a k+1). 5.整数集的离散性:n与n+1之间不再有其他整数.因此,不等式x<y与x≤y-1是等价的. 下面,我们将按解数论题的方法技巧来分类讲解. 一、利用整数的各种表示法 对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决.这些常用的形式有: 1.十进制表示形式:n=a n10n +a n-110 n-1 +…+a0;

10数论问题的常用方法(教师版)

数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系。数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一。下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示n 个整数1a ,2a ,…,n a 的最大公约数。用[1a ,2a ,…,n a ]表示 1a ,2a ,…,n a 的最小公倍数。对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ] 表示x 的小数部分。对于整数b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为 )(mod m b a ≡。对于正整数m ,用)(m ?表示{1,2,…,m }中与m 互质的整数的个数, 并称)(m ?为欧拉函数。对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系。 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得 yb xa d +=. 定理2 (1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(mod 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若)(mod m b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3 (1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑ ≥1 k k p n .

几个精彩的数论问题

几个精彩的数论问题 从同事那里借来了一本单墫教授?主编的《初等数论》奥数书,看到很多精彩的问题,在这里做个笔记,与大家一同分享。不少问题和答案都有过重新叙述,个别问题有所改动。 问题:找出所有使得 2n - 1 能被 7 整除的正整数 n 。 答案:由于 2n的二进制表达为1000…00 (n 个 0),因此 2n - 1 的二进制表达为111…11 (n 个 1)。而 7 的二进制表达是 111 ,要想让它整除 n 个1 ,显然 n 必须是也只能是 3 的倍数。 问题:是否存在 100 个数,使得它们的和等于它们的最小公倍数? 答案:是的。考虑3, 2 × 3, 2 × 32, 2 × 33, …, 2 × 398, 399,它们的和为: 3 + 2 × 3 + 2 × 32+ 2 × 33+ … + 2 × 398 + 399 = 3 × (1 + 2) + 2 × 32+ 2 × 33+ … + 2 × 398 + 399 = 32+ 2 × 32+ 2 × 33+ … + 2 × 398 + 399 = 32× (1 + 2) + 2 × 33+ … + 2 × 398 + 399 = 33+ 2 × 33+ … + 2 × 398 + 399 = ... ... = 399 + 399 = 2 × 399 而这 100 个数的最小公倍数正是 2 × 399。 问题:能否找出 100 个不同的正整数,使得其中任意 2 ≤ k ≤ 100 个数的算术平均数都恰为整数。 答案:能。这个问题非常唬人,它的答案异常简单: 1 · 100!, 2 · 100!, 3 · 100!, …, 100 · 100! 显然满足要求。 问题:求证,存在任意长的连续正整数,使得其中任何一个数都不是质数的幂(当然更不能是质数)。

排列组合问题常用的解题方法含答案

高中数学排列组合问题常用的解题方法 一、相邻问题捆绑法 题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列. 例1:五人并排站成一排,如果甲、乙必须相邻且乙在甲的右边,那么不同的 排法种数有种。 二、相离问题插空法 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相 离的几个元素插入上述几个元素间的空位和两端. 例2:七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数是。 三、定序问题缩倍法 在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法. 例3:A、B、C、D、E五个人并排站成一排,如果 B必须站A的右边(A、B可 不相邻),那么不同的排法种数有。 四、标号排位问题分步法 把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一 个元素,如此继续下去,依次即可完成. 例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有。 五、有序分配问题逐分法 有序分配问题是指把元素按要求分成若干组,可用逐步下量分组法。 例5:有甲、乙、丙三项任务,甲需2人承担,乙丙各需1人承担,从10人 中选出4人承担这三项任务,不同的选法总数有。 六、多元问题分类法 元素多,取出的情况也有多种,可按结果要求,分成不相容的几类情况分别计算,最后总计。 例6:由数字 0,1,2,3,4,5组成且没有重复数字的六位数,其中个位数 字小于十位数字的共有个。 例7:从1,2,3,…100这100个数中,任取两个数,使它们的乘积能被7 整除,这两个数的取法(不计顺序)共有多少种? 例8:从1,2,…100这100个数中,任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 七、交叉问题集合法 某些排列组合问题几部分之间有交集,可用集合中求元素个数公式 n A B n A n B n A B ?=+-?。 ()()()() 例 9:从6名运动员中选出4个参加4×100m接力赛,如果甲不跑第一棒,乙 不跑第四棒,共有多少种不同参赛方法? 八、定位问题优先法 某个(或几个)元素要排在指定位置,可先排这个(几个)元素,再排其他元素。 例10:1名老师和4名获奖同学排成一排照像留念,若老师不在两端,则有不

初等数论总复习题及知识点总结

初等数论学习总结 本课程只介绍初等数论的的基本内容。由于初等数论的基本知识和技巧与中学数学有着密切的关系, 因此初等数论对于中学的数学教师和数学系(特别是师范院校)的本科生来说,是一门有着重要意义的课程,在可能情况下学习数论的一些基础内容是有益的.一方面通过这些内容可加深对数的性质的了解,更深入地理解某些他邻近学科,另一方面,也许更重要的是可以加强他们的数学训练,这些训练在很多方面都是有益的.正因为如此,许多高等院校,特别是高等师范院校,都开设了数论课程。 最后,给大家提一点数论的学习方法,即一定不能忽略习题的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经说过如果学习数论时只注意到它的内容而忽略习题的作用,则相当于只身来到宝库而空手返回而异。 数论有丰富的知识和悠久的历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅导材料的最后给大家介绍数论中著名的“哥德巴赫猜想”和费马大定理的阅读材料。 初等数论自学安排 第一章:整数的可除性(6学时)自学18学时 整除的定义、带余数除法 最大公因数和辗转相除法 整除的进一步性质和最小公倍数 素数、算术基本定理 [x]和{x}的性质及其在数论中的应用 习题要求3p :2,3 ; 8p :4 ;12p :1;17p :1,2,5;20p :1。 第二章:不定方程(4学时)自学12学时 二元一次不定方程c by ax =+ 多元一次不定方程c x a x a x a n n =++ 2211 勾股数 费尔马大定理。 习题要求29p :1,2,4;31p :2,3。

第三章:同余(4学时)自学12学时 同余的定义、性质 剩余类和完全剩余系 欧拉函数、简化剩余系 欧拉定理、费尔马小定理及在循环小数中的应用 习题要求43p :2,6;46p :1;49p :2,3;53p 1,2。 第四章:同余式(方程)(4学时)自学12学时 同余方程概念 孙子定理 高次同余方程的解数和解法 素数模的同余方程 威尔逊定理。 习题要求60p :1;64p :1,2;69p :1,2。 第五章:二次同余式和平方剩余(4学时)自学12学时 二次同余式 单素数的平方剩余与平方非剩余 勒让德符号 二次互反律 雅可比符号、 素数模同余方程的解法 习题要求78p :2; 81p :1,2,3;85p :1,2;89p :2;93p :1。 第一章:原根与指标(2学时)自学8学时 指数的定义及基本性质 原根存在的条件 指标及n 次乘余 模2 及合数模指标组、

数论课程标准10.10

《数论基础》课程标准 英文名称:Elementary Number Theory 课程编号:407021050 适用专业:数学与应用数学学分数:2 一、课程性质 《数论基础》课程属于数学一级学科下的基础数学二级学科,是数学与应用数学专业培养方案中学科专业教育平台下专业方向系列中的一门限选课程。 二、课程理念 1、加强数论理论修养,培养数学教学能力 初等数论是研究数的规律,特别是整数性质的数学分支,是数论的一个最古老的分支。它以算术方法为主要研究方法,主要内容有整数的整除理论、不定方程、同余式等。数论的古典内容基本上不借助于其它数学分支的方法,所以称为初等数论。数论与数学其它分支相结合产生了代数数论、几何数论、解析数论、完备的数论理论。《数论基础》是数学与应用数学专业中教学方向的一门选修课程。开设本课程的目的,是为了使学生掌握初等数论的基本理论和方法,具备进行数论理论研究的能力,以及将数论应用于其他学科,尤其是信息科学研究的能力。同时在学习数论基础知识的过程中,培养学生在深层次上钻研数学教材的能力,使他们在今后的数学教学工作中能驾驭教材,做好教学工作。 2、理解近代数学思想,提高学生的数学素养 《数论基础》课程的授课对象是数学与应用数学专业三年级的学生,学生通过前两年的专业学习,已经有了《高等代数》、《近世代数》等理论基础,掌握了一些数学论证的基本技能。《数论基础》对于理解和掌握近代数学思想是必不可少的,对于深入学习现代数学等后续课程起着承上启下的作用。通过本课程的学习,使学生掌握初等数论的基础知识和基本方法,学会如何数学地思考问题和解决问题,感受和体会推理与证明在学习数学以及日常生活中的意义和作用,提高数学素养。 3、理论与实际相结合,提高学生的综合能力 本课程的教学内容基本上是该书的前四章。整除理论以及简单的不定方程求解问题是初等数论中最基础,也是比较重要的一部分,同余和同余方程的基础理论、二次剩余、整数的平方和表示,以及原根和连分数的基础理论,是初等数论中的重要组成部分,是学生深入学习数论的基础。本课程在课堂教学中,在保持数论课程传统精髓思想的基础上,注重了数论的实际应用,使学生了解各类“数学竞赛”中常涉及到初等数论的问题,特别是近年来数论在计算机科学、编码理论、通讯等领域中的应用。注重理论与实践相结合,提高学生综合能力和解决实际问题的能力,不断创新的能力。 4、教学方式多样,培养学生的自主学习能力 整除理论以及简单的不定方程求解问题是初等数论中最基础,也是比较重要的一部分,但这部分内容,学生较为熟悉,因此除个别地方外,鼓励学生自学。课堂教学主要是通过大量例题的讲解,使学生加深对定义和定理的理解,学会解题和设计新题的基本技巧,注意对逻辑推理的严密性,数学语言的规范性以及文字叙述准确性的基础训练。同余和同余方程的基础理论、二次剩余、整数的平方和表示,以及原根和连分数的基础理论,是初等数论中的重要组成部分,是学生深入学习数论的基础。对这一部分的教学,要着重使学生充分理解概念、定义的内涵、掌握基本方法、了解重要结论以及应用这些知识去解决问题,因此,在课堂教学中教师精讲内容,辅以学生研讨或自学。对数论的应用,以及超越数和代数数的基本知识,除个别内容外,自学较为困难,因此应以课堂教学为主。 5、注重考查能力,提高学生的综合素质 本课程通过课堂讲授、课堂讨论、课内外结合的学习方式,使学生掌握数论基础的基本思想,加深对数论知识的理解,深化对中学数学有关内容的认识,达到学生能力培养的目标,同时为今后学习提供必要的理论基础。 因此,本课程的考核目标是要求学生掌握初等数论的基本理论和方法,用更高的观点去理解和掌握

初等数论的一些技巧

第四讲数论的方法技巧之二 四、反证法 反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。 反证法的过程可简述为以下三个步骤: 1.反设:假设所要证明的结论不成立,而其反面成立; 2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾; 3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。 运用反证法的关键在于导致矛盾。在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。 解:如果存在这样的三位数,那么就有 100a+10b+c=(10a+b)+(10b+c)+(10a+c)。上式可化简为 80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。这表明所找的数是不存在的。 说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。 例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。试说明,得到的和中至少有一个数字是偶数。 解:假设得到的和中没有一个数字是偶数,即全是奇数。在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9。将已知数的前两位数字a,b与末两位数字c,d去掉,所得的13位数仍具有“将它的数字颠倒,

得到的数与它相加,和的数字都是奇数”这一性质。照此进行,每次去掉首末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。故和的数字中必有偶数。 说明:显然结论对(4k+1)位数也成立。但对其他位数的数不一定成立。如12+21,506+605等。 例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。小红由1枚1分硬币和1枚5分硬币开始,反复将硬币塞入机器,能否在某一时刻,小红手中1分的硬币刚好比1角的硬币少10枚? 解:开始只有1枚1分硬币,没有1角的,所以开始时1角的和1分的总枚数为 0+1=1,这是奇数。每使用一次该机器,1分与1角的总枚数记为Q。下面考查Q的奇偶性。 如果塞入1枚1分的硬币,那么Q暂时减少1,但我们取回了1枚1角的硬币(和1枚5分的硬币),所以总数Q没有变化;如果再塞入1枚5分的硬币(得到4枚1角硬币),那么Q增加4,而其奇偶性不变;如果塞入1枚1角硬币,那么Q增加2,其奇偶性也不变。所以每使用一次机器,Q的奇偶性不变,因为开始时Q为奇数,它将一直保持为奇数。 这样,我们就不可能得到1分硬币的枚数刚好比1角硬币数少 10的情况,因为如果我们有P枚1分硬币和(P+10)枚1角硬币,那么1分和1角硬币的总枚数为(2P+10),这是一个偶数。矛盾。 例 4在3×3的方格表中已如右图填入了9个质数。将表中同一行或同一列的3个数加上相同的自然数称为一次操作。问:你能通过若干次操作使得表中9个数都变为相同的数吗?为什么?

初中数学竞赛数论的方法技巧

数论的方法技巧(1) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得 a=bq+r(0≤r<b), 且q,r是唯一的。 特别地,如果r=0,那么a=bq。这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。 2.若a|c,b|c,且a,b互质,则ab|c。 3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即 其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。(1)式称为n的质因数分解或标准分解。 4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)=(a1+1)(a2+1)…(a k+1)。 5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x <y与x≤y-1是等价的。 下面,我们将按解数论题的方法技巧来分类讲解。 一、利用整数的各种表示法

对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。这些常用的形式有: 1.十进制表示形式:n=a n10n+a n-110n-1+…+a0; 2.带余形式:a=bq+r; 4.2的乘方与奇数之积式:n=2mt,其中t为奇数。 例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。问:红、黄、蓝3张卡片上各是什么数字? 解:设红、黄、白、蓝色卡片上的数字分别是a3,a2,a1,a0,则这个四位数可以写成 1000a3+100a2+10a1+a0, 它的各位数字之和的10倍是 10(a3+a2+a1+a0)=10a3+10a2+10a1+10a0,这个四位数与它的各位数字之和的10倍的差是 990a3+90a2-9a0=1998, 110a3+10a2-a0=222。 比较上式等号两边个位、十位和百位,可得 a0=8,a2=1,a3=2。 所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8。 解:依题意,得

排列组合问题常用方法(二十种)

解排列组合问题常用方法(二十种) 一、定位问题优先法(特殊元素和特殊位置优先法) 例1、由01,2,3,4,5, 可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。末位和首位有特殊要求。先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种组合;最后 排中间三个数,从剩余四个数中任选三个共有34A 种排列。由分步计数原理得113344288C C A =。 变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多 少不同的种法? 分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有5 5A 种排列。由 分步计数原理得25451440A A =。 二、相邻问题捆绑法 例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法? 分析:分三步。先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。由分步计数原理得522522480A A A =。 变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。 分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。 三、相离问题插空法 例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种? 分析:相离问题即不相邻问题。分两步。第一步排2个相声和3个独唱共有55A 种排列,第二步将4个 舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。 变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节 目插入原节目单中且不相邻,那么不同插法的种数为 。 分析:将2个新节目插入原定5个节目排好后形成的6个空位中(包含首尾两个空位)共有2 6A 种排列, 由分步计数原理得2630A =。 四、定序问题除序(去重复)、空位、插入法 例4、7人排队,其中甲、乙、丙3人顺序一定,共有多少种不同的排法? 分析:(除序法)除序法也就是倍缩法或缩倍法。对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数。共有不同排法种数为:7733 840A A =。 (空位法)设想有7把椅子,让除甲、乙、丙以外的四人就坐,共有4 7A 种坐法;甲、乙、丙坐 其余的三个位置,共有1种坐法。总共有47840A =种排法。 思考:可以先让甲乙丙就坐吗?(可以) (插入法)先选三个座位让甲、乙、丙三人坐下,共有3 7C 种选法;余下四个空座位让其余四人 就坐,共有44A 种坐法。总共有3474840C A =种排法。 变式4、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少种不同的 排法? 分析:10人身高各不相等且从左至右身高逐渐增加,说明顺序一定。若排成一排,则只有一种排法; 现排成前后两排,因此共有510252C =种排法。

相关主题
文本预览
相关文档 最新文档