当前位置:文档之家› 第八章 多元函数微分法及其应用

第八章 多元函数微分法及其应用

第八章  多元函数微分法及其应用
第八章  多元函数微分法及其应用

第八章多元函数微分法及其应用

教学目的:

1、理解多元函数的概念和二元函数的几何意义。

2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。

3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。

4、理解方向导数与梯度的概念并掌握其计算方法。

5、掌握多元复合函数偏导数的求法。

6、会求隐函数(包括由方程组确定的隐函数)的偏导数。

7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。

8、了解二元函数的二阶泰勒公式。

9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。

教学重点:

1、二元函数的极限与连续性;

2、函数的偏导数和全微分;

3、方向导数与梯度的概念及其计算;

4、多元复合函数偏导数;

5、隐函数的偏导数

6、曲线的切线和法平面及曲面的切平面和法线;

7、多元函数极值和条件极值的求法。

教学难点:

1、二元函数的极限与连续性的概念;

2、全微分形式的不变性;

3、复合函数偏导数的求法;

4、二元函数的二阶泰勒公式;

5、隐函数(包括由方程组确定的隐函数)的偏导数;

6、拉格郎日乘数法;

7、多元函数的最大值和最小值。

§8. 1 多元函数的基本概念

一、平面点集n 维空间

1.平面点集

由平面解析几何知道, 当在平面上引入了一个直角坐标系后, 平面上的点P 与有序二元实数组(x , y )之间就建立了一一对应. 于是, 我们常把有序实数组(x , y )与平面上的点P 视作是等同的. 这种建立了坐标系的平面称为坐标平面.

二元的序实数组(x , y )的全体, 即R 2=R ?R ={(x , y )|x , y ∈R }就表示坐标平面. 坐标平面上具有某种性质P 的点的集合, 称为平面点集, 记作 E ={(x , y )| (x , y )具有性质P }.

例如, 平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y )| x 2+y 2

如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成 C ={P | |OP |

邻域:

设P 0(x 0, y 0)是xOy 平面上的一个点, δ是某一正数. 与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体, 称为点P 0的δ邻域, 记为U (P 0, δ), 即

}|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(2

0200δδ<-+-=y y x x y x P

U . 邻域的几何意义: U (P 0, δ)表示xOy 平面上以点P 0(x 0, y 0)为中心、δ >0为半径的圆的内部的点P (x , y )的全体.

点P 0的去心δ邻域, 记作) ,(0δP U

, 即 }||0 |{) ,(00δδ<<=P P P P U

.

注: 如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作

)(0P U

.

点与点集之间的关系:

任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点: 如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点; (2)外点: 如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点;

(3)边界点: 如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.

E 的边界点的全体, 称为E 的边界, 记作?E .

E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . 聚点:

如果对于任意给定的δ>0, 点P 的去心邻域),(δP U

内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集

E ={(x , y )|1

满足1

开集: 如果点集E 的点都是内点, 则称E 为开集. 闭集: 如果点集的余集E c 为开集, 则称E 为闭集. 开集的例子: E ={(x , y )|1

集合{(x , y )|1

连通性: 如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.

区域(或开区域): 连通的开集称为区域或开区域. 例如E ={(x , y )|1

闭区域: 开区域连同它的边界一起所构成的点集称为闭区域. 例如E = {(x , y )|1≤x 2+y 2≤2}. 有界集: 对于平面点集E , 如果存在某一正数r , 使得

E ?U (O , r ),

其中O 是坐标原点, 则称E 为有界点集.

无界集: 一个集合如果不是有界集, 就称这集合为无界集.

例如, 集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域; 集合{(x , y )| x +y >1}是无界开区域; 集合{(x , y )| x +y ≥1}是无界闭区域. 2. n 维空间

设n 为取定的一个自然数, 我们用R n 表示n 元有序数组(x 1, x 2, ? ? ? , x n )的全体所构成的集合, 即

R n =R ?R ?? ? ??R ={(x 1, x 2, ? ? ? , x n )| x i ∈R , i =1, 2, ? ? ?, n }.

R n 中的元素(x 1, x 2, ? ? ? , x n )有时也用单个字母x 来表示, 即x =(x 1, x 2, ? ? ? , x n ). 当所有的x i (i =1, 2, ? ? ?, n )都为零时, 称这样的元素为R n 中的零元, 记为0或O . 在解析几何中, 通过直角坐标, R 2(或R 3)中的元素分别与平面(或空间)中的点或向量建立一一对应, 因而R n 中的元素x =(x 1, x 2, ? ? ? , x n )也称为R n 中的一个点或一个n 维向量, x i 称为点x 的第i 个坐标或n 维向量x 的第i 个分量. 特别地, R n 中的零元0称为R n 中的坐标原点或n 维零向量.

为了在集合R n 中的元素之间建立联系, 在R n 中定义线性运算如下: 设x =(x 1, x 2, ? ? ? , x n ), y =(y 1, y 2, ? ? ? , y n )为R n 中任意两个元素, λ∈R , 规定 x +y =(x 1+ y 1, x 2+ y 2, ? ? ? , x n + y n ), λx =(λx 1, λx 2, ? ? ? , λx n ). 这样定义了线性运算的集合R n 称为n 维空间.

R n 中点x =(x 1, x 2, ? ? ? , x n )和点 y =(y 1, y 2, ? ? ? , y n )间的距离, 记作ρ(x , y ), 规定

2222211)( )()(),(n n y x y x y x -+???+-+-=y x ρ.

显然, n =1, 2, 3时, 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一至.

R n 中元素x =(x 1, x 2, ? ? ? , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中, 通常将||x ||记作|x |), 即

2

2221 ||||n

x x x ???++=x . 采用这一记号, 结合向量的线性运算, 便得

),()( )()(||||2222211y x y x ρ=-+???+-+-=-n n y x y x y x .

在n 维空间R n 中定义了距离以后, 就可以定义R n 中变元的极限: 设x =(x 1, x 2, ? ? ? , x n ), a =(a 1, a 2, ? ? ? , a n )∈R n . 如果

||x -a ||→0,

则称变元x 在R n 中趋于固定元a , 记作x →a . 显然,

x →a ? x 1→a 1, x 2→a 2, ? ? ? , x n →a n .

在R n 中线性运算和距离的引入, 使得前面讨论过的有关平面点集的一系列概念, 可以方便地引入到n (n ≥3)维空间中来, 例如,

设a =(a 1, a 2, ? ? ? , a n )∈R n , δ是某一正数, 则n 维空间内的点集

U (a , δ)={x | x ∈ R n , ρ(x , a )<δ}

就定义为R n 中点a 的δ邻域. 以邻域为基础, 可以定义点集的内点、外点、边界点和聚点, 以及开集、闭集、区域等一系列概念. 二. 多元函数概念

例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 V =πr 2h .

这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定. 例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系 V

RT p =

, 其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定.

例3 设R 是电阻R 1、R 2并联后的总电阻, 由电学知道, 它们之间具有关系 2

12

1R R R R R +=

.

这里, 当R 1、R 2在集合{( R 1, R 2) | R 1>0, R 2>0}内取定一对值( R 1 , R 2)时, R 的对应值就随之确定.

定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为

z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D )

其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量.

上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值, 也称为f 在点(x , y )处的函数值, 记作f (x , y ), 即z =f (x , y ).

值域: f (D )={z | z =f (x , y ), (x , y )∈D }.

函数的其它符号: z =z (x , y ), z =g (x , y )等.

类似地可定义三元函数u =f (x , y , z ), (x , y , z )∈D 以及三元以上的函数.

一般地, 把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f : D →R 就称为定义在D 上的n 元函数, 通常记为

u =f (x 1, x 2, ? ? ? , x n ), (x 1, x 2, ? ? ? , x n )∈D , 或简记为

u =f (x ), x =(x 1, x 2, ? ? ? , x n )∈D , 也可记为

u =f (P ), P (x 1, x 2, ? ? ? , x n )∈D .

关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u =f (x )时, 就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域. 因而, 对这类函数, 它的定义域不再特别标出. 例如,

函数z =ln(x +y )的定义域为{(x , y )|x +y >0}(无界开区域);

函数z =arcsin(x 2+y 2)的定义域为{(x , y )|x 2+y 2≤1}(有界闭区域).

二元函数的图形: 点集{(x , y , z )|z =f (x , y ), (x , y )∈D }称为二元函数z =f (x , y )的图形, 二元函数的图形是一张曲面.

例如 z =ax +by +c 是一张平面, 而函数z =x 2+y 2的图形是旋转抛物面.

三. 多元函数的极限

与一元函数的极限概念类似, 如果在P (x , y )→P 0(x 0, y 0)的过程中, 对应的函数值f (x , y )无限接近于一个确定的常数A , 则称A 是函数f (x , y )当(x , y )→(x 0, y 0)时的极限. 定义2

设二元函数f (P )=f (x , y )的定义域为D , P 0(x 0, y 0)是D 的聚点. 如果存在常数A , 对于任意给定的正数ε总存在正数δ, 使得当),(),(0δP U D y x P

?∈时, 都有 |f (P )-A |=|f (x , y )-A |<ε

成立, 则称常数A 为函数f (x , y )当(x , y )→(x 0, y 0)时的极限, 记为 A y x f y x y x =→),(lim )

,(),(00, 或f (x , y )→A ((x , y )→(x 0, y 0)),

也记作

A P f P P =→)(lim 0

或f (P )→A (P →P 0).

上述定义的极限也称为二重极限.

例4. 设2

2221

sin )(),(y x y x y x f ++=, 求证0),(lim )0,0(),(=→y x f y x .

证 因为

2

22

22222

22 |1sin ||| |01sin )(||0),(|y x y x y x y x y x y x f +≤+?+=-++=-,

可见?ε >0, 取εδ=

, 则当

δ<-+-<22)0()0(0y x , 即),(),(δO U D y x P

?∈时, 总有

|f (x , y )-0|<ε,

因此

0),(lim )

0,0(),(=→y x f y x .

必须注意:

(1)二重极限存在, 是指P 以任何方式趋于P 0时, 函数都无限接近于A .

(2)如果当P 以两种不同方式趋于P 0时, 函数趋于不同的值, 则函数的极限不存在. 讨论:

函数???

??=+≠++=0

00 ),(222222y x y x y x xy y x f 在点(0, 0)有无极限?

提示: 当点P (x , y )沿x 轴趋于点(0, 0)时,

00lim )0 ,(lim ),(lim 0

)

0,0(),(===→→→x x y x x f y x f ;

当点P (x , y )沿y 轴趋于点(0, 0)时,

00lim ) ,0(lim ),(lim 0

)

0,0(),(===→→→y y y x y f y x f .

当点P (x , y )沿直线y =kx 有

22222022 )0,0(),(1lim lim k

k x k x kx y x xy x kx

y y x +=+=+→=→. 因此, 函数f (x , y )在(0, 0)处无极限.

极限概念的推广: 多元函数的极限.

多元函数的极限运算法则: 与一元函数的情况类似. 例5 求

x xy y x )

sin(lim

)2,0(),(→.

解:

y xy xy x xy y x y x ?=→→)sin(lim )sin(lim

)2,0(),()2,0(),(y xy xy y x y x )2,0(),()2,0(),(lim )

sin(lim →→?==1?2=2. 四. 多元函数的连续性

定义3 设二元函数f (P )=f (x , y )的定义域为D , P 0(x 0, y 0)为D 的聚点, 且P 0∈D . 如果

),(),(lim

00)

,(),(00y x f y x f y x y x =→,

则称函数f (x , y )在点P 0(x 0, y 0)连续.

如果函数f (x , y )在D 的每一点都连续, 那么就称函数f (x , y )在D 上连续, 或者称f (x , y )是D 上的连续函数.

二元函数的连续性概念可相应地推广到n 元函数f (P )上去. 例6设f (x ,y )=sin x , 证明f (x , y )是R 2上的连续函数.

证 设P 0(x 0, y 0)∈ R 2. ?ε>0, 由于sin x 在x 0处连续, 故?δ>0, 当|x -x 0|<δ时, 有 |sin x -sin x 0|<ε.

以上述δ作P 0的δ邻域U (P 0, δ), 则当P (x , y )∈U (P 0, δ)时, 显然 |f (x , y )-f (x 0, y 0)|=|sin x -sin x 0|<ε,

即f (x , y )=sin x 在点P 0(x 0, y 0) 连续. 由P 0的任意性知, sin x 作为x , y 的二元函数在R 2上连续. 证 对于任意的P 0(x 0, y 0)∈R 2. 因为

),(sin sin lim

),(lim 000)

,(),()

,(),(0000y x f x x y x f y x y x y x y x ===

→→,

所以函数f (x ,y )=sin x 在点P 0(x 0, y 0)连续. 由P 0的任意性知, sin x 作为x , y 的二元函数在R 2上连续.

类似的讨论可知, 一元基本初等函数看成二元函数或二元以上的多元函数时, 它们在各自的定义域内都是连续的.

定义4设函数f (x , y )的定义域为D , P 0(x 0, y 0)是D 的聚点. 如果函数f (x , y )在点P 0(x 0, y 0)不连续, 则称P 0(x 0, y 0)为函数f (x , y )的间断点. 例如

函数???

??=+≠++=0

00 ),(2222y x y x y x xy y x f ,

其定义域D =R 2, O (0, 0)是D 的聚点. f (x , y )当(x , y )→(0, 0)时的极限不存在, 所以点O (0, 0)是该函

数的一个间断点. 又如, 函数1

1sin

22

-+=y x z , 其定义域为D ={(x , y )|x 2+y 2≠1}, 圆周C ={(x , y )|x 2+y 2=1}上的点都是D 的聚点, 而f (x , y )在C 上没有定义, 当然f (x , y )在C 上各点都不连续, 所以圆周C 上各点都是该函数的间断点.

注: 间断点可能是孤立点也可能是曲线上的点.

可以证明, 多元连续函数的和、差、积仍为连续函数; 连续函数的商在分母不为零处仍连续; 多元连续函数的复合函数也是连续函数.

多元初等函数: 与一元初等函数类似, 多元初等函数是指可用一个式子所表示的多元函数, 这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的.

例如2

221y y x x +-+, sin(x +y ), 2

22z y x e

++都是多元初等函数. 一切多元初等函数在其定义区域内是连续的. 所谓定义区域是指包含在定义域内的区域或闭区域.

由多元连续函数的连续性, 如果要求多元连续函数f (P )在点P 0处的极限, 而该点又在此函数的定义区域内, 则

)()(lim 00

P f P f p p =→.

例7 求

xy y

x y x +→)2,1(),(lim

.

解: 函数xy

y

x y x f +=

),(是初等函数, 它的定义域为 D ={(x , y )|x ≠0, y ≠0}.

P 0(1, 2)为D 的内点, 故存在P 0的某一邻域U (P 0)?D , 而任何邻域都是区域, 所以U (P 0)是f (x , y )的一个定义区域, 因此

23)2,1(),(lim

)2,1(),(==→f y x f y x .

一般地, 求)(lim 0

P f P P →时, 如果f (P )是初等函数, 且P 0是f (P )的定义域的内点, 则f (P )在点P 0处连续, 于是

)()(l i m 00

P f P f P P =→.

例8 求

xy

xy y x 11lim

)

0 ,0(),(-+→. 解:

)

11()11)(11(lim

11lim

)0 ,0(),()

0 ,0(),(++++-+=-+→→xy xy xy xy xy xy y x y x 21111lim )0 ,0(),(=++=→xy y x .

多元连续函数的性质:

性质1 (有界性与最大值最小值定理)在有界闭区域D 上的多元连续函数, 必定在D 上有界, 且能取得它的最大值和最小值.

性质1就是说, 若f (P )在有界闭区域D 上连续, 则必定存在常数M >0, 使得对一切P ∈D , 有|f (P )|≤M ; 且存在P 1、P 2∈D , 使得

f (P 1)=max{f (P )|P ∈D }, f (P 2)=min{f (P )|P ∈D },

性质2 (介值定理) 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值.

§8. 2 偏导数

一、偏导数的定义及其计算法

对于二元函数z =f (x , y ), 如果只有自变量x 变化, 而自变量y 固定, 这时它就是x 的一元函数, 这函数对x 的导数, 就称为二元函数z =f (x , y )对于x 的偏导数.

定义 设函数z =f (x , y )在点(x 0, y 0)的某一邻域内有定义, 当y 固定在y 0而x 在x 0处有增量?x 时, 相应地函数有增量

f (x 0+?x , y 0)-f (x 0, y 0).

如果极限

x

y x f y x x f x ?-?+→?)

,(),(lim

00000

存在, 则称此极限为函数z =f (x , y )在点(x 0, y 0)处对x 的偏导数, 记作

00y y x x x z

==??, 00y y x x x f ==??, 0

0y y x x x

z ==, 或),(00y x f x .

例如

x

y x f y x x f y x f x x ?-?+=→?)

,(),(lim

),(00000

00.

类似地, 函数z =f (x , y )在点(x 0, y 0)处对y 的偏导数定义为

y

y x f y y x f y ?-?+→?)

,(),(lim

00000

,

记作

00y y x x y z

==??, 0

0y y x x y

f ==??, 0

0y y x x y

z ==, 或f y (x 0, y 0).

偏导函数: 如果函数z =f (x , y )在区域D 内每一点(x , y )处对x 的偏导数都存在, 那么这个偏导数就是x 、y 的函数, 它就称为函数z =f (x , y )对自变量x 的偏导函数, 记作

x z ??, x

f ??, x z , 或),(y x f x

.

偏导函数的定义式: x y x f y x x f y x f x x ?-?+=→?)

,(),(lim ),(0

.

类似地, 可定义函数z =f (x , y )对y 的偏导函数, 记为

y z ??, y

f

??, z y , 或),(y x f y . 偏导函数的定义式: y

y x f y y x f y x f y y ?-?+=→?)

,(),(lim ),(0

.

求x f ??时, 只要把y 暂时看作常量而对x 求导数; 求y

f ??时, 只要把x 暂时看作常量而对y 求导数.

讨论: 下列求偏导数的方法是否正确?

0),(),(00y y x x x x y x f y x f ===, 0

0),(),(00y y x x y y y x f y x f ===.

]),([

),(000x x x y x f dx

d y x f ==, 0]),([),(000y y y y x f dy d y x f ==. 偏导数的概念还可推广到二元以上的函数. 例如三元函数u =f (x , y , z )在点(x , y , z )处对x 的偏导数定义为

x

z y x f z y x x f z y x f x x ?-?+=→?),,(),,(lim

),,(0

,

其中(x , y , z )是函数u =f (x , y , z )的定义域的内点. 它们的求法也仍旧是一元函数的微分法问题. 例1 求z =x 2+3xy +y 2在点(1, 2)处的偏导数. 解

y x x

z 32+=??, y x y z 23+=??. 823122

1=?+?=??==y x x z

,

722132

1=?+?=??==y x y

z .

例2 求z =x 2sin 2y 的偏导数.

y x x

z 2sin 2=??, y x y z 2cos 22=??.

例3 设)1,0(≠>=x x x z y , 求证: z

y

z x x z y x 2ln 1=??+??.

1-=??y yx x

z , x x y z y ln =??.

z

x x x x x

yx y x y z x x z y x y y y y 2ln ln 1ln 11=+=+=??+??-.

例4 求222z y x r ++=的偏导数. 解

r x z y x x x r =++=??222; r

y z y x y y r =++=??222. 例5 已知理想气体的状态方程为pV =RT (R 为常数), 求证:

1-=????????p

T

T V V p . 证 因为V

RT p =, 2V RT V p -=??;

p RT V =, p R

T V =??;

R

pV T =, R V

p T =??; 所以

12-=-=??-=????????pV RT R

V p R V RT p T T V V p .

例5 说明的问题: 偏导数的记号是一个整体记号, 不能看作分子分母之商. 二元函数z =f (x , y )在点(x 0, y 0)的偏导数的几何意义:

f x (x 0, y 0)=[f (x , y 0)]x '是截线z =f (x , y 0)在点M 0处切线T x 对x 轴的斜率. f y (x 0, y 0) =[f (x 0, y )]y '是截线z =f (x 0, y )在点M 0处切线T y 对y 轴的斜率.

偏导数与连续性: 对于多元函数来说, 即使各偏导数在某点都存在, 也不能保证函数在该点连续. 例如

???

??=+≠++=0

00

),(222222y x y x y x xy y x f

在点(0, 0)有, f x (0, 0)=0, f y (0, 0)=0, 但函数在点(0, 0)并不连续. 提示:

0)0 ,(=x f , 0) ,0(=y f ; 0)]0 ,([)0 ,0(==

x f dx

d f x , 0)] ,0([)0 ,0(==y f dy d f y

.

当点P (x , y )沿x 轴趋于点(0, 0)时, 有

00lim )0 ,(lim ),(lim 0

)

0,0(),(===→→→x x y x x f y x f ;

当点P (x , y )沿直线y =kx 趋于点(0, 0)时, 有

2

2222022 )0,0(),(1lim lim

k k x k x kx y x xy x kx

y y x +=+=+→=→.

因此, ),(lim )

0,0(),(y x f y x →不存在, 故函数f (x , y )在(0, 0)处不连续.

类似地, 可定义函数z =f (x , y )对y 的偏导函数, 记为

y z ??, y

f ??, z y , 或),(y x f y . 偏导函数的定义式: y

y x f y y x f y x f y y ?-?+=→?)

,(),(lim ),(0

.

二. 高阶偏导数

设函数z =f (x , y )在区域D 内具有偏导数

),(y x f x z x

=??, ),(y x f y z y =??,

那么在D 内f x (x , y )、f y (x , y )都是x , y 的函数. 如果这两个函数的偏导数也存在, 则称它们是函数z =f (x , y )的二偏导数. 按照对变量求导次序的为同有下列四个二阶偏导数 如果函数z =f (x , y )在区域D 内的偏导数f x (x , y )、f y (x , y )也具有偏导数, 则它们的偏导数称为函数z =f (x , y )的二阶偏导数. 按照对变量求导次序的 不同有下列四个二阶偏导数

),()(2y x f x z x z x xx =??=????, )

,()(2y x f y x z x z y xy

=???=????,

),()(2y x f x y z y z x yx =???=????, ),()(2

2y x f y z y z y yy

=??=????.

其中),()(2y x f y x z x z y xy =???=????, )

,()(2y x f x y z y z x yx

=???=????称为混合偏导数.

2)(x z x z x ??=????, y x z x z y ???=????2)(,

x y z y z x ???=????2)(, 2

2)(y z y z y ??=????.

同样可得三阶、四阶、以及n 阶偏导数. 二阶及二阶以上的偏导数统称为高阶偏导数.

例6 设z =x 3y 2

-3xy 3

-xy +1, 求22x z ??、33x

z ??、x y z ???2和

y x z ???2.

y y y x x

z --=??32233, x xy y x y z --=??2392;

226xy x z =??, 2

36y x z =??;

1962

22--=???y y x y x z , 196222

--=???y y x x

y z .

由例6观察到的问题:

y

x z x y z ???=???2

2 定理 如果函数z =f (x , y )的两个二阶混合偏导数x y z ???2及y

x z ???2在区域D 内连续, 那么在该区域内这两个二阶混合偏导数必相等.

类似地可定义二元以上函数的高阶偏导数.

例7 验证函数2

2ln y x z +=满足方程02222=??+??y

z x z . 证 因为)ln(2

1ln 2222y x y x z +=+=, 所以

22y x x x z +=??, 2

2y x y y z +=??, 222222222222)

()(2)(y x x y y x x x y x x z +-=+?-+=??,

222222222222)()(2)(y x y x y x y y y x y z +-=+?-+=??.

因此 0)()(22222222222222=+-++-=??+??y x x y y x y x y z x z . 例8.证明函数r u 1=满足方程0222222=??+??+??z

u y u x u ,

其中222z y x r ++=.

证:

32211r x r x r x r r x u -=?-=???-=??,

5

2

343223131r x r x r r x r x u +-=???+-=??.

同理 5232231r

y r y u +-=??, 5232231r z r z u +-=??. 因此)31()31()31(523523523222222r z r r y r r x r z u y u x u +-++-++-=??+??+?? 033)(3352352223=+-=+++

-=r r r r z y x r . 提示: 623633322

3)()(r

x r r x r r r x x r r x x x u ???--=???--=-??=??.

§8. 3全微分及其应用 一、全微分的定义

根据一元函数微分学中增量与微分的关系, 有 偏增量与偏微分:

f (x +?x , y )-f (x , y )≈f x (x , y )?x ,

f (x +?x , y )-f (x , y )为函数对x 的偏增量, f x (x , y )?x 为函数对x 的偏微分; f (x , y +?y )-f (x , y )≈f y (x , y )?y ,

f (x , y +?y )-f (x , y )为函数)对y 的偏增量, f y (x , y )?y 为函数对y 的偏微分. 全增量: ?z = f (x +?x , y +?y )-f (x , y ).

计算全增量比较复杂, 我们希望用?x 、?y 的线性函数来近似代替之. 定义 如果函数z =f (x , y )在点(x , y )的全增量 ?z = f (x +?x , y +?y )-f (x , y ) 可表示为

) )()(( )(22y x o y B x A z ?+?=+?+?=?ρρ,

其中A 、B 不依赖于?x 、?y 而仅与x 、y 有关, 则称函数z =f (x , y )在点(x , y )可微分, 而称A ?x +B ?y 为函数z =f (x , y )在点(x , y )的全微分, 记作dz , 即 dz =A ?x +B ?y .

如果函数在区域D 内各点处都可微分, 那么称这函数在D 内可微分. 可微与连续: 可微必连续, 但偏导数存在不一定连续. 这是因为, 如果z =f (x , y )在点(x , y )可微, 则 ?z = f (x +?x , y +?y )-f (x , y )=A ?x +B ?y +o (ρ), 于是 0lim 0

=?→z ρ,

从而

),(]),([lim ),(lim 0

)

0,0(),(y x f z y x f y y x x f y x =?+=?+?+→→??ρ.

因此函数z =f (x , y )在点(x , y )处连续. 可微条件: 定理1(必要条件)

如果函数z =f (x , y )在点(x , y )可微分, 则函数在该点的偏导数x z ??、y

z ??必定存在, 且函数z =f (x ,

y )在点(x , y )的全微分为 y

y

z x x z dz ???+???=

.

证 设函数z =f (x , y )在点P (x , y )可微分. 于是, 对于点P 的某个邻域内的任意一点P '(x +?x , y +?y ), 有?z =A ?x +B ?y +o (ρ). 特别当?y =0时有 f (x +?x , y )-f (x , y )=A ?x +o (|?x |). 上式两边各除以?x , 再令?x →0而取极限, 就得

A x y x f y x x f x =?-?+→?)

,(),(lim

,

从而偏导数

x z ??存在, 且A x

z =??. 同理可证偏导数y z ??存在, 且B y z =??. 所以

y y

z x x z dz ???+???=

.

简要证明: 设函数z =f (x , y )在点(x , y )可微分. 于是有?z =A ?x +B ?y +o (ρ). 特别当?y =0时有 f (x +?x , y )-f (x , y )=A ?x +o (|?x |). 上式两边各除以?x , 再令?x →0而取极限, 就得

A x x o A x y x f y x x f x x =??+=?-?+→?→?]|)

(|[lim ),(),(lim 0

0,

从而

x z ??存在, 且A x

z =??. 同理y z ??存在, 且B y z =??. 所以y y z x x z dz ???+???=. 偏导数

x z ??、y

z ??存在是可微分的必要条件, 但不是充分条件.

例如,

函数??

?

??=+≠++=0 00 ),(222222y x y x y x xy y x f 在点(0, 0)处虽然有f x (0, 0)=0及f y (0, 0)=0, 但函数在

(0, 0)不可微分, 即?z -[f x (0, 0)?x +f y (0, 0)?y ]不是较ρ高阶的无穷小. 这是因为当(?x , ?y )沿直线y =x 趋于(0, 0)时, ρ

]

)0 ,0()0 ,0([y f x f z y x ??+??-?02

1)()()()(2222≠=?+????=

?+????=

x x x x y x y x .

定理2(充分条件) 如果函数z =f (x , y )的偏导数

x z ??、y

z ??在点(x , y )连续, 则函数在该点可微分. 定理1和定理2的结论可推广到三元及三元以上函数.

按着习惯, ?x 、?y 分别记作dx 、dy , 并分别称为自变量的微分, 则函数z =f (x , y )的全微分可写作

dy y

z dx x z dz ??+??=

. 二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理. 叠加原理也适用于二元以上的函数, 例如函数u =f (x , y , z ) 的全微分为 dz

z

u dy y u dx x u du ??+??+??=

.

例1 计算函数z =x 2y +y 2的全微分.

解 因为

xy x

z 2=??, y x y z 22+=??,

所以dz =2xydx +(x 2+2y )dy .

例2 计算函数z =e xy 在点(2, 1)处的全微分. 解 因为

xy ye x

z =??, xy xe y z =??,

212e x z y x =??==, 2

1

22e y z y x =??==, 所以 dz =e 2dx +2e 2dy . 例3 计算函数yz

e y x u ++=2

sin 的全微分. 解 因为

1=??x

u , yz ze y y u +=??2cos 21, yz ye z u =??,

所以 dz ye dy ze y dx du yz yz +++=)2

cos 2

1(. *二、全微分在近似计算中的应用

当二元函数z =f (x , y )在点P (x , y )的两个偏导数f x (x , y ) , f y (x , y )连续, 并且|?x |, |?y |都较小时, 有近似等式

?z ≈dz = f x (x , y )?x +f y (x , y )?y ,

即 f (x +?x , y +?y ) ≈ f (x , y )+f x (x , y )?x +f y (x , y )?y . 我们可以利用上述近似等式对二元函数作近似计算.

例4 有一圆柱体, 受压后发生形变, 它的半径由20cm 增大到20. 05cm , 高度由100cu 减少到99cm . 求此圆柱体体积变化的近似值.

解 设圆柱体的半径、高和体积依次为r 、h 和V , 则有 V =π r 2h .

已知r =20, h =100, ?r =0. 05, ?h =-1. 根据近似公式, 有 ?V ≈dV =V r ?r +V h ?h =2πrh ?r +πr 2?h

=2π?20?100?0. 05+π?202?(-1)=-200π (cm 3). 即此圆柱体在受压后体积约减少了200π cm 3. 例5 计算(1. 04)2. 02的近似值.

解 设函数f (x , y )=x y . 显然, 要计算的值就是函数在x =1.04, y =2.02时的函数值f (1.04, 2.02). 取x =1, y =2, ?x =0.04, ?y =0.02. 由于

f (x +?x , y +?y )≈ f (x , y )+f x (x , y )?x +f y (x , y )?y

=x y +yx y -1?x +x y ln x ?y ,

所以

(1.04)2. 02≈12+2?12-1?0.04+12?ln1?0.02=1.08.

例6 利用单摆摆动测定重力加速度g 的公式是

2

4T

l

g π=.

现测得单摆摆长l 与振动周期T 分别为l =100±0.1cm 、T =2±0.004s. 问由于测定l 与T 的误差而引起g 的绝对误差和相对误差各为多少?

解 如果把测量l 与T 所产生的误差当作|Δl |与|ΔT |, 则利用上述计算公式所产生的误差就是

二元函数22

4T

l

g π=的全增量的绝对值|Δg |. 由于|Δl |, |ΔT |都很小, 因此我们可以用dg 来近似地代替

Δg . 这样就得到g 的误差为

||

||||T T g l l g dg g ???+???=≈? T

l T g

l g δδ???+???≤||

|| )21(4322T l T

l T δδπ+=, 其中δl 与δT 为l 与T 的绝对误差. 把l =100, T =2, δl =0.1, δT =0.004代入上式, 得g 的绝对误差约为

)004.02

10022

1.0(43

22??+=πδg )/(93.45.022s cm ==π.

002

225.02100

45.0=?=ππδg g

. 从上面的例子可以看到, 对于一般的二元函数z =f (x, y ), 如果自变量x 、y 的绝对误差分别为δx 、

δy , 即

|Δx |≤δx , |Δy |≤δy , 则z 的误差

|

|

||||y y z x x z dz z ???+???=≈?

||||||||y y

z

x x z ????+????≤

y

x y z x z δδ???+???≤||||;

从而得到z 的绝对误差约为

y

x z y z x z δδδ???+???=||||; z 的相对误差约为

y

x z z y

z z x z

z δδδ??+??=||.

§8. 4 多元复合函数的求导法则

设z =f (u , v ), 而u =?(t ), v =ψ(t ), 如何求dt

dz ?

设z =f (u , v ), 而u =?(x , y ), v =ψ(x , y ), 如何求

x z ??和y

z ???

1. 复合函数的中间变量均为一元函数的情形

定理1 如果函数u =?(t )及v =ψ(t )都在点t 可导, 函数z =f (u , v )在对应点(u , v )具有连续偏导数, 则复合函数z =f [?(t ), ψ(t )]在点t 可导, 且有

dt

dv v z dt du u z dt dz ???+???=. 简要证明1: 因为z =f (u , v )具有连续的偏导数, 所以它是可微的, 即有 dv v

z du u z dz ??+??=

. 又因为u =?(t )及v =ψ(t )都可导, 因而可微, 即有 dt dt du du =, dt dt

dv dv =, 代入上式得

dt dt dv v z dt dt du u z dz ???+???=

dt dt dv v z dt du u z )(???+???=, 从而

dt

dv v z dt du u z dt dz ???+???=.

简要证明2: 当t 取得增量?t 时, u 、v 及z 相应地也取得增量?u 、?v 及?z . 由z =f (u , v )、u =?(t )及v =ψ(t )的可微性, 有 )(ρo v v z u u z z +???+???=

?)()]([)]([ρo t o t dt

dv v z t o t dt du u z +?+???+?+???=

)()()()(

ρo t o v

z u z t dt dv v z dt du u z +???+??+????+???=,

t

o t t o v z u z dt dv v z dt du u z t z ?+????+??+???+???=??)

()()(ρ,

令?t →0, 上式两边取极限, 即得

dt

dv v z dt du u z dt dz ???+???=. 注:0)()(0)()()(lim )(lim 222

200=+?=??+??=?→?→?dt dv dt du t v u o t o t t ρ

ρρ.

推广: 设z =f (u , v , w ), u =?(t), v =ψ(t ), w =ω(t ), 则z =f [?(t), ψ(t ), ω(t )]对t 的导数为: dt

dw w z dt dv v z dt du u z dt dz ??+??+??=.

上述dt

dz 称为全导数.

2. 复合函数的中间变量均为多元函数的情形

定理2 如果函数u =?(x , y ), v =ψ(x , y )都在点(x , y )具有对x 及y 的偏导数, 函数z =f (u , v )在对应点(u , v )具有连续偏导数, 则复合函数z =f [?(x , y ), ψ(x , y )]在点(x , y )的两个偏导数存在, 且有

x v v z x u u z x z ?????+?????=??, y

v v z y u u z y z ?????+?????=??. 推广: 设z =f (u , v , w ), u =?(x , y ), v =ψ(x , y ), w =ω(x , y ), 则

x w w z x v v z x u u z x z ?????+?????+?????=??, y

w w z y v v z y u u z y z ?????+?????+?????=??. 讨论:

(1)设z =f (u , v ), u =?(x , y ), v =ψ(y ), 则

=??x

z ?=??y z ?

提示:

x u u z x z ?????=??, dy

dv v z y u u z y z ???+?????=??.

(2)设z =f (u , x , y ), 且u =?(x , y ), 则

=??x

z ?=??y z ?

提示:

x f x u u f x z ??+????=??, y

f y u u f y z ??+????=??.

这里

x z ??与x f ??是不同的, x z ??是把复合函数z =f [?(x , y ), x , y ]中的y 看作不变而对x 的偏导数, x

f ??是把f (u , x , y )中的u 及y 看作不变而 对x 的偏导数. y z ??与y

f

??也朋类似的区别.

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

第八章多元函数微分法及其应用

第八章多元函数微分法及其应用 第一节多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、区域 1.邻域 设P o(x°,y。)是xoy平面上的一个点,是某一正数。与点P o(X o,y°)距离小于:的 点p(x,y)的全体,称为点p的「?邻域,记为U(P0,、),即 U(P°,、)= {P PPo < }, 也就是 U (P o,、)= {(X, y)丨..(X -X。)2(y - y o)2、}。 在几何上,U(P o「J就是xoy平面上以点p o(x o,y。)为中心、:-0为半径的圆内部 的点P(x,y)的全体。 2.区域 设E是平面上的一个点集,P是平面上的一个点。如果存在点P的某一邻域U(P) E, 则称P为E的内点。显然,E的内点属于E。 如果E的点都是内点,则称E为开集。例如,集合E, ={(x, y)1 vx2+ y2£4}中每个点都是E,的内点,因此E,为开集。 如果点P的任一邻域内既有属于E的点,也有不属于E的点(点P本身可以属于E,也可以不属于E ),则称P为E的边界点。E的边界点的全体称为E的边界。例如上例中,E ,的边界是圆周x2 y2 = 1和x2 y2=4o

设D是点集。如果对于D内任何两点,都可用折线连结起来,且该折线上的点都属于 D,则称点集D是连通的。 连通的开集称为区域或开区域。例如,{(x, y) x + y a 0}及{( x, y)d 0}及{(x, y) | 1< x y <4} 都是闭区域。 对于平面点集E ,如果存在某一正数r,使得 E U(0,r), 其中0是原点坐标,则称E为有界点集,否则称为无界点集。例如,{(x,y) | K x2 y2< 4}是有界闭区域,{(x, y) | x y>0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1圆柱体的体积V和它的底半径r、高h之间具有关系 V =二r2h 。 这里,当r、h在集合{(r,h) r 0,h 0}内取定一对值(r,h)时,V的对应值就随之确定。 例2 一定量的理想气体的压强p、体积V和绝对温度T之间具有关系 RT P =— V 其中R为常数。这里,当V、T在集合{(V,T) V >0,T >T0}内取定一对值(V,T)时,p的 对应值就随之确定。 定义1设D是平面上的一个点集。称映射 f : D》R为定义在D上的二元函数,通 常记为 z 二f(x, y) , (x, y) D (或z 二f(P) , P D )。 其中点集D称为该函数的定义域,x、y称为自变量,z称为因变量。数集

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

多元函数微分习题

多元函数微分学 1.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 2.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连 续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 3.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31,31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2,91,91(2- 答:A 4.函数z f x y =(.)在点(,)x y 00处具有两个偏导数f x y f x y x y (,),(,)0000 是函数存在全 微分的( )。 (A).充分条件 (B).充要条件 (C).必要条件 (D). 既不充分也不必要 答C 5.对于二元函数z f x y =(,),下列有关偏导数与全微分关系中正确的命题是 ( )。 (A).偏导数不连续,则全微分必不存在 (B).偏导数连续,则全微分必存在 (C).全微分存在,则偏导数必连续 (D).全微分存在,而偏导数不一定存在 答B 6.二元函数z f x y =(,)在(,)x y 00处满足关系( )。 (A).可微(指全微分存在)? 可导(指偏导数存在)?连续 (B).可微?可导?连续 (C).可微?可导或可微?连续,但可导不一定连续 (D).可导?连续,但可导不一定可微 答C

最新多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用 (A) 1.填空题 (1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ???2,x y z ???2 ,则在D 上, x y z y x z ???=???22。 (2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。 (3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。 2.求下列函数的定义域 (1)y x z -=;(2)2 2 arccos y x z u += 3.求下列各极限 (1)x xy y x sin lim 00→→; (2)11lim 0 0-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ???23及2 3y x z ???。 5.求下列函数的偏导数 (1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数 dt dz 。 7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dt du 。 8.曲线?? ???=+= 4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程122 2222=++c z b y a x 所确定的函数z 的偏导数。 10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

第八章多元函数微分学自测题答案

《高等数学》单元自测题答案 第八章 多元函数微分学 一. 填空题 1.3ln 3xy y ; 2.503-; 3.y x z y ++-; 4.x x e e cos ; 5.dy dx 3 131 +; 二. 选择题 2.D ; 4.D ; 三.解答题 1.解 2 2 222222222211 )221(1y x y x y x x y x x y x x y x x x z +=+++++=++++=??, 22222222221y x x y x y y x y y x x y z +++= +++=??. 2. 解 22222)(11y x y x y x y x z +-=-+=??, 2 22 2111y x x x x y y z +=+=??, 22222222)(2)(2y x xy y x x y x z +=+?--=??, 22222222)(2)(2y x xy y x y x y z +-=+?-=??, 2 22 2 22222222) ()(2)(y x x y y x y y y x x y z y x z +-=+?++-=???=???. 3. 解 设z z y x z y x F 4),,(222-++=,有 2422''-- =--=-=??z x z x F F x z z x . 5. 解 '22'1f x y yf x z -=??, )1(1)1(''22' '212'22''12''11'12f x xf x y f x f x xf y f y x z +--++=???

=''223 ' '11'22'11f x y xyf f x f -+- . 6. 解 令?????=+-==-+=,063, 09632 '2 'y y f x x f y x 得驻点 (1,0), (1,2), (-3,0), (-3,2) 又 66' '+=x f xx , 0''=xy f , 66''+-=y f yy , 在点(1,0)处,0722>=-B AC ,012>=A ,所以5)0,1(-=f 为极小值; 在点(1,2)处,0722<-=-B AC , ,所以)2,1(f 不是极值; 在点(-3,0)处,0722<-=-B AC , 所以)0,3(-f 不是极值; 在点(-3,2)处,0722>=-B AC ,012<-=A ,所以31)2,3(=-f 为极大值. 8. 解 设长,宽,高为 z y x ,,,由题设 xy V z = ,水箱的表面积 )11(2)(2),(y x V xy z y x xy y x S S ++=++==, 问题成为求 ),(y x S 在区域 0,0:>>y x D 的最小值问题.令 ??? ????=-==-=,02,022' 2' y V x S x V y S y x 得D 内唯一驻点3002V y x ==,由问题实际意义知 ),(y x S 在D 内的最小值一定存在,因此可断定),(00y x S 就是最小值,此时 3 33 04 22V V V V z =?=.

多元函数微分法及其应用

第八章多元函数微分法及其应用 (讲授法18学时) 上册研究了一元函数微分法,利用这些知识,我们可以求直线上质点运动的速度和加速度,也可以求曲线的切线的斜率,可以判断函数的单调性和极值、最值等,但这远远不够,因为一元函数只是研究了由一个因素确定的事物。一般地说,研究自然现象总离不开时间和空间,确定空间的点需要三个坐标,所以一般的物理量常常依赖于四个变量,在有些问题中还需要考虑更多的变量,这样就有必要研究多元函数的微分学。 多元函数微分学是一元函数的微分学的推广,所以多元函数微分学与一元函数微分学有许多相似的地方,但也有许多不同的地方,学生在学习这部分内容时,应特别注意它们的不同之处。 一、教学目标与基本要求 1、理解多元函数的概念,理解二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、教学内容及学时分配: 第一节多元函数的基本概念2课时 第二节偏导数2学时 第三节全微分2学时 第四节多元复合函数的求导法则2学时 第五节隐函数的求导公式2学时 第六节多元函数微分学的几何应用2学时 第七节方向导数与梯度2学时 第八节多元函数的极值及其求法2学时 三、教学内容的重点及难点: 重点: 1.多元函数的极限与连续; 2.偏导数的定义;全微分的定义 3.多元复合函数的求导法则;隐函数的求导法则 4.方向导数与梯度的定义 5.多元函数的极值与最值的求法 难点: 1.多元函数微分学的几个概念,即多元函数极限的存在性、多元函数的连续性、偏导数的存在性、全微分的存在性、偏导数的连续性之间的关系; 2.多元复合函数的求导法则中,抽象函数的高阶导数; 3.由方程组确定的隐函数的求导法则; 4.梯度的模及方向的意义; 5.条件极值的求法

多元函数微分学复习题及答案

多元函数微分学复习题及 答案 Last revision on 21 December 2020

第八章 多元函数微分法及其应用复习题及解答 一、选择题 1.极限lim x y x y x y →→+00 242 = ( B ) (A)等于0; (B)不存在; (C)等于 12; (D)存在且不等于0或12 (提示:令22y k x =) 2、设函数f x y x y y x xy xy (,)sin sin =+≠=?????11000,则极限lim (,)x y f x y →→0 = ( C ) (A)不存在; (B)等于1; (C)等于0; (D)等于2 (提示:有界函数与无穷小的乘积仍为无穷小) 3、设函数f x y xy x y x y x y (,)=++≠+=???? ?22 2222000,则(,)f x y ( A ) (A) 处处连续; (B) 处处有极限,但不连续; (C) 仅在(0,0)点连续; (D) 除(0,0)点外处处连续 (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = ,2000(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续。所以, (,)f x y 在整个定义域内处处连续。) 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件; (B)充分而非必要条件; (C)充分必要条件; (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22+; (B) -+y x y 22; (C) y x y 22+ ; (D) -+x x y 22

多元函数微分法word版

§5.3 多元函数微分法 一、复合函数微分法――链式法则 模型1. ()()()z f u v u u x y v v x y ==,,,,=, z z u z z z u z x u x x y u y y νννν??????????=?+?=?+???????????; 模型2. ()()u f x y z x y =,,,z=z , x z y z u z f f x x u z f f y y ???''=+????? ???''=+???? 模型3. ()()()u f x y z y y x z x ===,,,,z ()()x y z du f f y x f z x dx '''''=++ 模型4. ()()()w f u v u u x y z v v x y z ===,,,,,,, u v u v u v w u v f f x x x w u v f f y y y w u v f f z z z ????''=+????? ????''=+? ????????''=+????? 还有其他模型可以类似处理。 【例1】 设()u f x y z =,,有连续的一阶偏导数,又函数()y y x =及()z z x =分别由 下列两式确定2xy e xy -=和0sin x z x t e dt t -= ?,求du dx 。 解 根据模型3. x y z du dy dz f f f dx dx dx '''=++

由2xy e xy -=两边对x 求导,得0xy dy dy e y x y x dx dx ???? +-+= ??????? 解出 dy y dx x =-(分子和分母消去公因子()1xy e -) 由0 sin x z x t e dt t -= ? 两边对x 求导,得()()sin 1x x z dz e x z dx -??=- ?-?? 解出 ()() 1sin x e x z dz dx x z -=- - 所以 ()()1sin x e x z du f y f f dx x x y x z z ??-???=-+-?? ??-??? 【98】设1 ()()z f xy y x y x ?=++,f ,?具有二阶连续导数,则 2________z x y ?=??。 答案:()()()yf xy x y y x y ??'''''++++ 注:①混合偏导数在连续的条件下与求导次序无关; ②此题中f 和?均为一元函数。 【05】设函数(,)()()()d x y x y u x y x y x y t t ??ψ+-=++-+? ,其中函数?具有二阶导数,ψ 具有一阶导数,则必有( ) (A )2222u u x y ??=-??;(B )2222u u x y ??=??;(C )222u u x y y ??=???;(D )222 u u x y x ??=??? 答案:B 全微分形式不变性 例:利用全微分形式不变性求sin u z e v =,u xy =,v x y =+的偏导数。 【06】设函数()f u 在(0,)+∞内具有二阶导数,且z f =满足等式 2222 0z z x y ??+=??

多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用 一、多元函数的基本概念 1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限 ? 00(,)(,) lim (,)x y x y f x y A →=(或0 lim (,)P P f x y A →=)的εδ-定义 ? 掌握判定多元函数极限不存在的方法: (1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言 函数极限不存在; (2)找两种不同趋近方式,若 00(,)(,) lim (,)x y x y f x y →存在,但两者不相等, 此时也可断言极限不存在。 ? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似: 例1.用εδ-定义证明 2222 (,)(0,0) 1 lim ()sin 0x y x y x y →+=+ 例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22 2 222 ()+++-x y x y x y 的极限是否存在?证明你的结论。 例3 设22 2222,0 (,)0,0xy x y x y f x y x y ?+≠?+=??+=? ,讨论(,)(0,0) lim (,)x y f x y →是否存在? 例4(07年期末考试 一、2,3分)设222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y ,讨论 (,)(0,0) lim (,)→x y f x y 是否存在?

例5.求222 (,)(0,0)sin() lim x y x y x y →+ 3、多元函数的连续性0000(,)(,) lim (,)(,)x y x y f x y f x y →? = ? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。 ? 在定义区域内的连续点求极限可用“代入法” 例1. 讨论函数3322 22 22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。 例2. (06年期末考试 十一,4分)试证222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y 在 点(0,0)不连续,但存在一阶偏导数。 例3.求 (,)(1,2)lim x y x y xy →+ 例4 .(,)(0,0)lim x y → 4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理 二、多元函数的偏导数 1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义) 如果极限00000 (,)(,) lim x f x x y f x y x ?→+?-?存在,则有 00 000 0000000 (,)(,) (,)lim x x x x x y y x x x x y y y y f x x y f x y z f z f x y x x x =?→=====+?-??= ===??? (相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。)

第八章多元函数微分法及其应用

第八章 多元函数微分法及其应用 第一节 多元函数的基本概念 1、 平面点集、n 维空间、多元函数的概念,这些你如果不知道就看看。我下面的资料是从P7开始 的。 2、 在数轴上(一维空间),当0x x →时,只有两种趋近方式:一是x 从左边趋近于0x ,即0x x - →; 二是x 从右边趋近于0x ,即0x x + →。在平面直角坐标系中(二维空间),点(,)x y 趋近于点 00(,)x y 时,即00(,)(,)x y x y →的方式有无穷多种,例如,当(,)(0,0)x y →时,点(,)x y 既可 以沿x 正半轴趋于点(0,0)——这时(,)(0,0) lim (,)x y f x y →便可写成0 lim (,0)x f x + →,也可以沿x 负半轴趋于点(0,0)——这时(,)(0,0) lim (,)x y f x y →便可写成0 lim (,0)x f x - →;点(,)x y 既可以沿y 正半轴趋于点(0,0)——这时(,)(0,0) lim (,)x y f x y →便可写成0 lim (0,)y f y + →,也可以沿y 负半轴趋于点(0,0)——这时 (,)(0,0) lim (,)x y f x y →便可写成0 lim (0,)y f y - →;同时点(,)x y 也可以沿直线3y x =趋于点(0,0)——这时 (,)(0,0) lim (,)x y f x y →便可以写成0 lim (,3)x f x x →;也可以沿正弦函数图象sin y x =趋于点 (0,0)——这时 (,)(0,0) lim (,)x y f x y →便可以写成0 lim (,sin )x f x x →。我们应该意识到,点(,)x y 还可以 沿着一些不规则的路径趋于点(0,0)。这里说了这么多,就是要让你明白P7第二段中的“这里 0P P →表示点P 以任何方式趋于点0P ”这句话的涵义。 3、 对于多元函数的极限,特别是二元函数的极限,只需要了解它的定义,并且会求简单的二元函 数的极限,如本节例5、7、8这些题型。考研中,二元函数的极限的计算应该不会考到,重点是一元函数的极限的计算题。但是要会判断 (,)(0,0) lim (,)x y f x y A →≠这类题型,就是通过找一条特 殊路径求出它的极限不等于A 。如P8页给出的那个例题: 22 22 22,00,0 (,){ xy x y x y x y f x y +≠++== 4、 了解多元函数(二元函数)连续性的定义,后面的间断点、最大值最小值定理、介值定理看看 就行了。 5、 习题8——1第 6、7题,结合答案看看就行了。

多元函数微分法

第十章 多元函数微分学 一、学习要点 1.关于二元函数 会求二元函数的定义域和相应的函数值。求二元函数定义域及函数值的方法与一元函数的方法相似。 2.关于二元函数微分 (1)熟练掌握一阶、二阶偏导数的计算方法和复合函数、隐函数一阶偏导数的计算方法,尤其是形如z=f (x 2-y 2 ,e xy )等的复合函数的偏导数。能熟练地求全微分。 偏导数的定义、计算公式基本与一元函数导数公式相同。求偏导数时,对一个变量求导时,将另一变量视为常数。如求函数32ln z y x u ++=的偏导数 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) 复合函数求偏导数是难点。一般用链式法则,即z=f (u ,v),u=u(x ,y),v=v(x ,y),有 y v v z y u u z y z x v v z x u u z x z ????????????????????+=+= 具体情况有两种: (一)全部函数关系都给出:这时可按前边方法求偏导数,如求二元函数 )ln(2v u z +=,xy e v y x u =+=,22. 的偏导数y z x z ????,,可以把u ,v 代入z 中,再求偏导数,即 z=ln(x 2+y 2+e 2xy ),求偏导数有 xy xy e y x ye x x z 222222+++=?? xy xy e y x xe y y z 222222+++=?? (二)部分函数关系没有给出:此时只有用链式法则。如求函数z=f(xy ,x 2+y 3),

的一阶偏导数,则不能用如上方法求解.正确求法是记u=xy ,v=x 2+y 3,用链式法则 x v f y u f x v v z x u u z x z 2??????????????+=+=,23y v f x u f y z ??????+= 上例也可以用链式法则,有 xy xy xe v u v y v u y z ye v u v x v u x z 2222221,221+++=+++=???? 求隐函数的偏导数,是复合函数求偏导数的应用,方法仍然同一元隐函数的求导. 如求函数32ln z y x u ++=的偏导数. 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) (2)知道函数连续、可微、偏导数存在的关系。 3.关于偏导数的几何应用 掌握求曲线的切线与法平面,曲面的切平面与法线的方法. (1)设空间曲线方程为x =x (t),y =y (t),z = z (t),在t=t 0处的切线方向为 ))(),(),((000t z t y t x l '''=ρ,则在t 0处曲线的 切线方程为 )()()()()()(000000t z t z z t y t y y t x t x x '-='-='- 法平面方程为 )())(()())(()())((000000t z t z z t y t y y t x t x x '-+'-+'-=0 (2)曲面F (x ,y ,z)=0(或z=f (x ,y)),在曲面上的点P(x 0,y 0,z 0)处的法方向为)}1,,{(},,{),,(),,(000000z y x y x z y x z y x f f F F F n -'''''=或ρ,则在点(x 0,y 0,z 0)处的 切平面方程为 0)()()(000=-'+-'+-'z z F y y F x x F z y x 法线方程为 z y x F z z F y y F x x ' -='-='-000

高等数学(同济第五版)第八章-多元函数微分学-练习题册

. 第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( )

. 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题:

第八章多元函数微分法及其应用.doc

第八章多元函数微分法及其应用 一、内容提要 多元函数微分法是一元两数微分法的推广,有许多相似之处,学习时应 注意对比,搞清界同. 1. 基本概念与定理 设函数U = f(P),点P 可以是1,2,3,…丿维的.当n>2时,称此函数为多 ① 二元函数z = /(X, y)在儿何上表示空间一张曲面. ② 二元函数z = /(x,y)在点心(巾,儿)处的极限、连续、偏导数、全 微分的定义及关系. 极限 lim f(x,y) = A : V^>0,3t> >0,当 X->X0 .v->yo ()< p = J(_r_x ())2 +(y _y ())2 < 6时,有 I f(x, y) - A \0 Ay 二阶偏导数. 类似,可定义三阶以上的偏导数. _ 可微 若全增量A< = f(x 0 + 心,y ()+ Ay) - f(x 0,y 0)町表示为 Az = AAx + BAy + o(p),其中 q 二 J (心尸 +(2\)护, 则称z = f (x, y)在点P 0(x 0,y 0)可微.而AAx + BAy 为函数z = f (x, y)在点 P ()(w ),y ())的全微分,记 作 dA. . =AAx + B^y 定理1若函数z = /(x,y)的二阶混合偏导数f xy (x,y)及 /vx (x,y)在区域D 内连续,贝I 」在该区域内(x, y) = /VA .(x,y) ? 偏导 高阶偏导 —阶偏导数f x (x, y), fy (x, y)的偏导数,称为函数f (x, y)的 a? = /.u-UoO=£ dydx 空、 dx )

第九章多元函数微分法及其应用教案

第九章多元函数微分法及其应用 【教学目标与要求】 1、理解多元函数的概念和二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 【教学重点】 1、二元函数的极限与连续性; 2、函数的偏导数和全微分; 3、方向导数与梯度的概念及其计算; 4、多元复合函数偏导数; 5、隐函数的偏导数;多元函数极值和条件极值的求法; 6、曲线的切线和法平面及曲面的切平面和法线; 【教学难点】 1、二元函数的极限与连续性的概念; 2、全微分形式的不变性; 3、复合函数偏导数的求法; 4、二元函数的二阶泰勒公式; 5、隐函数(包括由方程组确定的隐函数)的偏导数; 6、拉格郎日乘数法,多元函数的最大值和最小值。 【教学课时分配】 (18学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课§5 第6次课§6 第7次课§7 第8次课§8 第9次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

多元函数微分学总结

`第八章多元函数微分学 8.1基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 8.2基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。

(1)基本概念 ①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于 这一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24 (,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++,

多元函数微分学复习(精简版)

高等数学下册复习提纲 第八章 多元函数微分学 本章知识点(按历年考试出现次数从高到低排列): 复合函数求导(☆☆☆☆☆) 条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆) 曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆) 一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆) 1. 多元复合函数高阶导数 例 设),,cos ,(sin y x e y x f z +=其中f 具有二阶连续偏导数,求x y z x z ?????2及. 解 y x e f x f x z +?'+?'=??31cos , y x y x y x y x e e f y f f e x e f y f y x z x y z ++++?''+-?''+'+?''+-?''=???=???])sin ([cos ])sin ([333231312 22析 1)明确函数的结构(树形图) 这里y x e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构 图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一 项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”. 2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x y x e y x f e y x f ++''的简写形式,它们与z 的结构 相同,仍然是y x e y x +,cos ,sin 的函数.所以1f '对y 求导数为 z u v w x x y y

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

相关主题