当前位置:文档之家› 3.15圆幂定理与托勒密定理

3.15圆幂定理与托勒密定理

3.15圆幂定理与托勒密定理
3.15圆幂定理与托勒密定理

各种圆定理总结(包括托勒密定理、塞瓦定理、西姆松定理、梅涅劳斯定理、圆幂定理和四点共圆)

托勒密定理 定理图 定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组 对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式, 托勒密定理实质上是关于共圆性的基本性质. 定理的提出 一般几何教科书中的托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的 书中摘出。 证明 一、(以下是推论的证明,托勒密定理可视作特殊情况。) 在任意四边形ABCD 中,作△ ABE使/ BAE= / CAD / ABE= / ACD 因为△ ABE ACD 所以BE/CD=AB/AC, 即BE-AC=AB CD (1) 而/ BAC= / DAE ,,/ ACB= / ADE 所以△ ABC AED 相似. BC/ED=AC/AD 即ED- AC=BC AD (2) ⑴+⑵,得 AC(BE+ED)=AB CD+AD BC 又因为BE+EI> BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即托勒密定理”) 所以命题得证 复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、 BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(a -b)(c - d) + (a - d)(b - c) = (a - c)(b - d),两边取模,运用三角不等式得。等 号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一平面。平面上,托勒密不等式是三角不等式的反演形式。 二、设ABCD是圆内接四边形。在弦BC上,圆周角/ BAC = / BDC,而在AB上, / ADB = / ACB。在AC 上取一点K,使得/ ABK = / CBD ; 因为/ ABK + / CBK = / ABC = / CBD + / ABD,

圆幂定理

圆幂定理 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等。 定理 圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 几何语言:若弦AB、CD交于点P则PA·PB=PC·PD(相交弦定理) 概述 相交弦定理为圆幂定理之一,其他两条定理为: 切割线定理 割线定理 2证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B。(圆周角推论2: 同(等)弧所对圆周角相等.)∴△PAC∽△PDB ∴PA∶PD=PC∶PB,PA·PB=PC·PD 注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性。其逆定理也可用于证明四点共圆。 P 不是圆心 3比较

切割线定理 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。 切割线定理示意图 几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=PA·PB(切割线定理) 推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 几何语言: ∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=PA·PB(切割线定理推论)(割线定理) 由上可知:PT2=PA·PB=PC·PD 2证明 切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT2=PA·PB

证明:连接AT, BT ∵∠PTB=∠PAT(弦切角定理 ) 切割线定理的证明 ∠APT=∠APT(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT2=PB·PA 3比较 相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。一般用于求直线段长度。 割线定理:指的是从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等, 1定义 文字表达:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 数学语言:从圆外一点L引两条割线与圆分别交于A.B.C.D 则有LA·LB=LC·LD=LT^2。如下图所示。(LT为切线)

《1.3.1圆幂定理》教学案3

《1.3.1圆幂定理》教学案 【教学目标】 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 【教学重难点】 重点:相交弦定理、切割线定理及其推论之间的关系以及应用; 难点:灵活运用圆幂定理解题. 【教学过程】 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等. 定理 圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 几何语言:若弦AB、CD交于点P则P A·PB=PC·P D(相交弦定理) 2证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B.(圆 周角推论2: 同(等)弧所对圆周角相等.) ∴△P AC∽△PDB ∴P A∶PD=PC∶PB,P A·PB=PC·PD 注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性.其逆定理也可用于证明四点共圆. 3比较 相交弦定理、切割线定理以及他们的推论统称为圆幂定理.一般用于求线段长度. 4相交弦定理推论 定理 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项. 说明几何语言:若AB是直径,CD垂直AB于点P,则=P A·PB(相交弦定理推论)

切割线定理 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.是圆幂定理的一种. 切割线定理示意图 几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=P A·PB(切割线定理) 推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言: ∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=P A·PB(切割线定理推论)(割线定理) 由上可知:PT2=P A·PB=PC·PD 2证明 切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT2=P A·PB 证明:连接AT,BT ∵∠PTB=∠P AT(弦切角定理 ) 切割线定理的证明 ∠APT=∠APT(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT2=PB·P A

圆中的基本概念及定理(一) (含答案)

学生做题前请先回答以下问题 问题1:圆中相关的定理以及推论: 垂径定理:____________________________________________________; 推论:________________________________________________________; 总结:知二推三①___________________________________, ②_______________________,③______________________, ④_______________________,⑤______________________. 问题2:四组量关系定理:在_____________________中,如果_______________、______________、_______________、_______________中有一组量相等,那么它们所对应的其余各组量都分别相等. 问题3:圆周角定理:_______________________________________; 推论1:______________________________________; 推论2:____________________________;________________________________. 推论3:______________________________________. 问题4:三点定圆定理:_____________________________________. 问题5:圆中处理问题的思路: ①_______________________________________; ②_______________________________________; ③_______________________________________; ④_______________________________________. 圆中的基本概念及定理(一) 一、单选题(共10道,每道10分) 1.如图,CD是⊙O直径,弦AB⊥CD,垂足为点F,连接BC,BD,则下列结论不一定正确的是( ) A. B.AF=BF C.OF=CF D.∠DBC=90°

圆知识梳理+题型归纳附答案_详细知识点归纳+中考真题

圆 【知识点梳理】 一、圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; A

三、直线与圆的位置关系 1、直线与圆相离 ? d r > ? 无交点; 2、直线与圆相切 ? d r = ? 有一个交点; 3、直线与圆相交 ? d r < ? 有两个交点; 四、圆与圆的位置关系 外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧 AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 B D

托勒密定理

托勒密定理Last revision on 21 December 2020

托 勒密定理 【定理内容】 圆内接四边形中,两条对角线的乘积等于两组对边乘积之和. 即:若四边形ABCD 内接于圆, 则有BD AC BC AD CD AB ?=?+?. [评]等价叙述:四边形的两组对边之积的和 等于两对角线 之积的充要条件是四顶点共圆。 【证法欣赏】 证明:如图,过C 作CP 交BD 于P ,使21∠=∠, ∵43∠=∠,∴ACD ?∽BCP ?, ∴ BP AD BC AC = ,即AD BC BP AC ?=? ① 又DCP ACB ∠=∠,65∠=∠,∴ACB ?∽DCP ?, ∴ DP AB DC AC = ,即DC AB DP AC ?=? ② ∴①+②得:DC AB AD BC DP BP AC ?+?=+?)( 即BD AC BC AD CD AB ?=?+? 【定理推广】 托勒密定理的推广: 在四边形ABCD 中,有BD AC BC AD CD AB ?≥?+?;当且仅当四边形ABCD 内接于圆时,等式成立。 [证] 在四边形ABCD 内取点E ,使CAD BAE ∠=∠,ACD ABE ∠=∠ 则ABE ?∽ACD ? ∴ AD AE CD BE AC AB ==, ∴BE AC CD AB ?=?; ∵ AD AE AC AB =,且EAD BAC ∠=∠ C D A B E B C D

∴ABC ?∽AED ? ∴ AD ED AC BC = ,即ED AC BC AD ?=?; ∴)(ED BE AC BC AD CD AB +?=?+? ∴BD AC BC AD CD AB ?≥?+? 当且仅当E 在BD 上时“=”成立, 即四点共圆时成立;、、、当且仅当D C B A 【定理推广】 托勒密定理的推论: 等腰梯形一条对角线的平方等于一腰的平方加上两底之积. 即:若四边形ABCD 是等腰梯形,且BC AD //, 则BC AD AB AC ?+=22. 分析:因为等腰梯形必内接于圆,符合托勒密定理的条件,其对角线相等,两腰相等,结论显然成立。 【定理应用】 【例1】 如图,P 是正ABC ?外接圆的劣弧BC 上任一点(不与B 、C 重合), 求证:PC PB PA +=. 证明:由托勒密定理得: ∵CA BC AB == ∴PC PB PA +=. [注]此例证法甚多,如“截长”、“补短”等,详情参看《初中 数学一 题多解欣赏》. 【定理应用】 【例2】 证明“勾股定理”: 已知:在ABC Rt ?中,?=∠90B , 求证:222BC AB AC +=。 证明:如图,以ABC Rt ?的斜边AC 为对角 B C

初中数学中被删掉的有用知识圆幂定理及其应用

圆幂定理及其应用 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程,从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD 是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外 一点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过 的切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点 旋转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可 得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2; 在图(2)中,PA·PB=PT2=OP2-OT2 =OP2-R2 在图(3)中,PA·PB=PC·PD=PT2 =OP2-R2. 教师指出,由于PA·PB均等于|OP2-R2|,为一常数,叫做点P关于⊙O的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理. 二、例题分析(采用师生共同探索、讲练结合的方式进行) 例1 如图7-170,两个以O为圆心的同心圆,AB切大圆于B,AC切小圆于C,交大圆

圆幂定理及其应用

[文件] sxc3jja0008.doc [科目] 数学 [年级] 初三 [章节] [关键词] 圆/圆幂定理/应用 [标题] 圆幂定理及其应用 [内容] 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方 法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程, 从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外一 点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过的 切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点旋 转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和 切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2;

山西省太原市初中数学奥林匹克中的几何问题 第3章 托勒密定理及应用(含答案)

第三章 托勒密定理及应用 【基础知识】 托勒密定理 圆内接四边形的两组对边乘积之和等于两对角线的乘积. 证明 如图3-1,四边形ABCD 内接于O ,在BD 上取点P ,使P A B C A D =∠∠,则△ABP ∽△ACD , 于是 A 图3-1 AB BP AB CD AC BP AC CD =??=?. 又ABC △∽△APD ,有BC AD AC PD ?=?. 上述两乘积式相加,得 AB CD BC AD AC BP PD AC BD ?+?=+=?(). ① 注 此定理有多种证法,例如也可这样证:作AE BD ∥交o 于E ,连EB ,ED ,则知BDAE 为等腰梯形,有EB AD =,ED AB =,ABD BDE θ==∠∠,且180E B C E D C +=?∠∠,令BAC ?=∠,AC 与 BD 交于G ,则 111 sin sin()sin 222 ABCD S AC BD AGD AC BD AC BD EDC θ?=??=??+=??∠∠, 11 sin sin 22 EBCD EBC ECD S S S EB BC EBC ED DC EDC =+=??+??△△∠∠ ()()11 sin sin 22 EB BC ED DC EDC AD BC AB DC EDC =?+??=?+??∠∠. 易知 A B C D E B C S S =,从而有AB DC BC AD AC BD ?+?=?. 推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则 sin sin sin AC BAD AB CAD AD CAB ?=?+?∠∠∠. ② 事实上,由①式,应用正弦定理将BD ,DC ,BC 换掉即得②式. 推论2(四角定理) 四边形ABCD 内接于O ,则sin sin sin sin ADC BAD ABD BDC ?=?∠∠∠∠ sin sin ADB DBC +?∠∠. ③ 事实上,由①式,应用正弦定理将六条线段都换掉即得③式. 直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排列的四点,则AB CD BC AD AC BD ?+?=?. 注 由直线上的托勒密定理有如下推论:若A ,B ,C ,D 是一条直线上顺次四点,点P 是直线AD 外一点,则 sin sin sin sin sin sin APB CPD APD BPC APC BPD ?+?=?∠∠∠∠∠∠. 事实上,如图3-2,设点P 到直线AD 的距离为h ,

圆幂定理及其证明#(优选.)

圆幂的定义 假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP^2-R^2即为P点到圆O的幂; 若P点在圆内,则圆幂为R^2-OP^2; 综上所述,圆幂为|OP^2-R^2|。 圆幂恒大于或等于零。 圆幂的由来 过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值) 若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2| 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。 圆幂定理 定理内容 过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有 。[1] 圆幂定理的所有情况 考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有

圆幂定理的证明 图Ⅰ:相交弦定理。如图,AB、CD为圆O的两条任意弦。相交于点P,连接AB、BD,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以 。所以有: ,即: 图Ⅱ:割线定理。如图,连接AD、BC。可知∠B=∠D,又因为∠P为公共角,所以有 ,同上证得 图Ⅲ:切割线定理。如图,连接AC、AD。∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有 易证

(完整)圆幂定理讲义(带答案)

(完整)圆幂定理讲义(带答案) 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)圆幂定理讲义(带答案))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)圆幂定理讲义(带答案)的全部内容。 1 / 29

圆幂定理 STEP 1:进门考 理念:1。检测垂径定理的基本知识点与题型。 2。垂径定理典型例题的回顾检测。 3. 分析学生圆部分的薄弱环节. (1)例题复习。 1.(2015?夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器 的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=cm. 【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形. 【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△A OE中,利用勾股定理求得半径OA的长,则MN即可求解. 【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E. 在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°, ∴CD=BC?sinB=4×=2(cm), ∴OE=CD=2, 在△AOE中,AE=AB=4cm, 则OA===2(cm),则MN=2OA=4(cm).故答案是:4. 2 / 29

梅涅劳斯定理及应用

梅涅劳斯定理 梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。 展开 定理的证明 证明:当直线交△ABC的AB、BC、CA的反向延长线于点D、E、F时, (AD/DB)*(BE/EC )*(CF/FA)=1 逆定理证明: 证明:X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 证明一 过点A作AG∥BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG 三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1 证明二 过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1 证明三 连结BF。 (AD:DB)·(BE:EC)·(CF:FA) =(S△ADF:S△BDF)·(S△BEF:S△CEF)·(S△BCF:S△BAF) =(S△ADF:S△BDF)·(S△BDF:S△CDF)·(S△CDF:S△ADF) =1 证明四 过三顶点作直线DEF的垂线,AA‘,BB',CC' 有AD:DB=AA’:BB' 另外两个类似,三式相乘得1 得证。如百科名片中图。 充分性证明: △ABC中,BC,CA,AB上的分点分别为D,E,F。 连接DF交CA于E',则由充分性可得,(AF/FB)×(BD/DC)×(CE'/E'A)=1

《1.3.1圆幂定理》教学案1

《1.3.1圆幂定理》教学案 教学目标 1.知识与技能:(1)理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;(2)学会作两条已知线段的比例中项; 2.过程与方法:师生互动,生生互动,共同探究新知; 3.情感、态度、价值观:通过推论的推导,向学生渗透由一般到特殊的思想方法.教学重、难点 重点:正确理解相交弦定理及其推论 难点:相交弦定理及其推论的熟练运用 教学过程 前面讨论了与圆有关的角之间的关系.下面我们讨论与圆有关的线段的关系及其度量问题.下面沿用从特殊到一般地思路,讨论与圆的相交弦有关的问题. 探究1如图2-20,AB是⊙O的直径,CD⊥AB.AB与CD相交于P,线段P A、PB、PC、P D之间有什么关系? ?=?(老师引导学生完成推导过程) . PA PB PC PD 探究2将图2-20中的AB向上(或向下)平移,使AB不再是直径(图2-21),探究1的结论还成立吗? 连接AD、BC,请同学们自己给出证明. 探究3如果CD与AB不垂直,如图2-22,CD、AB是圆内的任意两条相交弦,探究1的结论还成立吗? 事实上,AB、CD是圆内的任意相交弦时,探究1仍然成立,而证方法不变.请同学们自己给出证明. 由上诉探究和论证,我们有 1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等. 探究4在图2-24中,使割线PB绕P运动到切线的位置(图2-25),线段P A(或PB)、PC、P D之间有什么关系? 2. =?(老师引导学生完成推导过程) PA PC PD

由上诉探究和论证,我们有 3.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 探究5下面对相交弦定理和切割弦定理作进一步分析: 由切割线定理和相交弦定理不难看出,不论点P在圆内或圆外,通过圆的任一条割线交圆于A,B两点,只要点P的位置确定了,则P A? PB都是定值. 设定植为k,则: 当点P在圆外时,如图,由切割线定理,可得 k = P A? PB = PT2= PO2- r2( r表示⊙O的半径 ) 当点P在圆内时,如图,过点P作AB垂直于OP,则: k = P A? PB = P A2= r2 - PO2( r表示⊙O的半径 ) 当点P在圆上时,显然k=0. 由上,我们可以得到: 圆幂定理: 已知⊙(O,r),通过一定点的任意一条割线交圆于A,B两点,则: 当点P在圆外时,k= PO2- r2; 当点P在圆内时,k= r2- PO2; 当点P在⊙O上时,k= 0. 我们称定值k为点P对⊙O的“幂” 【自主检测】 1. 圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为_ ____. 2. 已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若P A·PB=24,OP=5,则⊙O的半径长为_______. 3 . 若P A为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,P A=P C的长为_______. 4. AB、CD是⊙O切线,AB∥CD,⊙O的切线EF和AB、CD分别交于E、F,则∠EOF =______.

圆中的基本概念及定理(讲义及答案)

圆中的基本概念及定理(讲义) ?课前预习 在小学的时候,我们知道“一中同长”表示的是圆,中心称为,固定的线段长称为,还知道半径为r 的圆的周长为,面积为. 在七年级我们学习了圆的另外一种说法:平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O 称为圆心,线段OA 称为半径. 一条弧AB 和经过这条弧的两条半径OA,OB 所组成的图形叫做扇形. 顶点在圆心的角叫做圆心角.

1

?知识点睛 1.在一个平面内,线段OA 绕它固定的一个端点O 旋转一周, 另一个端点A 所形成的图形叫做.其固定的端点O 叫做,线段OA 叫做.以点O 为圆心的圆,记作,读作“圆O”. 2.圆中概念: 弧:,弧包括和; 弦:; 圆周角:; 圆心角:; 弦心距:; 等圆:; 等弧:. 3.圆的对称性: 圆是轴对称图形,其对称轴是; 圆是中心对称图形,其对称中心为.4.圆中基本定理: *(1)垂径定理: .推论: .(2)四组量关系定理:在中,如果 、、、 中有一组量相等,那么它们所对应的其余各组量都分别相等. (3)圆周角定理: .推论1:. 推论2:, .推论3: .注:如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.圆中处理问题的思路: ①找圆心,连半径,转移边; ②遇弦,作垂线,垂径定理配合勾股定理建等式; ③遇直径,找直角,由直角,找直径; ④由弧找角,由角看弧.

2

? 精讲精练 1. 如图,AB 是⊙O 的直径,弦 CD ⊥AB ,垂足为 M ,下列结论不一定成立的是( ) ︵ ︵ A .CM =DM B . CB = B D C .∠AC D =∠ADC D .OM =MB 第 1 题图 第 2 题图 2. 如图,⊙O 的弦 AB 垂直平分半径 OC ,若 AB = 的半径为 . ,则⊙O 3. 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是 10 mm ,测得钢珠顶端离零件表面的距离为 8 mm ,如图所示,则这个小圆孔的宽口 AB 的长度为 mm . 第 3 题图 第 4 题图 4. 如图,圆拱桥桥拱的跨度 AB =12 m ,桥拱高 CD =4 m ,则拱桥的直径为 . 5. 如图,在⊙O 中,直径 CD 垂直于弦 AB ,垂足为 E ,连接 OB , CB .已知⊙O 的半径为 2,AB = 2 ,则∠BCD = . 6 3

圆幂定理讲义带答案

圆幂定理 STEP 1:进门考 理念:1. 检测垂径定理的基本知识点与题型。 2. 垂径定理典型例题的回顾检测。 3. 分析学生圆部分的薄弱环节。 (1)例题复习。 1.(2015?夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=cm. 【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形. 【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△AOE中,利用勾股定理求得半径OA的长,则MN即可求解. 【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E. 在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°,∴CD=BC?sinB=4×=2(cm),∴OE=CD=2, 在△AOE中,AE=AB=4cm, 则OA===2(cm),则MN=2OA=4(cm).故答案是:4.

【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中,常用的方法是转化为解直角三角形.

2.(2017?阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为() A.2cm B.cm C.2cm D.2cm 【考点】M2:垂径定理;PB:翻折变换(折叠问题). 【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长. 【解答】解:过点O作OD⊥AB交AB于点D,连接OA, ∵OA=2OD=2cm,∴AD===(cm), ∵OD⊥AB,∴AB=2AD=2cm.故选:D. 【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键. 3.(2014?泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()

第三讲 托勒密定理及其应用

第三讲 托勒密定理及其应用 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:;内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+? ;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+? 一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点 (不与B 、C 重合), 求证:PA=PB +PC . 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗. 若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB , ∵AB=BC=AC . ∴PA=PB+PC . 二、完善图形 借助托勒密定理 例2 证明“勾股定理”: 在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 四点共圆时成立; 、、、上时成立,即当且仅当在且等号当且仅当相似 和且又 相似 和则:,,使内取点证:在四边形D C B A BD E BD AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EAD BAC AD AE AC AB BE AC CD AB CD BE AC AB ACD ABE ACD ABE CAD BAE E ABCD ?≥?+?∴+?=?+?∴?=??=∴??∴∠=∠=?= ??=∴??∠=∠∠=∠)(

证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有 AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形, ∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理, 有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1. 求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,

圆中三大切线定理

14 初三秋季·第2讲·尖子班·学生版 围田地 漫画释义 满分晋级阶梯 圆7级 期末复习之圆中的 重要结论及应用 圆6级 期末复习之圆的综合 圆5级 圆中三大切线定理 2 圆中三大切线定理

中考内容与要求 中考考点分析 圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考 15

16 初三秋季·第2讲·尖子班·学生版 查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。 要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。 年份 2011年 2012年 2013年 题号 20,25 8,20,25 8,20,25 分值 13分 17分 17分 考点 圆的有关证明,计算(圆周角定理、切线、等腰三角形、相似、解直角三角形);直线与圆的位置关系 圆的基本性质,圆的切线证明,圆同相似和三角函数的结合;直线与圆的位置关系 圆中的动点函数图像,圆的基本性质(垂径定理、圆周角定理),圆同相似和三角函数的结合;直线与圆的位置关系 知识互联网 题型一:切线的性质定理

17 题目中已知圆的切线,可以“连半径,标直角”,然后在直角三角形中利用勾股、相似或锐角三角函数解决问题。 【例1】 如图,在△ABC 中,BC AB =,以AC 为直径的⊙0与BC 边 交于点D ,过点D 作⊙O 的切线DE ,交AB 于点E ,若 DE ⊥AB .求证:BE AE 3=. 判定切线共有三种方法:定义法、距离法和定理法,其中常用的是距离法和定理法,可以总结为六字口诀,定理法是“连半径,证垂直”,距离法是“作垂直,证半径”,定理法的使用频率最高,必须熟练掌握。 【例2】 如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC 于点E ,过点A 作⊙O 的切线 交OE 的延长线于点F , 典题精练 思路导航 典题精练 思路导航 题型二:切线的判定定理 E O D C B A

专题13相似三角形定理与圆幂定理

专题十三相似三角形定理与圆幂定理 本专题主要复习相似三角形的进一步认识、圆的进一步的认识.通过本专题的复习,了解平行线等分线段定理和平行截割定理;掌握相似三角形的判定定理及性质定理;理解直角三角形射影定理.理解圆周角定理及其推论;掌握圆的切线的判定定理及性质定理;理解弦切角定理及其推论.掌握相交弦定理、割线定理、切割线定理;理解圆内接四边形的性质定理与判定定理.【知识要点】 1.相似三角形概念 相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形. 相似比:相似三角形对应边的比. 2.相似三角形的判定 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为:两角对应相等两三角形相似). 如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似). 如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似). 3.直角三角形相似的判定定理 直角三角形被斜边上的高分成两个直角三角形和原三角形相似. 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 4.相似三角形的性质 相似三角形对应角相等,对应边成比例. 相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.

相似三角形周长的比等于相似比. 相似三角形的面积比等于相似比的平方. 5.相关结论 平行于三角形一边的直线截其他两边,截得的三角形与原三角形的对应边成比例. 三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比. 经过梯形一腰中点而平行于底边的直线平分另一腰. 梯形的中位线平行于两底,并且等于两底和的一半. 若一条直线截三角形的两边(或其延长线)所得对应线段成比例,则此直线与三角形的第三边平行. 6.弦切角定理 弦切角定义:切线与弦所夹的角. 弦切角的度数等于它所夹的弧的圆心角的度数的一半. 7.圆内接四边形的性质 圆的内接四边形的对角互补,并且任意一个外角等于它的内对角. 8.圆幂定理 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D则有PA·PB=PC·PD.【复习要求】 1.了解平行线等分线段定理和平行截割定理;掌握相似三角形的判定定理及性质定理;理解直角三角形射影定理. 2.理解圆周角定理及其推论;掌握圆的切线的判定定理及性质定理;理解弦切角定理及其推

相关主题
文本预览
相关文档 最新文档