当前位置:文档之家› (完整版)2高中数学函数解题技巧方法总结

(完整版)2高中数学函数解题技巧方法总结

(完整版)2高中数学函数解题技巧方法总结
(完整版)2高中数学函数解题技巧方法总结

高中数学函数知识点总结

1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型?

()()

例:函数的定义域是y x x x =

--432

lg ()()()(答:

,,,)022334Y Y

函数定义域求法:

● 分式中的分母不为零;

● 偶次方根下的数(或式)大于或等于零; ●

指数式的底数大于零且不等于一;

对数式的底数大于零且不等于一,真数大于零。 ●

正切函数

x y tan = ???

??∈+≠∈Z ππk k x R x ,2,且

● 余切函数

x y cot = ()Z π∈≠∈k k x R x ,,且

反三角函数的定义域

函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0,

π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) .

当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? []的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f

-+=>->

义域是_____________。 [](答:,)a a -

复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解

出x 的范围,即为

[])(x g f y =的定义域。

例 若函数

)(x f y =的定义域为??

?

???2,21,则)(log 2x f 的定义域为 。

分析:由函数

)(x f y =的定义域为??

?

???2,21可知:221≤≤x ;

所以)(log 2x f y =中有2log 212≤≤x 。

解:依题意知:

2log 2

1

2≤≤x 解之,得 42≤≤x

)(log 2x f 的定义域为{}4

2|≤≤x x

4、函数值域的求法

1、直接观察法

对于一些比较简单的函数,其值域可通过观察得到。

例 求函数y=x

1

的值域 2、配方法

配方法是求二次函数值域最基本的方法之一。

例、求函数y=2

x -2x+5,x ∈[-1,2]的值域。 3、判别式法

对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面

下面,我把这一类型的详细写出来,希望大家能够看懂

.1

12..2

22

22222

b

a y 型:直接用不等式性质k+x

bx

b. y 型,先化简,再用均值不等式

x mx n

x 1 例:y 1+x x+x

x m x n c y 型 通常用判别式

x mx n x mx n

d. y 型

x n

法一:用判别式 法二:用换元法,把分母替换掉

x x 1(x+1)(x+1)+1 1

例:y (x+1)1211

x 1x 1x 1

=

=++==≤

''

++=++++=+++-===+-≥-=+++

4、反函数法

直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例 求函数y=

6

54

3++x x 值域。

5、函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。

例 求函数y=11+-x x e e ,2sin 11sin y θθ-=+,2sin 1

1cos y θθ

-=+的值域。

110

11

2sin 11|sin |||1,

1sin 22sin 12sin 1(1cos )

1cos 2sin cos 1)1,sin()sin()11

即又由解不等式,求出,就是要求的答案

x x x e y

y e y e y y y y y y y

x y x x y θθθθθθθ

θθθθθ-+=?=>-+-+=?=≤+--=?-=++-=++=++=

+≤≤

6、函数单调性法

通常和导数结合,是最近高考考的较多的一个内容

例求函数y=+-2

5

x log

3

1-x (2≤x ≤10)的值域

7、换元法

通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。 例 求函数y=x+1-x 的值域。

8 数形结合法

其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这 类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。 例:已知点P (x.y )在圆x 2

+y 2

=1上,

2

,(2),2

(,2

0, (1)

的取值范围 (2)y-2的取值范围

解:(1)令

则是一条过(-2,0)的直线. d 为圆心到直线的距离,R 为半径)

(2)令y-2即也是直线d d

y

x x y

k y k x x R d x b y x b R +==+-≤=--=≤ 例求函数y=

)

2(2

-x +

)

8(2

+x 的值域。

解:原函数可化简得:y=∣x-2∣+∣x+8∣

上式可以看成数轴上点P (x )到定点A (2),B (-8)间的距离之和。 由上图可知:当点P 在线段AB 上时, y=∣x-2∣+∣x+8∣=∣AB ∣=10

当点P 在线段AB 的延长线或反向延长线上时, y=∣x-2∣+∣x+8∣>∣AB ∣=10 故所求函数的值域为:[10,+∞) 例求函数y=

1362

+-x x

+

542

++x x

的值域

解:原函数可变形为:y=

)

20()3(2

2

--+x +

)

10()2(2

2+++x

上式可看成x 轴上的点P (x ,0)到两定点A (3,2),B (-2,-1)的距离之和,由图可知当点P 为线段

与x 轴的交点时, y m in =∣AB ∣=)

12()23(2

2+++=

43,

故所求函数的值域为[

43,+∞)

。 注:求两距离之和时,要将函数 9 、不等式法

利用基本不等式a+b ≥2

ab ,a+b+c ≥3abc 3(a ,b ,c ∈

R

+

),求函数的最值,其题型特征解析式是和

式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。 例:

3

3

(

)13

()32x (3-2x)(0

x x+3-2x =x x (3-2x) (应用公式abc 时,应注意使3者之和变成常数)

a b c +??≤=++≤ 10.倒数法

有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况

例 求函数y=

3

2

++x x 的值域

32011

202

2012

时,时,=00y x x y y x y y =

++≠==≥?<≤

+=∴≤≤

多种方法综合运用

总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

5. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,

与到手的满分失之交臂

(

)

如:,求f x e x f x x +=+1().

令,则t

x t =+≥10

2

(0)113322x =x (应用公式a+b+c 者的乘积变成常数)

x x

x x +

>+

+≥=≥

∴x

t =-21

∴f t e

t t ()=+--21

21

()∴f x e x x x

()

=+-≥-2

1

210

6. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗?

(①反解x ;②互换x 、y ;③注明定义域) ()

()

如:求函数

的反函数f x x x x

x ()=+≥-

()()

(答:)f x x x x x -=->--

110()

在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。请看这个例题:

(2004.全国理)函数)1(11≥+-=

x x y 的反函数是( B )

A .y=x 2

-2x +2(x <1) B .y=x 2

-2x +2(x ≥1) C .y=x 2-2x (x <1)

D .y=x 2-2x (x ≥1)

当然,心情好的同学,可以自己慢慢的计算,我想, 一番心血之后,如果不出现计算问题的话,答案还是可以做出来的。可惜,这个不合我胃口,因为我一向懒散惯了,不习惯计算。下面请看一下我的思路:

原函数定义域为 x 〉=1,那反函数值域也为y>=1. 排除选项C,D.现在看值域。原函数至于为y>=1,则反函数定义域为x>=1, 答案为B.

我题目已经做完了, 好像没有动笔(除非你拿来写*书)。思路能不能明白呢? 7. 反函数的性质有哪些? 反函数性质: 1、 反函数的定义域是原函数的值域 (可扩展为反函数中的x 对应原函数中的y ) 2、 反函数的值域是原函数的定义域(可扩展为反函数中的y 对应原函数中的x )

3、

反函数的图像和原函数关于直线=x 对称(难怪点(x,y )和点(y ,x )关于直线y=x 对称

①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性; ③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1=∈∈?=-()b a

[][]∴====---f

f a f b a f f b f a b 1

11()()()(),

由反函数的性质,可以快速的解出很多比较麻烦的题目,如 (04. 上海春季高考)已知函数

)24

(

log )(3+=x

x f ,则方程4)(1

=-x f 的解=x __________.

8 . 如何用定义证明函数的单调性?

(取值、作差、判正负) 判断函数单调性的方法有三种: (1)定义法:

根据定义,设任意得x 1,x 2,找出f(x 1),f(x 2)之间的大小关系 可以变形为求

1212

()()

f x f x x x --的正负号或者12()()f x f x 与1的关系

(2)参照图象:

①若函数f(x)的图象关于点(a ,b)对称,函数f(x)在关于点(a ,0)的对称区间具有相同的单调性; (特例:奇函数)

②若函数f(x)的图象关于直线x =a 对称,则函数f(x)在关于点(a ,0)的对称区间里具有相反的单调性。(特例:偶函数)

(3)利用单调函数的性质:

①函数f(x)与f(x)+c(c 是常数)是同向变化的

②函数f(x)与cf(x)(c 是常数),当c >0时,它们是同向变化的;当c <0时,它们是反向变化的。 ③如果函数f1(x),f2(x)同向变化,则函数f1(x)+f2(x)和它们同向变化;(函数相加)

④如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘) ⑤函数f(x)与

1

()

f x 在f(x)的同号区间里反向变化。 ⑥若函数u =φ(x),x[α,β]与函数y =F(u),u ∈[φ(α),φ(β)]或u ∈[φ(β),φ(α)]同向变化,则在[α,β]上复合函数y =F[φ(x)]是递增的;若函数u =φ(x),x[α,β]与函数y =F(u),u ∈[φ(α),φ(β)]或u ∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y =F[φ(x)]是递减的。(同增异减)

⑦若函数y =f(x)是严格单调的,则其反函数x =f -1

(y)也是严格单调的,而且,它们的增减性相同。

()

如:求的单调区间y

x x =-+log 12

22

(设,由则u

x x u x =-+><<22002

()且,,如图:log 1

2

2

11u u x ↓=--+

当,时,,又,∴x u u y ∈↑↓↓(]log 011

2

当,时,,又,∴x u u y ∈↓↓↑[)log 121

2

∴……)

9. 如何利用导数判断函数的单调性? ()在区间

,内,若总有则为增函数。(在个别点上导数等于a b f x f x '()()≥0

零,不影响函数的单调性),反之也对,若呢?f x '()≤0

[)如:已知,函数在,上是单调增函数,则的最大a f x x ax a >=-+∞013()值是

( ) A. 0

(令f x x a x a x a '()

=-=+?? ???-?? ?

?

?≥333302

则或x a x a

≤-

33

由已知在,上为增函数,则

,即f x a

a ()[)13

13+∞≤≤ ∴a 的最大值为3)

10. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-?? 若总成立为偶函数函数图象关于轴对称f x f x f x y ()

()()-=??

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

()若是奇函数且定义域中有原点,则。2f(x)f(0)

0=

如:若·为奇函数,则实数f x a a a x x

()=+-+=22

21

(∵为奇函数,,又,∴f x x R R f ()()

∈∈=000

·,∴)a a a 22

21

0100+-+== 又如:为定义在,上的奇函数,当,时,,f x x f x x

x

()()()()-∈=+1101241

()求在,上的解析式。f x ()-11

()()(令,,则,,x x f x x

x ∈--∈-=+--1001241()

又为奇函数,∴f x f x x x

x

x

()()=-+=-+--241214

()

又,∴,,)f f x x x x x

x

x

x ()()()00241

100241

01==-+∈-=+∈??

?????

11.判断函数奇偶性的方法 一、

定义域法

一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数. 二、

奇偶函数定义法

在给定函数的定义域关于原点对称的前提下,计算

)(x f -,然后根据函数的奇偶性的定义判断其奇偶性.

这种方法可以做如下变形f(x)+f(-x) =0 奇函数f(x)-f(-x)=0 偶函数f(x)

1 偶函数 f(-x)f(x)

1 奇函数f(-x)

==-

三、

复合函数奇偶性

12. 你熟悉周期函数的定义吗?

()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()()

函数,T 是一个周期。) ()如:若,则

f

x a f x +=-()

(答:是周期函数,为的一个周期)f x T a f x ()()=2

我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这个函数周期2t.

推导:()()0()(2)()(2)0f x f x t f x f x t f x t f x t ++=?

=>=+?+++=?

同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称, 对称轴可以由括号内的2个数字相加再除以2得到。比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a 对称。 如:

()()()()()

()(2)(2)(2)()(2)2,222,()(22)()(22)

,()2||(,,,f x x a x b f a x f a x f b x f b x f x f a x f a x f b x f x f b x t a x b x t b a f t f t b a f x f x b a f x b a a b ==+=-+=-=-??=>=>-=-??=-??

=--=+-=+-=+--又如:若图象有两条对称轴,即,令则即所以函数以为周期因不知道的大小关系为保守起见我加了一个绝对值

13. 你掌握常用的图象变换了吗? f x f x y ()()与的图象关于

轴对称- 联想点(x,y ),(-x,y) f x f x x ()()与的图象关于

轴对称- 联想点(x,y ),(x,-y) f x f x ()()与的图象关于原点对称-- 联想点(x,y ),(-x,-y)

f x f

x y x ()()与的图象关于直线对称-=1

联想点(x,y ),(y,x)

f(g) g(x) f[g(x)] f(x)+g(x) f(x)*g(x) 奇 奇 奇 奇 偶 奇 偶 偶 非奇非偶 奇 偶 奇 偶 非奇非偶 奇 偶

f x f a x x a ()()与的图象关于

直线对称2-= 联想点(x,y ),(2a-x,y) f x f a x a ()()()与的图象关于点,对称--20 联想点(x,y ),(2a-x,0)

将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>?→

????????>=+=-()()()()

()00上移个单位下移个单位b b b b y f x a b y f x a b

()()()()>?→

????????>=++=+-00

(这是书上的方法,虽然我从来不用, 但可能大家接触最多,我还是写出来吧。对于这种题目,其实根本不用这么麻烦。你要判断函数y-b=f(x+a)怎么由y=f(x)得到,可以直接令y-b=0,x+a=0,画出点的坐标。 看点和原点的关系,就可以很直观的看出函数平移的轨迹了。) 注意如下“翻折”变换:

()|()|x ()(||)y f x f x f x f x ??→??→把轴下方的图像翻到上面

把轴右方的图像翻到上面

()如:f x x ()log =+21

()作出及的图象y x y x =+=+log log 2211

y=log 2x

14. 你熟练掌握常用函数的图象和性质了吗?

()()一次函数:10y

kx b k =+≠

(k 为斜率,b 为直线与y 轴的交点)

()()()反比例函数:推广为是中心,200y k x k y b k x a

k O a b =

≠=+-≠'() 的双曲线。

(

)()二次函数图象为抛物线3

02442

2

2y ax bx c a a x b a ac b a

=++≠=+?

? ???+

- 顶点坐标为,,对称轴--?? ???

=-b a

ac b a x b

a 24422 开口方向:,向上,函数a

y ac b a

>=

-0442

min

a

y ac b a

<=

-0442,向下,max

1212122,,||||b x a

b c x x x x x x a a a -±=

+=-?=-=

根的关系:

2212121212()()

()()(m n ()()()(,2()()()(,)(,)

f x ax bx c f x a x m n f x a x x x x x x f x a x x x x h x h x h =++=-+=--=--+二次函数的几种表达形式:一般式顶点式,(,)为顶点是方程的个根)函数经过点(

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

ax bx c x x y ax bx c x 212200++=>=++,时,两根、为二次函数的图象与轴?

的两个交点,也是二次不等式解集的端点值。ax bx c 200++><()

②求闭区间[m ,n ]上的最值。

2

max (),min ()2max (),min ()

2224min ,max max((),())

4m,n 0b

n f f m f f n a b

m f f n f f m a b

n m a

c b a f f f m f n a

a <-==>-==<-<-==>区间在对称轴左边() 区间在对称轴右边() 区间在对称轴边 () 也可以比较和对称轴的关系,距离越远,值越大(只讨论的情况)

③求区间定(动),对称轴动(定)的最值问题。 ④一元二次方程根的分布问题。

如:二次方程的两根都大于ax bx c k b a k f k 2

00

20

++=?≥->>????????()

一根大于,一根小于k k f k ?<()0

0m n 22()0()0m n ()()0

b m n a

f m f n f m f n ?≥???<-

???>?>???<在区间(,)内有根在区间(,)内有1根

()()指数函数:,401y a a a x =>≠

x

()()对数函数,501y

x a a a =>≠log

由图象记性质! (注意底数的限定!)

a x(a>1)

()()“对勾函数”60y x k

x

k =+

> 利用它的单调性求最值与利用均值不等式求最值的区别是什么?(均值不等式一定要注意等号成立的条件)

15. 你在基本运算上常出现错误吗? 指数运算:,a

a a a

a p p 0

101

0=≠=

≠-(()) a a

a a a

a m n

m

n m n

m

n

=≥=

>-((01

0)),

()log ()log log 00a a a M N M N M N ?=+>>对数运算:,

log log log log log a

a a a n a M N M N M n

M =-=,1

对数恒等式:a x a x

log =

log log log log log 1

log log m n c a a a c a x b n

b b b a m

x a

=

?==

对数换底公式:

16. 如何解抽象函数问题? (赋值法、结构变换法)

如:(),满足,证明为奇函数。1x R f x f x y f x f y f x ∈+=+()()()()()

(先令再令,……)x

y f y x ==?==-000()

(),满足,证明是偶函数。2x R f x f xy f x f y f x ∈=+()()()()()

[](先令·x

y t f t t f t t ==-?--=()()()

∴f t f t f t f t ()()()()-+-=+

∴……)f t f t ()

()-=

()[]

()证明单调性:……32212f x f x x x ()=-+=

(对于这种抽象函数的题目,其实简单得都可以直接用死记了 1、 代y=x ,

2、 令x=0或1来求出f(0)或f(1)

3、 求奇偶性,令y=—x ;求单调性:令x+y=x 1

几类常见的抽象函数 1. 正比例函数型的抽象函数 f (x )=kx (k ≠0)---------------f (x ±y )=f (x )±f (y )

2.

幂函数型的抽象函数

f (x )=x a

----------------f (xy )= f (x )f (y );f (

y

x

)=

)

()

(y f x f 3. 指数函数型的抽象函数

f (x )=a x

------------------- f (x +y )=f (x )f (y );f (x -y )=

)

()

(y f x f 4. 对数函数型的抽象函数

f (x )=lo

g a x (a >0且a ≠1)-----f (x ·y )=f (x )+f (y );f (

y

x

)= f (x )-f (y )

5.

三角函数型的抽象函数

f (x )=t gx-------------------------- f (x +y )=

)

()(1)

()(y f x f y f x f -+

f (x )=cot x------------------------ f (x +y )=

)

()(1

)()(y f x f y f x f +-

例1已知函数f (x )对任意实数x 、y 均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)= -2求f (x )在区间[-2,1]上的值域.

分析:先证明函数f (x )在R 上是增函数(注意到f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1));再根据区间求其值域.

例2已知函数f (x )对任意实数x 、y 均有f (x +y )+2=f (x )+f (y ),且当x >0时,f (x )>2,f (3)= 5,求不等式 f (a 2

-2a -2)<3的解.

分析:先证明函数f (x )在R 上是增函数(仿例1);再求出f (1)=3;最后脱去函数符号.

例3已知函数f (x )对任意实数x 、y 都有f (xy )=f (x )f (y ),且f (-1)=1,f (27)=9,当0≤x <1时,f (x )∈[0,1]. (1)判断f (x )的奇偶性;

(2)判断f (x )在[0,+∞]上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤3

9,求a 的取值范围.

分析:(1)令y =-1; (2)利用f (x 1)=f (2

1

x x ·x 2)=f (

2

1x x )f (x 2);

(3)0≤a ≤2.

例4设函数f (x )的定义域是(-∞,+∞),满足条件:存在x 1≠x 2,使得f (x 1)≠f (x 2);对任何x 和y ,

f (x +y )=f (x )f (y )成立.求:

(1)f (0);

(2)对任意值x ,判断f (x )值的符号. 分析:(1)令x= y =0;(2)令y =x ≠0.

例5是否存在函数f (x ),使下列三个条件:①f (x )>0,x ∈N ;②f (a +b )= f (a )f (b ),a 、b ∈N ;③f (2)=4.同时成立?若存在,求出f (x )的解析式,若不存在,说明理由.

分析:先猜出f (x )=2x

;再用数学归纳法证明.

例6设f (x )是定义在(0,+∞)上的单调增函数,满足f (x ·y )=f (x )+f (y ),f (3)=1,求: (1) f (1);

(2)

若f (x )+f (x -8)≤2,求x 的取值范围.

分析:(1)利用3=1×3;

(2)利用函数的单调性和已知关系式.

例7设函数y = f (x )的反函数是y =g (x ).如果f (a b )=f (a )+f (b ),那么g (a +b )=g (a )·g (b )是否正确,试说明理由.

分析:设f (a )=m ,f (b )=n ,则g (m )=a ,g (n )=b , 进而m +n =f (a )+f (b )= f (a b )=f [g (m )g (n )]….

例8已知函数f (x )的定义域关于原点对称,且满足以下三个条件: ①

x 1、x 2是定义域中的数时,有f (x 1-x 2)=

)

()(1

)()(1221x f x f x f x f -+;

② f (a )= -1(a >0,a 是定义域中的一个数);

当0<x <2a 时,f (x )<0.

试问: (1) f (x )的奇偶性如何?说明理由;

(2) 在(0,4a )上,f (x )的单调性如何?说明理由.

分析:(1)利用f [-(x 1-x 2)]= -f [(x 1-x 2)],判定f (x )是奇函数;

(3)

先证明f (x )在(0,2a )上是增函数,再证明其在(2a ,4a )上也是增函数.

对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.

例9已知函数f (x )(x ≠0)满足f (xy )=f (x )+f (y ), (1) 求证:f (1)=f (-1)=0; (2) 求证:f (x )为偶函数;

(3)

若f (x )在(0,+∞)上是增函数,解不等式f (x )+f (x -

2

1

)≤0. 分析:函数模型为:f (x )=lo g a |x |(a >0) (1) 先令x =y =1,再令x =y = -1; (2) 令y = -1;

(3) 由f (x )为偶函数,则f (x )=f (|x |).

例10已知函数f (x )对一切实数x 、y 满足f (0)≠0,f (x +y )=f (x )·f (y ),且当x <0时,f (x )>1,求证: (1) 当x >0时,0<f (x )<1; (2) f (x )在x ∈R 上是减函数.

分析:(1)先令x =y =0得f (0)=1,再令y =-x ;

(3)

受指数函数单调性的启发:

由f (x +y )=f (x )f (y )可得f (x -y )=

)

()

(y f x f ,

进而由x 1<x 2,有

)

()

(21x f x f =f (x 1

-x 2

)>1.

练习题:

1.已知:f (x +y )=f (x )+f (y )对任意实数x 、y 都成立,则( ) (A )f (0)=0 (B )f (0)=1 (C )f (0)=0或1 (D )以上都不对

2. 若对任意实数x 、y 总有f (xy )=f (x )+f (y ),则下列各式中错误的是( ) (A )f (1)=0 (B )f (

x

1

)= f (x ) (C )f (

y

x )= f (x )-f (y ) (D )f (x n

)=nf (x )(n ∈N )

3.已知函数f (x )对一切实数x 、y 满足:f (0)≠0,f (x +y )=f (x )f (y ),且当x <0时,f (x )>1,则当

x >0时,f (x )的取值范围是( )

(A )(1,+∞) (B )(-∞,1) (C )(0,1) (D )(-1,+∞)

4.函数f (x )定义域关于原点对称,且对定义域内不同的x 1、x 2都有

f (x 1-x 2)=

)

()(1)

()(2121x f x f x f x f +-,则f (x )为( )

(A )奇函数非偶函数 (B )偶函数非奇函数 (C )既是奇函数又是偶函数 (D )非奇非偶函数

5.已知不恒为零的函数f (x )对任意实数x 、y 满足f (x +y )+f (x -y )=2[f (x )+f (y )],则函数f (x )是( )

(A )奇函数非偶函数 (B )偶函数非奇函数 (C )既是奇函数又是偶函数 (D )非奇非偶函数 参考答案:

1.A 2.B 3 .C 4.A 5.B

函数典型考题

1.若函数

)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是 (B ) A. 1 B. 2 C. 3 D. 4

2.已知函数

()f x 是定义域在R 上的偶函数,且在区间(,0)-∞上单调递减,求满足

22(23)(45)f x x f x x ++>---的x 的集合.

.解: ()f x Q

在R 上为偶函数,在(,0)-∞上单调递减

()f x ∴在(0,)+∞上为增函数 又22(45)(45)f x x f x x ---=++

Q 2223(1)20x x x ++=++>,2245(2)10x x x ++=++>

22(23)(45)f x x f x x ++>++得 222345x x x x ++>++

1x ∴<- ∴解集为{|1}x x <-.

3.若f (x )是偶函数,它在

[)0,+∞上是减函数,且f (lg x )>f (1),则x 的取值范围是( C )

A. (

110,1) B. (0,110)U (1,+∞) C. (110

,10) D. (0,1)U (10,+∞) 4.若a 、b 是任意实数,且a >b ,则 ( D )

A. a 2>b 2

B.

a b <1 C. ()lg a b - >0 D.12a

??

???

<12b

??

???

5.设a,b,c 都是正数,且3

46a

b c ==,则下列正确的是

(B )

(A) 111c

a b =+ (B) 221C a b =+ (C) 122C a b =+ (D) 212

c a b =+

6.对于函数

()()21f x ax bx b =++-(0a ≠)

. (Ⅰ)当1,2a b ==-时,求函数()f x 的零点;

(Ⅱ)若对任意实数b ,函数()f x 恒有两个相异的零点,求实数a 的取值范围.

7. 二次函数

2y ax bx c =++中,0a c ?<,则函数的零点个数是( C )

A 0个

B 1个

C 2个

D 无法确定 8.若函数

()b ax x x f --=2的两个零点是2和3,则函数()12--=ax bx x g 的零点是(D )

A .1- 和2-

B .1 和2

C .

21和31 D .2

1-和31

- 9.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是

奇函数又是偶函数的函数一定是

()f x =0(x ∈R ),其中正确命题的个数是( D )

A 4

B 3

C 2

D 1

10.已知函数f(x 2-3)=lg 6

22

-x x

,

(1)f(x)的定义域; (2)判断f(x)的奇偶性;

(3)求f(x)的反函数; (4)若f[)(x φ]=lgx,求)3(φ的值。

解:(1)∵f(x 2-3)=lg

3

)3(3)3(2

2--+-x x ,∴f(x)=lg 33

-+x x ,又由0622>-x x 得x 2-3>3,∴ f(x)的定义域为(3,+∞)。 (2)∵f(x)的定义域不关于原点对称,∴ f(x)为非奇非偶函数。

(3)由y=lg ,33-+x x 得x=

110)110(3-+y y ,Θx>3,解得y>0, ∴f -1(x)=)0(1

10)110(3>-+x x x (4) ∵f[)3(φ]=lg

3lg 3)3(3)3(=-+φφ,∴33

)3(3

)3(=-+φφ,解得φ(3)=6。

11.下列函数中,同时满足:有反函数,是奇函数,定义域和值域相同的函数是( C )

(A )y=

2

x

x e e -+(B )y=lg

x

x

+-11(C )y=-x 3 (D )y=x 零点问题

知识讲解对数函数及其性质提高

对数函数及其性质 【学习目标】 1.理解对数函数的概念,体会对数函数是一类很重要的函数模型; 2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较; 3.了解反函数的概念,知道指数函数x y a =与对数函数log a y x =互为反函数()0,1a a >≠. 【要点梳理】 要点一、对数函数的概念 1.函数y=log a x(a>0,a≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1; (2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释: (1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数. (2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论. 要点二、对数函数的图象与性质 a >1 0<a <1 图象

性 质 定义域:(0,+∞) 值域:R 过定点(1,0),即x=1时,y=0 在(0,+∞)上增函 数 在(0,+∞)上是减函数 当0<x<1时,y<0, 当x≥1时,y≥0 当0<x<1时,y>0, 当x≥1时,y≤0 要点诠释: 关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考. 以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0. 要点三、底数对对数函数图象的影响 1.底数制约着图象的升降. 如图 要点诠释: 由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略. 2.底数变化与图象变化的规律

高中数学九大解题技巧

高中数学九大解题技巧 1、配法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的 恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常 用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多, 除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相 乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数 学式子中,用新的变元去代替原式的一个部分或改造原来的式子, 使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别, △=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代 数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算 中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个 数的和与积,求这两个数等简单应用外,还可以求根的对称函数,

计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线 的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学 中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从 而使问题得以解决,这种解题的数学方法,我们称为构造法。运用 构造法解题,可以使代数、三角、几何等各种数学知识互相渗透, 有利于问题的解决。 7、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有 时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题 的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到 求证的结果。所以用面积法来解几何题,几何元素之间关系变成数 量之间的关系,只需要计算,有时可以不添置补助线,即使需要添 置辅助线,也很容易考虑到。 8、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集 合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变

高一数学函数总结大全

一次函数 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx (k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 五、一次函数在生活中的应用: 1.当时间t一定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

高中数学函数解题技巧方法总结(高考)

高中数学函数知识点总结 1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()()(答:,,,)022334Y Y 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域 函数y =arcsinx 的定义域是 [-1, 1] ,值域是 ,函数y =arccosx 的定义域是 [-1, 1] , 值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R , 值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? [] 的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [] (答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。 例 若函数)(x f y =的定义域为?? ? ???2,21,则)(log 2x f 的定义域为 。 分析:由函数)(x f y =的定义域为?? ? ???2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。 解:依题意知: 2log 2 1 2≤≤x 解之,得 42≤≤x ∴ )(log 2x f 的定义域为{} 42|≤≤x x

高中数学函数知识点总结

高中数学函数知识点总结 (1)高中函数公式的变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量 ,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。②当 =0时,称是的正比例函数。(3)高中函数的一次函数的图象及性质 ①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数 =的图象是经过原点的一条直线。 ③在一次函数中,当 0, O,则经2、3、4象限;当 0, 0时,则经1、 2、4象限;当 0, 0时,则经1、 3、4象限;当 0, 0时,则经1、2、3象限。 ④当 0时,的值随值的增大而增大,当 0时,的值随值的增大而减少。(4)高中函数的二次函数: ①一般式: ( ),对称轴是 顶点是; ②顶点式: ( ),对称轴是顶点是; ③交点式: ( ),其中(),()是抛物线与x轴的交点 (5)高中函数的二次函数的性质 ①函数的图象关于直线对称。 ②时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。当时,取得最小值

③时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。当时,取得最大值 9 高中函数的图形的对称 (1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。 (2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

对数知识点整理

1对数的概念 如果a(a>0,且a ≠1)的b 次幂等于N ,即N a b =,那么数b 叫做以a 为底N 的对数,记作:b N a =log ,其中a 叫做对数的底数,N 叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a ≠1,N>0; ③01log =a , 1log =a a , b a b a =log ,b a b a =log 特别地,以10为底的对数叫常用对数,记作N 10log ,简记为lgN ;以无理数e(e=2.718 28…) 为底的对数叫做自然对数,记作N e log ,简记为N ln 2对数式与指数式的互化 式子名称指数式N a b =(底数)(指数)(幂值)对数式b N a =log (底数)(对数)(真数) 3对数的运算性质 如果a>0,a ≠1,M>0,N>0,那么 (1)N M MN a a a log log )(log +=(2N M a a log log N)(M log a -=÷(3)M b M a b a log log = 问:①公式中为什么要加条件a>0,a ≠1,M>0,N>0? ②=n a a log ______ (n ∈R) ③对数式与指数式的比较.(学生填表) 运算性质 n m n m a a a +=?,n m n m a a a -=÷ mn n m a a =)((a>0且a ≠1,n ∈R) N M MN a a a log log )(log +=, N M a a log log N)(M log a -=÷(a>0,a ≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a >0,,且a ≠1? 理由如下: ①若a <0,则N 的某些值不存在,例如log-28 ②若a=0,则N ≠0时b 不存在;N=0时b 不惟一,可以为任何正数 ③若a=1时,则N ≠1时b 不存在;N=1时b 也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

高中数学函数知识点总结(经典收藏)

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}C B A x y y x C x y y B x y x A 、、,,,如:集合lg |),(lg |lg |====== 中元素各表示什么? A 表示函数y=lgx 的定义域, B 表示的是值域,而 C 表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为 B A a ? (答:,,)-? ?? ???1013 显然,这里很容易解出A={-1,3}.而B 最多只有一个元素。故B 只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是,这里千万小心,还有一个B 为空集的情况,也就是a=0,不要把它搞忘记了。 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有 2n 种选择,即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

高一数学函数知识点归纳_高一数学函数的性质

高一数学函数知识点归纳_高一数学函数的性质 同学们升入高中,有没有感觉到高中的数学不再像初中数学那样简单易懂了?高中的数学知识点非常多,同学们要学会对知识点进行总结归纳,下面小编给大家准备了高一数学函数知识点归纳,希望能帮助到大家。 高一数学函数知识点归纳 1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合 B={f(x)∣x∈A }叫做函数的值域。 2、函数定义域的解题思路: ⑴若x处于分母位置,则分母x不能为0。 ⑵偶次方根的被开方数不小于0。 ⑶对数式的真数必须大于0。 ⑷指数对数式的底,不得为1,且必须大于0。 ⑸指数为0时,底数不得为0。 ⑹如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。 ⑺实际问题中的函数的定义域还要保证实际问题有意义。 3、相同函数

⑴表达式相同:与表示自变量和函数值的字母无关。 ⑵定义域一致,对应法则一致。 4、函数值域的求法 ⑴观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。 ⑵图像法:适用于易于画出函数图像的函数已经分段函数。 ⑶配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。 ⑷代换法:主要用于由已知值域的函数推测未知函数的值域。 5、函数图像的变换 ⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。 ⑵伸缩变换:在x前加上系数。 ⑶对称变换:高中阶段不作要求。 6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A 中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f: A→B为从集合A到集合B的映射。 ⑴集合A中的每一个元素,在集合B中都有象,并且象是唯一的。 ⑵集合A中的不同元素,在集合B中对应的象可以是同一个。 ⑶不要求集合B中的每一个元素在集合A中都有原象。 7、分段函数 ⑴在定义域的不同部分上有不同的解析式表达式。 ⑵各部分自变量和函数值的取值范围不同。 ⑶分段函数的定义域是各段定义域的交集,值域是各段值域的并集。 8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g 的复合函数。 高一数学函数的性质 1、函数的局部性质——单调性 设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量 x1、x2,当x1< x2时,都有f(x1)f(x2),那么那么y=f(x)在区间D上是减函数,D是 函数y=f(x)的单调递减区间。 ⑴函数区间单调性的判断思路 ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。

高一数学常见的对数函数解题方法教案

常见的对数函数解题策略 一、分类讨论 例1 若实数a 满足2log 13 a <,求a 的取值范围。 分析:需对a 进行分类讨论。 当1a >时,∵log 1a a =,∴2log log 3a a a <,∴23 a >; 当01a <<时,∵2log log 3a a a <,∴23a <,即203a <<。 故20,(1,)3a ??∈+∞ ??? 。 评注:解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答。理解会用以下几个结论很有必要:①当1a >时,若log 0a x >,则1x >,若l o g 0a x <,则01x <<;②当01a <<时,若log 0a x >,则01x <<,若log 0a x <,则1x >。 二、数形结合 例2 若x 满足2log 3x x =-,则x 满足区间( ) A .(0,1) B .(1,2) C .(1,3) D .(3,4) 分析:本题左边是一个对数函数,右边是一个一次函数,可通过作图象求解。 解析:在同一直角坐标系中画出2log y x =,3y x =-的图象,如图所示,可观察两图象交点的横坐标满足13x <<,答案选C 。 评注:解决该类问题的关键是正确作出函数2log y x =,3y x =-的图象,从而观察交点的横坐标的取值范围。 三、特殊值法 2x x -x

例3 已知log (2)a y ax =-在[0,1]上为x 的减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,)+∞ 分析:由函数的单调性求底数a 的取值范围,逆向考查,难度较大,可采用特殊值法进行判断。 解析:取特殊值0.5a =,10x =,21x =,则有10.5 l o g (2)l o g 2a ax - =,20.53log (2)log 2a ax -=,与y 是x 的减函数矛盾,排除A 和C ; 取特殊值3a =,11x =,则2230ax -=-<,所以3a ≠,排除D 。 答案选B 。 评注:本题由常规的具体函数判断其单调性,变换为已知函数的单调性反过来确定函数中底数a 的范围,提高了思维层次。 四、合理换元 例4 若28x ≤≤,求函数2 21144log log 5y x x ??=++ ???的值域。 分析:通过对函数式进行变形,此题是一个二次函数求值域问题,可换元进行求解。 解析:设14log t x =,∵28x ≤≤,∴114 4log 8log 2t ≤≤,即3122t - ≤≤-。 又2 21144log log 5y x x ??=++ ???21144 log 2log 5x x ??++ ???, ∴2225(1)4y t t t =++=++,∵3122 t -≤≤-, ∴当1t =-时,y 最小值为4;当32t =-或12 t =-时,y 值相等且最大,y 最大为174。 故函数y 的值域为174,4?????? 。 评注:换元法是一种常见的数学思想,也是一种常用的解题技巧,希望同学们在今后的学习中合理转化,灵活运用。

高中数学经典解题技巧和方法:平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。 好了,搞清楚平面向量的上述内容之后,下面我们就看下针对这方面内容的具体的

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于α αααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道 )cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ

高中数学函数知识点总结

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||2 2301 若,则实数的值构成的集合为B A a ? 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。 如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。 函数)(x y ?=的图象与直线a x =交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型?

带答案对数与对数函数经典例题.

经典例题透析 类型一、指数式与对数式互化及其应用 1.将下列指数式与对数式互化: (1);(2);(3);(4);(5);(6). 思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5); (6). 总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段. 举一反三: 【变式1】求下列各式中x的值: (1)(2)(3)lg100=x (4) 思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x. 解:(1); (2); (3)10x=100=102,于是x=2; (4)由. 类型二、利用对数恒等式化简求值 2.求值:解:. 总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三: 【变式1】求的值(a,b,c∈R+,且不等于1,N>0) 思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算. 解:. 类型三、积、商、幂的对数 3.已知lg2=a,lg3=b,用a、b表示下列各式. (1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15 解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a (3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b (5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a

举一反三: 【变式1】求值 (1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 解: (1) (2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1 (3)原式=2lg5+lg2(1+lg5)+(lg2)2 =2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 【变式2】已知3a=5b=c,,求c的值. 解:由3a=c得: 同理可得 . 【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:. 证明: . 【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:. 证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb 即. 类型四、换底公式的运用 4.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x.

相关主题
文本预览
相关文档 最新文档