当前位置:文档之家› 弹簧的弹性势能

弹簧的弹性势能

弹簧的弹性势能
弹簧的弹性势能

1.关于弹力做功与弹性势能的关系,我们在进行猜想时,可以参考重力做功与重力势能的关系,则下面的猜想有道理的是()

①弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能增加;

②弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能减少;

③弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能增加;

④弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能减少。

A. ①③

B. ②③

C. ①④

D. ②④

2.在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg的木块相连,若在木块上再作用一个竖直向下的力F,使木块缓慢向下移动0.10m,力F做功2.5J。此时木块再次处于平衡状态,力F的大小为50N,如图所示。求:

(1)在木块下移0.10m的过程中弹簧弹性势能的增加量。

(2)弹簧的劲度系数(g取10m/s2)。

解答:

(1)木块下移0.1m过程中,力F和重力做的功全部用于增加弹簧的弹

性势能,故弹性势能的增加量为:

△EP=WF+mgh=(2.5+2.0×10×0.1)J=4.5J;

(2)由平衡条件得,木块再次处于平衡时:△F=k·△l,

所以,劲度系数k=△F△l=500.10N/m=500N/m。

3.一根弹簧的弹力?位移图线如图所示,那么弹簧由伸长量4cm到伸长量8cm

的过程中,弹力的功和弹性势能的变化量为()

A.1.8J,?1.8J

B.?1.8J,1.8J

C.3.6J,?3.6J

D.?3.6J,3.6J

解答:

F?x图象与x轴包围的面积表示弹力做功的大小,故弹簧由伸长量4cm到伸长量8cm的过程中,弹力的功:

W=?12×(30+60)×0.04J=?1.8J

弹力做功为?1.8J,故弹力势能增加了1.8J;

故选:B.

4.弹簧原长为l0,劲度系数为k.用力把它拉到伸长量为l,拉力所做的功为W1;继续拉弹簧,使弹簧在弹性限度内再伸长l,拉力在继续拉伸的过程中所做的功为W2.试求W1与W2的比值.

解析:拉力F与弹簧的伸长量l成正比,故在Fl图象中是一条倾斜直线,如图所示,直线

下的相关面积表示功的大小.其中,线段OA下的三角形面积表示

第一个过程中拉力所做的功W1,线段AB下的梯形面积表示第二

个过程中拉力所做的功W2.显然,两块面积之比为1∶3,即W1∶W2=1∶3.

答案:1∶3

5.一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。假定空气阻力可忽略,运动员可视为质点,下列说法不正确的是()

A. 运动员到达最低点前重力势能始终减小

B. 蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加

C. 蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒

D. 蹦极过程中,重力势能的改变与重力势能零点的选取有关

解答:

A. 运动员到达最低点前,运动员一直向下运动,根据重力势能的定义知道重力势能始终减小。故A正确。

B. 蹦极绳张紧后的下落过程中,弹性力方向向上,而运动员向下运动,所以弹性力做负功,根据弹力做功量度弹性势能的变化关系式得:

w弹=?△Ep

因为弹性力做负功所以弹性势能增加。故B正确。

C. 对于运动员、地球和蹦极绳所组成的系统,蹦极过程中只有重力和弹力做功,所以系统机械能守恒,故C正确。

D. 根据重力做功量度重力势能的变化,

wG=?△Ep

而蹦极过程中重力做功不变的,与重力势能零点的选取无关。

所以重力势能的改变与重力势能零点的选取无关。故D错误。

故选D.

6.如图所示,在光滑水平面上有一物体,它的左端连一弹簧,弹簧的另一端固定在墙上,在力

F作用下物体处于静止状态,当撤去F后,物体将向右运动。在物体向右运动的过程中,下列说法正确的是()

A. 弹簧对物体做正功,弹簧的弹性势能逐渐减少

B. 弹簧对物体做负功,弹簧的弹性势能逐渐增加

C. 弹簧先对物体做正功,后对物体做负功,弹簧的弹性势能先减少再增加

D. 弹簧先对物体做负功,后对物体做正功,弹簧的弹性势能先增加再减少

解答:

撤去F后,弹力先为推力对物体做正功,后为拉力,对物体做负功;

弹簧先从压缩状态恢复原长,弹性势能减少;

后从原长伸长,弹性势能增加。

故选:C.

7.如图所示,一根轻弹簧下端固定,竖立在水平面上。其正上方A位置有一只小球。小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零。小球下降阶段下列说法中正确的是()

A. 在B位置小球动能最大

B. 在C位置小球动能最大

C. 从A→C位置小球重力势能的减少大于小球动能的增加

D. 从A→D位置小球重力势能的减少等于弹簧弹性势能的增加

解答:

AB、小球从B至C过程,重力大于弹簧的弹力,合力向下,小球加速运动;C到D过程,重力小于弹力,合力向上,小球减速运动,故在C点动能最大,故A错误,B正确;

C. 小球下降过程中,只有重力和弹簧的弹力做功,小球和弹簧组成的系统机械能守恒,即小球的重力势能、动能和弹簧的弹性势能总和保持不变,所以从A→C位置小球重力势能的减少等于动能增加量和弹性势能增加量之和,故小球重力势能的减少大于小球动能的增加。故C正确。

D. 从A→D位置,动能变化量为零,根据系统的机械能守恒知,小球重力势能的减小等于弹性势能的增加,故D正确。

故选:BCD

8.如图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速地释放,让它自由摆下,不计空气阻力,在重物由A点摆向最低点B的过程中()

A. 重力做正功,弹力不做功

B. 重力做正功,弹力做正功

C. 若用与弹簧原长相等的细绳代替弹簧后,重力做正功,弹力不做功

D. 若用与弹簧原长相等的细绳代替弹簧后,重力做功不变,弹力不做功

9.如图所示,质量相等的两木块中间连有一弹簧,今用力F缓慢向上提A,直到B恰好离开地面。开始时物体A静止在弹簧上面。设开始时弹簧的弹性势能为Ep1,B刚要离开地面时,弹簧的弹性势能为Ep2,则关于Ep1、Ep2大小关系及弹性势能变化△Ep说法

中正确的是()

A. Ep1=Ep2

B. Ep1>Ep2

C. △Ep>0

D. △Ep<0

解答:

开始时,物体A静止在弹簧上面,弹簧的弹力等于A的重力.B刚要离地时弹簧弹力等于B的重力。由于A. B的重力相等,所以初末状态时弹簧的弹力大小相等,形变量相等,所以弹性势能相等,即有Ep1=Ep2,弹性势能变化△Ep=0.

故选:A

10.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度,小孩从高处开始下落到弹回的整个过程中,他的运动速度v随时间t变化的图线如图所示,图中只有Oa段和cd段为直线。则根据该图线可知,蹦床的弹性势能增大的过程所

对应的时间间隔为()

A. 仅在t1到t2的时间内

B. 仅在t2到t3的时间内

C. 仅在t1到t3的时间内

D. 在t1到t5的时间内

11.劲度系数分别为kA=200N/m和kB=300N/m的弹簧A和B连接在一起,拉长后将两端固定,如图所示,弹性势能EpA、EpB的关系是()

A. EpA=EpB

B. EpA>EpB

C. EpA

D. 无法比较EpA、EpB的大小

解答:

弹簧A和B连接在一起,拉长后将两端固定,根据力的相互性可知,两个弹簧的弹力大小相等。由于弹簧的弹力与弹簧的伸长量量之间的关系:F=kx,所以拉长弹簧的过程中对弹簧做的功:

又克服弹簧的弹力做的功等于弹簧增加的弹性势能,可知,两个弹簧的拉力相等的条件下,弹性势能与弹簧的劲度系数成反比,kA=200N/m和kB=300N/m,所以EpA>EpB.

故选:B

12.某同学利用自己设计的弹簧弹射器测量弹簧的弹性势能。装置如图所示。水平放置的弹射器将质量为m的静止小球弹射出去。测出小球通过两个竖直放置的光电门的时间间隔为t,甲、乙光电门间距为L,忽略一切阻力。

①小球被弹射出的速度大小v=___,求得静止释放小球时弹簧弹性势能E P=___;(用题目中的字母符号表示)

②由于重力作用,小球被弹射出去后运动轨迹会向下有所偏转,这对实验结果___影响(选填

“有”或“无”).

圆柱弹簧的设计计算.

圆柱弹簧的设计计算 (一)几何参数计算 普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式

(二)特性曲线

弹簧应具有经久不变的弹 性,且不允许产生永久变形。因 此在设计弹簧时,务必使其工作 应力在弹性极限范围内。在这个 范围内工作的压缩弹簧,当承 受轴向载荷P时,弹簧将产生 相应的弹性变形,如右图a所 示。为了表示弹簧的载荷与变形 的关系,取纵坐标表示弹簧承受 的载荷,横坐标表示弹簧的变 形,通常载荷和变形成直线关系 (右图b)。这种表示载荷与变 形的关系的曲线称为弹簧的特 性曲线。对拉伸弹簧,如图<圆 柱螺旋拉伸弹簧的特性曲线> 所示,图b为无预应力的拉伸 弹簧的特性曲线;图c为有预 应力的拉伸弹簧的特性曲线。 右图a中的H0是压缩弹簧 在没有承受外力时的自由长度。 弹簧在安装时,通常预加一个压 力 Fmin,使它可靠地稳定在安 装位置上。Fmin称为弹簧的最 小载荷(安装载荷)。在它的作 用下,弹簧的长度被压缩到H1 其压缩变形量为λmin。Fmax 为弹簧承受的最大工作载荷。在 Fmax作用下,弹簧长度减到 H2,其压缩变形量增到λmax。 圆柱螺旋压缩弹簧的特性曲线λmax与λmin的差即为弹簧的 工作行程h,h=λmax-λmin。 Flim为弹簧的极限载荷。在该 力的作用下,弹簧丝内的应力达 到了材料的弹性极限。与Flim 对应的弹簧长度为H3,压缩变 形量为λlim。

弹簧类问题的几种模型及其处理方法

弹簧类问题的几种模型 及其处理方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

弹簧类问题的几种模型及其处理方法 学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。 一、弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。 2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。同时要注意弹力做功的特点:弹力做功等于弹性势能增量 的负值。弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。 二、弹簧类问题的几种模型 1.平衡类问题 例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。 分析:上提m1之前,两物块处于静止的平衡状态,所以有:, ,其中,、分别是弹簧k1、k2的压缩量。 当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。

弹簧的弹性势能

1.关于弹力做功与弹性势能的关系,我们在进行猜想时,可以参考重力做功与重力势能的关系,则下面的猜想有道理的是() ①弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能增加; ②弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能减少; ③弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能增加; ④弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能减少。 A. ①③ B. ②③ C. ①④ D. ②④ 2.在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg的木块相连,若在木块上再作用一个竖直向下的力F,使木块缓慢向下移动0.10m,力F做功2.5J。此时木块再次处于平衡状态,力F的大小为50N,如图所示。求: (1)在木块下移0.10m的过程中弹簧弹性势能的增加量。 (2)弹簧的劲度系数(g取10m/s2)。 解答: (1)木块下移0.1m过程中,力F和重力做的功全部用于增加弹簧的弹 性势能,故弹性势能的增加量为: △EP=WF+mgh=(2.5+2.0×10×0.1)J=4.5J; (2)由平衡条件得,木块再次处于平衡时:△F=k·△l, 所以,劲度系数k=△F△l=500.10N/m=500N/m。 3.一根弹簧的弹力?位移图线如图所示,那么弹簧由伸长量4cm到伸长量8cm 的过程中,弹力的功和弹性势能的变化量为() A.1.8J,?1.8J B.?1.8J,1.8J C.3.6J,?3.6J D.?3.6J,3.6J 解答: F?x图象与x轴包围的面积表示弹力做功的大小,故弹簧由伸长量4cm到伸长量8cm的过程中,弹力的功: W=?12×(30+60)×0.04J=?1.8J 弹力做功为?1.8J,故弹力势能增加了1.8J; 故选:B. 4.弹簧原长为l0,劲度系数为k.用力把它拉到伸长量为l,拉力所做的功为W1;继续拉弹簧,使弹簧在弹性限度内再伸长l,拉力在继续拉伸的过程中所做的功为W2.试求W1与W2的比值. 解析:拉力F与弹簧的伸长量l成正比,故在Fl图象中是一条倾斜直线,如图所示,直线 下的相关面积表示功的大小.其中,线段OA下的三角形面积表示 第一个过程中拉力所做的功W1,线段AB下的梯形面积表示第二

弹簧弹力计算公式详解

弹簧弹力计算公式详解 压力弹簧、拉力弹簧、扭力弹簧是三种最为常见的弹簧,压力弹簧、拉力弹簧、扭力弹簧的弹力怎么计算,东莞市大朗广原弹簧制品厂为您详解,压力弹簧、拉力弹簧、扭力弹簧的弹力计算公式。 一、压力弹簧 ·压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; ·弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); ·弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,磷青铜线G=4500 ,黄铜线G=3500 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 弹簧常数计算范例: 线径=2.0mm , 外径=22mm , 总圈数=5.5圈,钢丝材质=琴钢丝 二、拉力弹簧 拉力弹簧的k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹

簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 ·初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 三、扭力弹簧 ·弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm). ·弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 R=负荷作用的力臂 p=3.1416

弹簧的弹性势能专题训练

弹簧的弹性势能专题训练 1.关于弹力做功与弹性势能的关系,我们在进行猜想时,可以参考重力做功与重力势能的关系,则下面的猜想有道理的是() ①弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能增加; ②弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能减少; ③弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能增加; ④弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能减少。 A. ①③ B. ②③ C. ①④ D. ②④ 2.在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg的木块相连,若在木块上再作用一个竖直向下的力F,使木块缓慢向下移动0.10m,力F做功2.5J。 此时木块再次处于平衡状态,力F的大小为50N,如图所示。求: (1)在木块下移0.10m的过程中弹簧弹性势能的增加量。 (2)弹簧的劲度系数(g取10m/s2)。 3.一根弹簧的弹力?位移图线如图所示,那么弹簧由伸长量4cm到伸长量 8cm的过程中,弹力的功和弹性势能的变化量为( ) A.1.8J,?1.8J B.?1.8J,1.8J C.3.6J,?3.6J D.?3.6J,3.6J 3.答案选:B. 4.弹簧原长为l0,劲度系数为k.用力把它拉到伸长量为l,拉力所做的功为W1;继续拉弹簧,使弹簧在弹性限度内再伸长l,拉力在继续拉伸的过程中所做的功为W2.试求W1与W2的比值. 4.答案:1∶3 5.一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。假定空气阻力可忽略,运动员可视为质点,下列说法不正确的是( ) A. 运动员到达最低点前重力势能始终减小 B. 蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加 C. 蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒 D. 蹦极过程中,重力势能的改变与重力势能零点的选取有关 5.答案选D. 6.如图所示,在光滑水平面上有一物体,它的左端连一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动。在物体向右 运动的过程中,下列说法正确的是( ) A. 弹簧对物体做正功,弹簧的弹性势能逐渐减少 B. 弹簧对物体做负功,弹簧的弹性势能逐渐增加 C. 弹簧先对物体做正功,后对物体做负功,弹簧的弹性势能先减少再增加 D. 弹簧先对物体做负功,后对物体做正功,弹簧的弹性势能先增加再减少 6.答案选:C.

弹簧的计算公式.doc

压缩弹簧参数计算 G/(Kg/mm 许用剪切应力 [ τ]最大许用 線徑d 压力(mm) 中徑 D(mm) 有效圈數n 材质) (Mpa)Ps(Kg.f) 20 110 5 60Si2Mn 8000 740 2154.368 圆柱螺旋压缩与拉伸弹簧的设计 1圆柱弹簧的参数及几何尺寸 1、弹簧的主要尺寸(见右图) 如图所示,圆柱弹簧的主要尺寸有:弹簧丝直径d、弹簧圈外径 D、弹簧圈内径 D1,弹簧圈中径 D2,节距 t、螺旋升角 a、自由长度 H0等。 2、弹簧参数的计算 弹簧设计中,旋绕比(或称弹簧指数)C是最重要的参数之一。 C=D2/d ,弹簧指数愈小,其刚度愈大,弹簧愈硬,弹簧内外侧的应力相差愈大,材料利用率 低;反之弹簧愈软。常用弹簧指数的选取参见表。 弹簧丝直径 d (mm )0.2 ~ 0.4 0.5 ~1 1.1 ~ 2.2 2.5~6 7~ 16 18~40 C 7~14 5~ 12 5~ 10 4 ~10 4 ~8 4 ~6 弹簧总圈数与其工作圈数间的关系为: 弹簧节距 t一般按下式取: (对压缩弹簧); t=d (对拉伸弹簧); 式中:λ max ---弹簧的最大变形量; --- 最大变形时相邻两弹簧丝间的最小距离,一般不小于0.1d 。 弹簧钢丝间距: δ=t-d; 弹簧的自由长度: H=n ·δ +(n0-0.5)d(两端并紧磨平); H=n ·δ +(n0+1)d(两端并紧,但不磨 平)。弹簧螺旋升角: ,通常α取 5 ~90 。 弹簧丝材料的长度: (对压缩弹簧);

(对拉伸弹簧); 其中 l为钩环尺寸。2弹簧的强度计算 1、弹簧的受力(见右图) 图示的压缩弹簧,当弹簧受轴向压力,弯矩 M=FRsin α,切向力 Q=Fcos 螺旋角α的值不大(对于压缩弹簧为簧丝中起主要作用的外力将是扭矩 F时,在弹簧丝的任何横剖面上将作用着:扭矩T=FRcosαα和法向力 N=Fsinα(式中R为弹簧的平均半径)。由于弹簧 6~ 90 ) ,所以弯矩 M和法向力 N可以忽略不计。因此,在弹 T和切向力 Q。α的值较小时, cos α≈可1,取 T=FR 和 Q=F 。这 当拉伸弹簧受轴向拉力 F时,弹簧丝槽剖面上的受力情况和压缩弹簧相同,只是扭矩 Q均为相反的方向。所以上述两种弹簧的计算方法可以一并讲述。 T和切向力2、弹簧的强度 从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝 系数 Ks 可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得 式中 K为曲度系数。它考虑了弹簧丝曲率和切向力对扭应力的影响。一定条件下钢丝直径 3、弹簧的刚度 圆柱弹簧受载后的轴向变形量 式中 n 为弹簧的有效圈数;G为弹簧的切变模量。 这样弹簧的圈数及刚度分别为

重力势能和弹簧弹性势能

7.4重力势能理 上课日期:______________ 【学习目标】 1.理解重力势能的概念,知道重力势能的相对性、系统性 2.深入理解重力势能的变化和重力做功的关系 3. 会用重力势能的定义式计算物体具有的重力势能,学习等效法计算重力势能 【重点】1.重力势能的变化和重力势能的关系 2.等效法计算重力势能 【难点】等效法计算重力势能 【学法指导】 对比重力做功与重力势能的变化,利用“重力做功与过程无关,只由初末位置决定”认 识等效法求重力势能的变化。 【回顾旧知】 1、重力做功:与起点和终点的位置 .与物体的路径 . 2、重力势能:物体的重力势能等于它所受的 和所处 的乘积. 是标量。 3、重力做功与重力势能的关系: 重力做正功重力势能 ;重力做负功重力势能 。 4、重力势能的相对性: 重力势能与 的选取有关;但重力势能的 与参考平面的选取 无关. 五、重力势能的系统性:重力势能是物体和 所共有的. 【情境展现】 情景1如图所示,某物块分别沿三条不同的轨道由离地高h 的A 点滑到同一水平面上,轨 道1、2是光滑的,轨道3是粗糙的,物块沿三个轨道滑下到地面。重力做功是否相 同? 情景2物体1的重力势能E p 1=3J ,物体2 的重力势能E p 2=-3J ,哪个物体的重力势能大?如 何理解? 【学海深思】 1.由情景1思考:三种情况下,物块的重力势能的变化相同吗?如果以地面为重力势能的零 参考面,则可认为物块的重力势能为零,你能分析一下物块在三种情况下的能量转化吗? 3 1 2 A h

2.情景2中,你能通过重力做功来解释你的判断吗? 3.如图5-21-1所示,一条铁链长为2 m,质量为10kg,放在水平地面上,拿住一端提起铁链直到铁链全部离开地面的瞬间,物体克服重力做功为多少?物体的重力势能变化了多少? 图5-21-1 【交流共享,合作探究】 1. 物体在运动过程中,克服重力做功50J,则() A. 物体的重力势能一定为50J B. 物体的重力势能一定增加50J C. 物体的重力势能一定减少50J D. 物体的重力势能可能不变 2. 井深8m,井上支架高2m,在支架上用一根长3m的绳子系住一个重100N的物体,若以地面为参考平面,则物体的重力势能有;若以井底面为参考平面,则物体的重力势能是。[来源:学科网] 2. 在水平地面上平铺着n块相同的砖,每块砖的质量都为m,厚度为d。若将这n块砖一块一块地叠放起来,至少需要做多少功?

压力弹簧计算公式

压力弹簧计算公式 压力弹簧 ·压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,磷青铜线G=4500 ,黄铜线G=3500 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 弹簧常数计算范例:

线径=2.0mm , 外径=22mm , 总圈数=5.5圈 ,钢丝材质=琴钢丝 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 · 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 扭力弹簧

·弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). ·弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 R=负荷作用的力臂 p=3.1416 大量自学内容可能对你会有帮助https://www.doczj.com/doc/1813901013.html,/study.asp?vip=3057729

弹簧设计计算过程

弹簧设计计算过程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

弹簧设计计算 已知条件: 弹簧自由长度H0= 弹簧安装长度L1=411mm 弹簧工作长度L2=227mm 弹簧中径D= 弹簧直径d= 弹簧螺距P=12mm 弹簧有效圈数n=66 弹簧实际圈数n1=68 计算步骤: (1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。 取b σ=1716MPa 。 (2)压缩弹簧许用切应力 p τ=~ b σ=~*1716MPa=~ 取p τ=。 (3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。

2 .33.22==d D C =(计算值在5~8之间) 6.9688 615.046.9688416.96884615.04414+-?-?=+--=C C C K = 弹簧的最大工作压缩量Fn=795-227=568mm 由公式348D P F Gd n n n =可得最大工作载荷34343.226685682.3798????==nD F Gd P n n = 弹簧刚度663.2282.379834 34' ???==n D Gd P =mm 节距t=66 2.35.1795)2~1(0?-=-n d H =≈12 计算出来的自由高度H0=nt+=66*12+*= 压并高度Hb=(n+d=(66+*=216mm 弹簧最小工作载荷时的压缩量F1=795-411=384mm 则最小工作载荷3 431413.226683842.3798????==nD F Gd P = 螺旋角α=arctan(t/πD)=arctan(12/*)= 弧度= ° 弹簧展开长度L=1696 .0cos 683.22cos 1??=παπDn = ≈4833mm 弹簧压并高度H b ≤n 1*d max =68*(+)=,取值216mm 弹簧压并时的变形量为= 弹簧压并时的载荷为Fa=*= (4)螺旋弹簧的稳定性、强度和共振的验算 高径比b=H0/D==> n B c P H P C P >=0' 不稳定系数C B = ==0'H P C P B c **=

测量弹簧储存的弹性势能的实验报告

测量弹簧储存的弹性势能的实验报告 1.问题提出 弹簧在形变时,储存的弹性势能能否测量,通解是什么? 2.实验方法 计算重物的重力势能改变量,就可以计算出弹簧储存的势能. 3.实验设计 (1)器材:两根已知劲度系数的弹簧(k=0.5 N/m、k=1 N/m)、不同质量的钩码4个(分别为50g、100g、200g、400g)、刻度尺. (2)过程设计: <1>将弹簧悬挂后,测量其原长L0. <2>分别挂上不同质量的钩码,待静止后测量弹簧此时的长度并 计算ΔL(即为钩码重心改变量). <3>计算砝码重力势能的改变量,即为弹簧储存的弹性势能. 4.实验过程记录 表一 注:由于k值较小,为考虑弹簧的弹性范围,所以在进行k1的实验时,选取较小的钩码. 计算过后,我们发现在误差允许的范围内,钩码重力势能的改变

量的值与1/2kx2基本相同. 经过查阅资料,我们了解到,这与我们得到的是相同的。而且,当我们把重力势能的改变量式子同弹性势能储存量公式连接起来的时候,却发现一个奇怪的式子: Mg=1/2 kx ??!!这是什么情况?这不就代表着,拉力等于弹簧弹力的一半?怎么可能?于是我们展开了思考. 假设我们不用钩码,而用手去拉,这样手对弹簧做的功就是弹簧储存的弹性势能.这是可以推导的.由于弹簧的拉力是成线性变化的,所以可以用求平均的方法求出拉力做的功。那么此时的推导是可行的。 Fs=ΔE 此时的是符合的胡克定理的. 能量转化行不通但做功却行得通!难道能量转化时并不是仅仅转化为弹性势能? 这么一想,就感觉对了!由于我们是在弹簧自由悬挂的状态下加入钩码的,所以此时,这个系统就成为一个弹簧振子.如果不计损失的话,它会一直往返振动下去.但实际操作中,能量损失不可避免的存在,而我们在设计实验时是测量静止后的长度,将损耗自然地忽略了.虽然这对我们得出结论没有影响,但足以反应出我们在思考过程中的漏洞.那么再将平衡位置时的钩码具有的动能加上,矛盾便迎刃而解了.

弹簧设计计算过程

弹簧设计计算 已知条件: 弹簧自由长度H0=796.8mm 弹簧安装长度L1=411mm 弹簧工作长度L2=227mm 弹簧中径D=22.3mm 弹簧直径d=3.2mm 弹簧螺距P=12mm 弹簧有效圈数n=66 弹簧实际圈数n1=68 计算步骤: (1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。 取b σ=1716MPa 。 (2)压缩弹簧许用切应力 p τ=(0.4~0.47) b σ=(0.4~0.47)*1716MPa=686.4~806.52MPa 取p τ=686.4MPa 。 (3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。 2 .33.22==d D C =6.9688(计算值在5~8之间) 6.9688 615.046.9688416.96884615.04414+-?-?=+--=C C C K =1.2139 弹簧的最大工作压缩量Fn=795-227=568mm 由公式348D P F Gd n n n =可得最大工作载荷34343.226685682.3798????==nD F Gd P n n = 803.5758N 弹簧刚度663.2282.379834 34' ???==n D Gd P =1.4147N/mm 节距t= 66 2.35.1795)2~1(0?-=-n d H =11.9727≈12 计算出来的自由高度H0=nt+1.5d=66*12+1.5* 3.2=796.8mm 压并高度Hb=(n+1.5)d=(66+1.5)*3.2=216mm

弹簧弹性势能

弹簧弹性势能类问题 1.如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向。现在挂钩上挂一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升。若将C换成另一个质量为(m1+m3)的物体D,仍从上 述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是 多少?已知重力加速度为g。 2.A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42 kg 和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2) (1)使木块A竖直做匀加速运动的过程中,力F的最大值; (2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.

1.开始时,A 、B 静止,设弹簧压缩量为x 1,有 k x 1=m 1g ① 挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有 k x 2=m 2g ② B 不再上升,表示此时A 和 C 的速度为零,C 已降到其最低点,由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为 △E =m 3g(x 1+x 2)-m 1g(x 1+x 2) ③ C 换成 D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得 21(m 3+m 1)v 2+2 1m 1v 2=(m 3+m 1)g(x 1+x 2)-m 1g(x 1+x 2)-△E ④ 由③④式得 2 1(2m 1+m 3)v 2=m 1g(x 1+x 2) ⑤ 由①②⑤式得 v=k m m g m m m )2()(2312211++ ⑥ 2.分析: 此题难点和失分点在于能否通过对此物理过程的分析后, 确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力N=0时恰好分离. 解: 当F=0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩为 x ,有kx=(m A +m B )g x=(m A +m B )g/k ① 对A 施加F 力,分析A 、B 受力对A :F+N-m A g=m A a ② 对B :kx′-N-m B g=m B a′③ 可知,当N≠0时,AB 有共同加速度a=a′,由②式知欲使A 匀加速运动,随 N 减小F 增大.当N=0时,F 取得了最大值F m , 即F m =m A (g+a )=4.41 N 又当N=0时, A 、 B 开始分离,由③式知,此时,弹簧压缩量kx′=m B (a+g )x′=m B (a+g )/k ④ AB 共同速度v 2=2a (x-x′)⑤ 由题知,此过程弹性势能减少了E P =0.248 J 设F 力功W F ,对这一过程应用动能定理或功能原理W F +E P -(m A +m B )g (x-x′)=2)(2 1v m m B A +⑥ 联立①④⑤⑥,由E P =0.248 J 可知,W F =9.64×10-2J

高中物理复习:弹性势能

高中物理复习:弹性势能 【知识点的认识】 1.定义:发生形变的物体,在恢复原状时能够对外做功,因而具有能量,这种能叫做弹性势能。 2.决定因素:与形变程度有关,形变越厉害,弹性势能就越大;与弹簧的劲度系数有关,k 越大,弹性势能就越大。 3.弹簧弹性势能表达式:。 4.弹力做功的计算:由于弹力是一个变力,计算其功不能用W=Fs设弹簧的伸长量为x,则F=kx,画出F﹣x图象。如图所示。则此图线与x轴所夹面积就为弹力所做的功。由图象可得:W弹=kx12﹣kx22=﹣△E P。 5.弹力做功与弹性势能变化量的关系:W弹=﹣△E P.当弹力做负功,弹性势能增加;当弹力做正功,弹性势能减少。 【命题方向】 题型一:对弹性势能的理解 例1:关于弹性势能,下列说法正确的是() A.弹性势能与物体的形变量有关 B.弹性势能与物体的形变量无关 C.物体运动的速度越大,弹性势能越大 D.物体运动的速度越大,弹性势能越小 分析:任何物体发生弹性形变时,都具有弹性势能。弹簧伸长和压缩时都有弹性势能。同一个弹簧形变量越大,弹性势能就越大。 解:AB、发生弹性形变的物体,形变量越大,弹性势能越大,故A正确,B错误; CD、物体运动的速度越大,动能越大,但弹性势能与物体的运动速度大小无关,故C错误,D错误。 故选:A。 点评:本题关键明确弹性势能的概念,知道影响弹性势能大小的因素,基础题。 【知识点应用及拓展】

重力势能弹性势能 定义物体由于被举高而具有的能量物体发生弹性形变而具有的能量影响因素物体的质量、高度劲度系数K、形变量L 表达式E P=mgh E P=kl2 能的变化与力做功的关系重力做正功,重力势能减少,重力做 负功,重力势能增加 弹力做正功,弹性势能减少,弹力做 负功,弹性势能增加 相对性与选择的零势能面有关一般以弹簧处于原长时的弹性势能 为零 【解题方法点拨】

对弹簧弹性势能再讨论

对弹簧弹性势能再讨论 物理组张曼丽在高一物理教学中对弹簧的弹性势能只做了简单介绍,即弹力做正功弹性势能减小, 弹力做负功弹性势能增加.没再深入分析讨论,而在作业练习中有些题目却要仔细推敲, 比如,有这样一道题: 如果取弹簧伸长?X(?X≠0)时弹性势能为零,则下列说法正确的是 A弹簧处于原长时,弹性势能为正值 B弹簧处于原长时,弹性势能为负值 C当弹簧压缩量为时,弹性势能值为零 D只要弹簧被压缩,弹性势能均为负值 解题以前我们来仔细分析一下弹性势能。我们刚学过的重力势能具有相对性,零势 能面的选择不同,重力势能是不同的.参考面上重力势能为零,参考面以上重力势能为 正,参考面以下重力势能为负。弹性势能也应该像重力势能一样,具有相对性,也可以 =1?2kx2 , 用弹力做功来分析,且我们已经探究出弹性势能的表达式为E p 当弹簧处于自然状态下,也就是既不伸长也不缩短时,势能为零,即取此时为弹性 势能零势能面, 当弹簧压缩时,弹簧对外界做负功,弹性势能增加,即弹性势能大于零, 当弹簧伸长时,弹簧对外界做负功,弹性势能增加, 即弹性势能大于零 即取弹簧原长处为零势能面,弹性势能都大于零. 结合弹性势能表达式,若用图像(势能曲线)表示如上图?X 图1 时,设此时为弹性势能零势能面, 若弹簧被拉神x o 相应的弹簧被压缩x 时也有弹性势能等于零,即有两个零势能面, o

当弹簧恢复到原长过程中弹性势能减少,小于零, 到原长时最小 经过原长再压缩过程中弹性势能又增大,从最小变得越来越大,直到压缩量为到x o 时,弹性势能又变为零。 势能曲线如图 ?X 由此可见,弹性势能作为势能的一种,也像其他势能一样,具有相对性,可以规定弹簧某任意长度时的势能为零势能,以此确定弹簧各长度时的弹性势能值. 尽管我们可以规定弹簧某任意长度时的势能为零势能,但一般为简单起见,规定弹簧处于自然状态下的势能为零势能 此题的结论就显而易见BC正确。 =1?2kx2 ,可使学生对弹性势能通过以上的讨论分析,利用弹性势能的一般表达式E p 有更加深层次的认识,对弹性势能势能零点的选取及取值更加清晰。掌握好势能曲线能更好的分析应用势能的概念,能全面的掌握势能的共有性质:势能具有相对性,势能 零点可任意选取,势能可以取正值,也可以取负值。

重力势能和弹簧弹性势能

7.4重力势能理 姓名 上课日期:______________ 【学习目标】 1.理解重力势能的概念,知道重力势能的相对性、系统性 2.深入理解重力势能的变化和重力做功的关系 3. 会用重力势能的定义式计算物体具有的重力势能,学习等效法计算重力势能 【重点】1.重力势能的变化和重力势能的关系 2.等效法计算重力势能 【难点】等效法计算重力势能 【学法指导】 对比重力做功与重力势能的变化,利用“重力做功与过程无关,只由初末位置决定”认识等效法求重力势能的变化。 【回顾旧知】 1、重力做功:与起点和终点的位置 .与物体的路径 . 2、重力势能:物体的重力势能等于它所受的 和所处 的乘积. 是标量。 3、重力做功与重力势能的关系: 重力做正功重力势能 ;重力做负功重力势能 。 4、重力势能的相对性: 重力势能与 的选取有关;但重力势能的 与参考平面的选取无关. 五、重力势能的系统性:重力势能是物体和 所共有的. 【情境展现】 情景1如图所示,某物块分别沿三条不同的轨道由离地高h 的A 点滑到同一水平面上,轨 道1、2是光滑的,轨道3是粗糙的,物块沿三个轨道滑下到地面。重力做功是否相同? 情景2物体1的重力势能E p 1=3J ,物体2 的重力势能E p 2=-3J ,哪个物体的重力势能大?如何理解? 【学海深思】 1.由情景1思考:三种情况下,物块的重力势能的变化相同吗?如果以地面为重力势能的零参考面,则可认为物块的重力势能为零,你能分析一下物块在三种情况下的能量转化吗? 3 1 2 A h

2.情景2中,你能通过重力做功来解释你的判断吗? 3.如图5-21-1所示,一条铁链长为2 m,质量为10kg,放在水平地面上,拿住一端提起铁链直到铁链全部离开地面的瞬间,物体克服重力做功为多少?物体的重力势能变化了多少? 图5-21-1 【交流共享,合作探究】 1. 物体在运动过程中,克服重力做功50J,则() A. 物体的重力势能一定为50J B. 物体的重力势能一定增加50J C. 物体的重力势能一定减少50J D. 物体的重力势能可能不变 2. 井深8m,井上支架高2m,在支架上用一根长3m的绳子系住一个重100N的物体,若以地面为参考平面,则物体的重力势能有;若以井底面为参考平面,则物体的重力势能是。 2. 在水平地面上平铺着n块相同的砖,每块砖的质量都为m,厚度为d。若将这n块砖一块一块地叠放起来,至少需要做多少功?

弹簧计算公式

胡克弹性定律指出,在弹性极限范围内,弹簧的弹性力f 与弹簧的长度x 成正比,即f =-kx,k 是一个物体的质量弹性系数,该系数由材料的性质决定,负号表示弹簧产生的弹性力与其延伸(或压缩)方向相反弹簧常数: 以k 表示,当弹簧被压缩时,载荷(kgf/mm)增加1mm 的距离,弹簧常数公式(单位: kgf/mm) : k = (g d4)/(8dm3 nc) g = 钢丝的刚度模量: 钢琴丝g = 8000; 不锈钢丝g = 7300; 磷青铜丝g = 4500;黄铜丝g = 3500d = 线径= 0d = 外径= id = 内径= md = 中径= do-dn = 转速总数弹簧常数的计算例子: 线径= 2.0 mm,外径= 22 mm,总匝数= 5。5圈,钢丝材料= 钢琴钢丝k = (gxd4)/(8xdm3xnc) = (8000x24)/(8x203x3.5) = 0.571 kg f/mmpull,张力弹簧的k 值与压力弹簧的k 值相同。 张力弹簧的初始张力: 初始张力等于拉开彼此接近的弹簧所需的力,并发生在弹簧轧制成型之后。在制作张力弹簧时,由于钢丝材质、线径、弹簧指数、静电现象、油脂、热处理、电镀等的不同,使得各张力弹簧的初始张力不均匀。因此,在安装各种规格的张力弹簧时,应该预张力到平行弯道之间一定距离的力称为初张力。 初始张力= p-(kxf1) = 最大载荷-(弹簧常数x 拉伸长度)扭转弹簧常数: 以k 表示,当弹簧扭转时,载荷(kgf/m)增加1个扭转角。弹簧常数(单位: kgf/mm) : k = (exd #)/(1167 xdmxpnxr) e = 钢丝的刚度模量: 钢琴线e = 21000,不锈钢线e = 19400,磷青铜线e =

弹簧弹性势能公式的六种推导方法

弹簧弹性势能公式的六种推导方法 摘要:本文用六种不同的方法,从六种不同的角度推导出弹簧弹性势能的表达式。 关键词:弹性势能,微元,积分,振动方程 我们知道,弹簧的弹性势能的表达式为2 2 1kx E p = ,k 为弹簧的劲度系数,x 为弹簧的形变量。但很多教材及教辅中都是直接给出公式,少有推导过程。笔者现用如下六种方法来推导弹簧弹性势能的表达式,加深读者理解和记忆,方便学习。 下文中,为方便讨论,忽略弹簧的质量及一切摩擦,且研究的都是水平弹簧振子,但推导出的结果适用于任何情况下的弹簧。 1 微元法 弹簧的弹性势能等于自势能零点开始保守力做功的负值。外力拉弹簧时,外力的功与弹簧反抗形变而施于外界之力做的功大小相等而符号相反,因此,弹性势能等于自势能零点开始外力做功的正值[1]。 取弹簧自由端为势能零点。设弹簧在外力F 的作用下发生形变量x ,将这个形变过程等分成很多小段,如n 段,那么每一小段中可近似认为拉力是不变的。 第1小段形变量22 11111...n x k x F W n x k F n x x =?===?,拉力的功,拉力 第2小段形变量22 222222..2.n x k x F W n x k F n x x =?===?,拉力的功,拉力 第3小段形变量22 333333..3.n x k x F W n x k F n x x =?===?,拉力的功,拉力 第n 小段形变量22 ...n nx k x F W n nx k F n x x n n n n n =?===?,拉力的功,拉力 所以,拉力的总功为

()()2 1. 321.3.2..2222 2 2222222321+=++++=++++=++++=n n n kx n n kx n nx k n x k n x k n x k W W W W W n 当2 2222 12.kx n n kx W n ==∞→时,。因为弹性势能等于自势能零点开始外力做功的 正值,所以弹簧的弹性势能2 2 1kx W E P ==。 2 动能定理法 取弹簧自由端为势能零点。设F 缓慢拉弹簧使其发生形变量x 。缓慢拉动意味着每一个位置都可看作是平衡状态,动能的变化0=?k E 。弹簧的弹力kx F =,因为F 与x 是线性关系,所以弹力的平均值为kx F 2 1 = ,外力F 的平均值也为kx 2 1 ,方向与弹簧弹力方向相反。设弹簧反抗外力做功为W ,由动能定理得 2 2 1 kx x F W W x F -=-=∴=+ 因弹簧弹性势能等于自势能零点开始保守力做功的负值,所以2 2 1kx W E P =-=。 3 积分法 取弹簧自由端为势能零点。设弹簧形变一微小量dx ,弹力做功为dW 。 k x d x F d x dW -=-= 两边积分: ??-=x k x d x dW 0 221kx W -=∴ 所以弹簧的弹性势能22 1 kx W E P =-=。 4 机械能守恒法

拉压扭簧计算公式弹簧刚度计算

弹簧刚度计算 压力弹簧 · 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。

· 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) · 拉力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被拉伸时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 扭力弹簧 · 弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). · 弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数

弹性变形势能的计算

第11章 能量法 本章介绍弹性变形势能,并将虚位移原理、势能驻值原理及最小势能原理用于变形固体。本章重点介绍单位载荷法,这是一种用能量原理求位移的方法,是一种很简单实用的方法。 §11-1弹性变形势能的计算 当构件发生弹性变形时,其内部会贮存能量,从而使构件具有作功的能力。例如,被跳水运动员压弯的跳板,因变形而贮存了能量,再利用释放出来的能量对运动员作功,加强了运动员的弹跳力。这种因弹性变形而贮存的 能量称为弹性变形势能,简称变形能或应变能,用 表示,单位为J,l J=1 N·m。单位体积的应变能称为应 变能密度,用 表示,单位为 。 外力由零开始缓慢地增加到最终值,构件始终处于平衡状态,动能的变化及其他能量的损耗均可略去不计。根据能量守恒定律,构件内部贮存的应变能在数值上等于外力所作的功 W,即 (11.1) 此关系称为功能原理。 1 .外力功的计算 外力由零缓慢增加到最终值 F,外力作用点的位置发生移动,移动量为△(见图11.1a),则此力的功为 若材料服从胡克定律,力和位移的关系是线性的,如图 11.1b所示,显然此时外力功等于斜直线下三角形面积,即

( 11.2 ) 应该指出,此处所讲的力和位移都是广义的,外力可以是力,也可以是力偶,相应的广义位移则分别为线位移或角位移。 2 . 应变能的计算 根据功能原理,应变能可以通过外力功的计算求得。在线弹性范围内有 1.轴向拉压时的应变能 若杆件在轴向外力 F的作用下,轴向变形为△ l ,且 △ l 与 F成正比,则 由于轴力 , , 所以 若轴力 沿轴线为一变量 ,则有应变能的一般表达式 (11.3) 若结构为, n根直杆组成的桁架时,整个结构内的应变能为 式中 、 、 和 分别为桁架中第i根杆的轴力、长度、弹性模量和横截面面积。 2.圆轴扭转时的应变能

弹簧弹力计算公式()

弹力计算公式 压力弹簧 初拉力计算 F0=〖{π3.14×d3}÷(8×D)〗×79mpa F0={3.14×(5×5×5)÷(8×33)}×79=117 kgf 1.压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; 2.弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); 3.弹簧常数公式(单位:kgf/mm); K=(G×d4)/(8×D3×Nc) G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,60Si2MnA钢丝G=7900,磷青铜线G=4500 ,黄铜线G=3500 d=线径(钢丝直径) D=中径 N=总圈数 Nc=有效圈数 F=运动行程(550mm) 弹簧常数计算范例: 线径=5.0mm , 中径=20mm , 有效圈数=9.5圈,钢丝材质=不锈钢丝 K=(G×d4)/(8×D3×Nc)=(7900×54)/(8×203×9.5)=8.12kgf/m m×(F=100)=812 kgf 拉力弹簧 拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 扭力弹簧 弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm) 弹簧常数公式(单位:kgf/mm): K=(E×d4)/(1167×D×p×N×R) E=线材之钢性模数:琴钢丝E=21000,不锈钢丝E=19400 ,磷青铜线E=11200 , 黄铜线E=11200 d=线径(钢丝直径) D=中径 N=总圈数 R=负荷作用的力臂 p=3.1416

相关主题
文本预览
相关文档 最新文档