当前位置:文档之家› 高三二轮复习不等式、基本不等式专题

高三二轮复习不等式、基本不等式专题

高三二轮复习不等式、基本不等式专题
高三二轮复习不等式、基本不等式专题

不等式专题

课前概述:

①出题方向:不等式这个知识点一般单独成题的话会出现在选择或填空里面,有时简单有时比较难,相对而言属于中等题(个别题会出在压轴填空题,跟别的知识结合);

②思路点拨:实际上不等式的题会有三种种出题类型,一种是不等式的恒成立问题,一种是线性规划问题,最后一种是基本不等式的应用。见到每一种就按照掌握的知识技巧解答;

③方法要点:对于该知识点,一般是出现在小题里(选择填空)。由于不需要过程,只要结果对就行,于是方法就不是很限制,只要能做出来就行,这时要灵活运用做题技巧,尤其是特例法,特殊值法,都可以尝试,关键是把题目给的条件“凑”成要求的结果即可。 知识要点:基本不等式:ab ≤a +b 2

(1)基本不等式成立的条件:a >0,b >0.

(2)等号成立的条件:当且仅当a =b 时取等号. 注意:

1.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定

值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.

2.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2

+b 2

≥2ab 逆用就是ab ≤a 2+b 22;a +b

2

≥ab

(a ,b >0)逆用就是ab ≤??

??a +b 22

(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等,使其满足重要不等

式中“正”“定”“等”的条件.

3.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +m

x (m >0)的单调性.

4.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 典例分析及练习:

类型一:有关不等式的几个常见问题:

例1、(2015届鄞州中学开学考)若关于x 的不等式220x ax +->在区间[]1,5上有解,则实数a 的取值范围为( )

A .),5

23

(+∞-

B .]1,5

23[-

C .(1,+∞)

D .)523,(-

-∞

练习1:若不等式)(2222y x a xy x +≤+对于一切正数x 、y 恒成立,则实数a 的最小值为( )

A 、2

B 、

212+ C 、23

D 、2

15+

练习2.已知x >0,y >0,2x +y =1,若2

2

1

404

x y xy m ++

-≥恒成立,则m 的取值范围是 .

例2、已知奇函数)(x f 在]1,1[-上是增函数,且.1)1(=f 若对所有的]1,1[-∈x ,都存在]1,1[-∈a 使不等式

14)(2--≥at t x f 成立,则实数t 的取值范围是

练习:已知定义在R 上的单调递增奇函数f (x ),若当2

o π

θ≤≤时,f (cos 2θ+2m sin θ)+f (-2m -2)<0恒成立,则实数m

的取值范围是________.

归纳总结:当不等式中求某个字母的最值或取值范围时,首先应该想到能不能分离参数。当能分离时先分离再运算,如果不能分离时再用常规题型解答。

例3.(2013届五校联考)已知,,,a b c d 为常数,若不等式

0b x d x a x c ++<++的解集为11

(1,)(,1)32

-- ,则不等式1

011

bx dx ax cx -+<--的解集为 . 练习:关于x 的不等式222(log )log 0x b x c ++≤(,b c 为实常数)的解集为[2,16],则关于x 的不等式

22210x x c b ?+?+≤的解集为

归纳总结:如果出现上面这类题型时,一定要先分析出题人的意图,看他们打算考察哪个知识类型(这个方法要靠平时的多积累才能分析出来),否则用常规方法解答很耗时间。

例4、已知函数2()x a f x x

+=,当*x N ∈时,()(3)f x f ≥恒成立,则实数a 的取值范围为 .

练习1、实数d c b a ,,,满足0)2()3(222=+++-+d c a a b ,则2

2()()d b c a ++-的最小值是 。

练习2.已知抛物线2:4C y x =,O 为坐标原点,F 为其焦点,当点P 在抛物线C 上运动时,

PO

PF

的最大值为( ) A .

233 B .43 C .5

2

D .54

练习3.已知点)0,4(M ,点P 在曲线x y 82=上运动,点Q 在曲线1)2(22=+-y x 上运动,则PQ

PM 2

的最小值

是 .

练习4.设),(b a P 是直线x y -=上的点,若对曲线)0(1

>=x x

y 上的任意一点Q 恒有3≥PQ ,则实数a 的取值范围是 .

练习5、设实数c b a ,,满足,0

)

(252

?????>=+≥a ac b c a b 若b a c b a +++485的最大值和最小值分别为m M ,,则m M +的值为( )

A. 9

B.3

32 C. 349

D. 19

练习6、点P 为椭圆()0,0122

22>>=+b a b y a x 在第一象限的弧上任意一点,过P 引x 轴,y 轴的平行线,分别交直线

x a

b y -

=于R Q ,,交y 轴,x 轴于N M ,两点,记OMQ ?与ONR ?的面积分别为21,S S ,当2=ab 时,2

221S S +的最小值为 .

练习7、已知圆221:(2)16O x y -+=和圆2222:(02)O x y r r +=<<,动圆M 与圆1O 和圆2O 都相切,动圆圆心M 的轨迹为两个椭圆,设这两个椭圆的离心率分别为1e 和2e (12e e >),则122e e +的最小值为( )

A .

322

4

+ B .

32

C .2

D .

38

归纳总结:如果出现类似这类题型,首先看看题目考察的是哪个知识,如果没有明确思路的话,一般题目要求求什么,就用函数思想把什么表示出来,然后再转换成不等式的形式求解 例5.设,x y 为实数,若1422=+y x ,则y x +的最大值是 练习.函数11=-++y x x 的最大值是 ;最小值是 . 归纳总结:参数方程法也是对于解不等式类型题的一种常用方法

例6.若实数,,a b c 满足2221a b c ++=,则2

332ab bc c -+的最大值为________. 【知识点】基本不等式 【解析】:(

)

2

2

2363323

232236ab bc c a b b c c ??????-+=+-+ ? ? ? ? ?

??????

22222

313322222223a b b c c ????≤

++++ ? ?????

()22233a b c =++= 【思路点拨】可结合基本不等式对所求式子用基本不等式凑出已知条件中的定值进行解答.

例7、若等差数列{}n a 满足22

11010a a +=,则101119...S a a a =+++的最大值为 ( )

A .60

B .50

C . 45

D .40 【知识点】等差数列的性质

【解析】:设等差数列的公差为d ,因为22

11010a a +=,所以()2

2

1010910a d a -+=,

而10111910...1045S a a a a d =+++=+,可得104510

S d a -=

,代入()22

1010910a d a -+=,

整理得()

2222

13545360210000d dS S +-+-=,

由关于d 的二次方程有实根可得()()2222

2

360413545

210000S S

?=-+-≥,

化简可22500S ≤得,解得50S ≤

【思路点拨】设等差数列的公差为d ,易得()2

2

1010910a d a -+=,由求和公式可得104510

S d

a -=

,代入()

2

21010910a d a -+=,整理可得关于d 的方程,由0?≥可得S 的不等式,解不等式可得.

类型二:基本不等式的常见题型及应用 (1)题型一:“1”的灵活代换:

例1. 已知x >0,y >0,且2x +y =1,则1x +2

y

的最小值是_____________.

练习1.(2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )

A.24

5

B.28

5

C .5

D .6

练习2、已知x ,y 为正实数,且32=+y x 。则

xy

y

x +3的最小值为 ; 则)1(2+y x 的最大值为 。 练习3.已知正数x ,y 满足:x +4y=x y ,则x +y 的最小值为 . 练习4.若正实数x ,y 满足

19

11x y

+=+,则x +y 的最小值是( ) (A )15 (B )16 (C )18 (D )19 (2)题型二:(思路)求谁保留谁,把不符合的代换掉

例2、已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是 ( ) A .3

B .4

C .9

2

D .112

练习1.(2011·浙江)设x ,y 为实数.若4x 2+y 2+xy =1,则2x +y 的最大值是________.

练习2、已知实数0,0<

a b a ++22的最大值为

练习3.(姜山中学2015届12月月考题)若正实数,x y 满足244x y xy ++=,且不等式2

(2)22340

x y a a xy +++-≥恒成立,则实数a 的取值范围是 .

(3)题型三:柯西不等式(这个内容属于选修4-5的内容,虽然不学,但是对于做题帮助很大)

例3.设a .,,,(0,)b R a b x y +

∈≠∈+∞,则222()a b a b x y x y

++≥

+,当且仅当a b x y =时,上式取等号,利用以上结论,可以得到函数291

()((0,))122

f x x x x =+∈-的最小值为( ) A .169 B .121

C .25

D .16

总结(规律和特点):

练习1、设103m <<,若13

13k m m

+

≥-恒成立,则k 的最大值为 练习2、已知12

,(0,),2,21

x y x y x y ∈+∞+

=++则的最小值为 练习3、若不等式

a

c c b b a -+-+-λ

11>0对于满足条件a >b >c 的实数a 、b 、c 恒成立,则实数λ的取值范围是______ 练习4、(2014届四川高考)设0a b >>,则()

211a ab a a b +

+-的最小值为 练习5 、对任意实数1x >,12y >,不等式22

2241(21)(1)

x y a y a x +≥--恒成立,则实数a 的最大值为( )

A.2

B.4

C.14

2

D.22 【综合练习训练】

1、设二次函数2()4()f x ax x c x R =-+∈的值域为19[0,),19

c a +∞+++则的最大值为____________. 2、已知二次函数f(x)=αx 2+2x+c(x ∈R)的值域为[0,+∞),则

α

α1

1

++

+c c

的最小值为 .

3、已知0)(,),20(,)(2≥∈?<<++=x f R x b a c bx ax x f 恒成立,则

)

1()0()

1(--f f f 的最小值为

4、已知实数x 、y 、z 满足0x y z ++=,2221x y z ++=,则x 的最大值为 .

5、已知实数,x y ,实数1,1a b >>,且2x

y

a b ==, (1)若4ab =,则

11x y +=_________,(2)28a b +=,则 21

x y

+的最大值___________ 6、已知正实数b a ,满足

32

1=+b

a ,则()()21++

b a 的最小值是( ) A. 163 B. 9

50 C. 499 D. 6

7、已知122

2

=+b a ,求b a ?的最小值

8.已知正数x ,y 满足xy +x +2y =6,则xy 的最大值为 . 9、已知正实数,a b 满足21a b +=,则2

2

1

4a b ab

++

的最小值为 . 10、已知向量)1,11(-=x a ,)1,1(y

b =)0,0(>>y x ,若b a ⊥,则y x 4+的最小值为

11、已知,x y 满足方程2

10x y --=,当3x >时,则3537

12

x y x y m x y +-+-=

+--的最小值为__ _.

12、已知0,0>>y x ,且

11

2=+y

x ,若m m y x 222+>+恒成立,则实数m 的取值范围为 . 13.若对任意]2,1[∈x ,不等式24210()x x a a a R -+?+-<∈恒成立,则a 的取值范围是( ) A .5

2

a >

或2a <- B .17

4

a >

或4a <- C .174a >

或2a <-

D .5

2a >或4a <- 14、若正数a ,b 满足

11

1a b

+=,则1911a b +--的最小值为( ) A .1 B .6 C .9 D .16

15、设+

∈R b a ,,422

2

=-+b a b a ,则

b

a 1

1+的最小值是 。 16.双曲线22

221x y a b

-=(0,0)a b >>的离心率是2,则213b a +的最小值是 .

17.已知实数y x ,满足0>>y x 且1=+y x ,则

y

x y x -++1

32的最小值是 . 18.(理)若正数,x y 满足2

2

421x y x y +++=,则xy 的最大值为__ __. (文)已知正数,x y 满足2

2

241x xy y ++=,则x y +的取值范围是__ __.

19.在ABC ?中,已知9,sin cos sin ,6ABC AB AC B A C S ??==?=

,P 为线段AB 上的点,且

|

||

|CB CB y CA CA x CP ?

+?

=,则

y

x

x 343+的最小值为__________。 【答案:3】 20.若242329231,a a b b a b ?-?+?=++则23a

b

+的取值范围是 . 【答案:(1,2]】

21.已知实数y x ,满足y

x

y

x

9933+=+,则y

x y x 3

32727++的取值范围是________. 22、正实数21,x x 及函数)(x f 满足)

(1)

(12x f x f x

-+=

,且1)()(21=+x f x f ,则)(21x x f +的最小值为__ .

23.已知实数0,>y x 且2=xy ,则

8

482233+++y x y x 的最小值是 .

24. ,x y R ∈,则2

228118(,)22u x y x xy y x x

=+-+-的最小值是 . 25.实数z y x ,,满足1222=++z y x ,则yz xy -的最小值为( ) 【答案:C 】

A .2

1

-

B .32-

C .2

2- D .42-

【(下一题)答案:721

3,77

, 26、已知2

2

2

1(0)x y z x ++=>,则2

234x y y z z ++的最大值是 ,取到最大值时的x = ,y = 。

27、已知实数,,a b c 满足

222

11144

a b c ++=,则22ab bc ca ++的取值范围是( ) 【答案:C 】 A .(,4]-∞ B .[4,4]- C .[2,4]- D . [1,4]-

28、实数,x y 满足2

2

4545x xy y -+=,设2

2

S x y =+,则

max

min

11S S +

= .

29、已知y x ,均为正数,且12-+=y x xy ,则y x +的最小值为 .

【答案:5】

30、(理)己知0,0,1a b c >>>且,1=+b a 则212

(2)1

a c a

b

c +-?+-的最小值为 (文)己知0,0,a b >>且,1=+b a 则??

?

??-??? ??-111122b a 的最小值为_______,21a ab +的最小值为 。

31、设,x y 是正实数,且3x y +=,则22

11

y x x y +++的最小值是 . 32.若实数,x y 满足()

()()22

21122cos 1,1

x y xy

x y x y ++--+-=

-+则xy 的最小值为

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

基本不等式练习题及答案解析

1.若xy>0,则对x y+ y x说法正确的是() A.有最大值-2B.有最小值2 C.无最大值和最小值D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x≥2,则当x=____时,x+4 x有最小值____. 答案:2 4 4.已知f(x)=12 x+4x. (1)当x>0时,求f(x)的最小值; (2)当x<0 时,求f(x)的最大值. 解:(1)∵x>0,∴12 x,4x>0. ∴12 x+4x≥2 12 x·4x=8 3. 当且仅当12 x=4x,即x=3时取最小值83, ∴当x>0时,f(x)的最小值为8 3. (2)∵x<0,∴-x>0. 则-f(x)=12 -x +(-4x)≥2 12 -x ·?-4x?=83, 当且仅当12 -x =-4x时,即x=-3时取等号. ∴当x<0时,f(x)的最大值为-8 3. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+1 2x B.x 2-1+ 1 x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+ 6 x2+1 的最小值是() A.32-3 B.-3 C.6 2 D.62-3

解析:选D.y=3(x2+ 2 x2+1 )=3(x2+1+ 2 x2+1 -1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程: ①∵a,b∈(0,+∞),∴b a+ a b≥2 b a· a b=2; ②∵x,y∈(0,+∞),∴lg x+lg y≥2lg x·lg y; ③∵a∈R,a≠0,∴4 a+a≥2 4 a·a=4; ④∵x,y∈R,,xy<0,∴x y+ y x=-[(- x y)+(- y x)]≤-2?- x y??- y x?=-2. 其中正确的推导过程为() A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑. ①∵a,b∈(0,+∞),∴b a, a b∈(0,+∞),符合基本不等式的条件,故①的推导 过程正确; ②虽然x,y∈(0,+∞),但当x∈(0,1)时,lg x是负数,y∈(0,1)时,lg y是负数,∴ ②的推导过程是错误的; ③∵a∈R,不符合基本不等式的条件, ∴4 a+a≥24 a·a=4是错误的; ④由xy<0得x y, y x均为负数,但在推导过程中将全体 x y+ y x提出负号后,(- x y)均 变为正数,符合基本不等式的条件,故④正确. 5.已知a>0,b>0,则1 a+ 1 b+2ab的最小值是() A.2 B.2 2 C.4 D.5 解析:选 C.∵1 a+ 1 b+2ab≥ 2 ab +2ab≥22×2=4.当且仅当 ?? ? ??a=b ab=1 时, 等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

基本不等式题型总结

基本公式 (1)R b a ab a a ∈≥+、,222(2)ab b a 2≥+,一定二正三相等(3 )b a a b b a b a 1122222+≥≥+≥+,当b a =时,等号成立(4)33abc c b a ≥++推广: n n n x x x n x x x 2121≥+++,0>i x 题型 (1)对勾函数:x b ax y +=当x b ax =时,函数取得极值点 (2)1的代换 当题目中有b a b a 11、、、时。例1:正数n m 、满足12=+n m ,求m n 11+的最小值解:223212)21111+≥+++=+?+=+m n n m n m m n m n ()(

(3)xy y x 、、型 例2:已知2=++xy y x ,求y x +最小值①因式分解(提取公因式)2 3232113 )1)(1(2 -≥+∴≥+++=++∴=++y x y x y x xy y x 又②求谁留谁 22208)(4)())(2(4)())(2(44)(2222-≥+≥-+++∴+-≥+∴+-=≥+∴≥+y x y x y x y x y x y x xy y x xy y x 解得: ③?判别法:0 ≥?2 320 )2(40 22 )(,22-≥≥--=?=-+-∴=-+∴-=+=z z z z zy y z y y z z y x y x z 解得则令④技巧、完全对称为最值 解得:原式完全对称和式子中2322 22-==+=∴=∴x x x y x y x

(4)xy y x 、、22型①完全对称 ②求谁留谁 ③?判别法:0≥?④配方,三角换元例3:已知1422=++xy y x 求y x +2的最大值配方: 1)2(41522=++x y x ;则:12(21522=++x y x )(换元: ]2,0[cos 2;sin 215πθθθ∈=+=。x y x θθθsin 15 1cos ,sin 152-==∴y x )sin(58cos sin 15 32?θθθ+=+=+∴y x 510 22≤+∴y x

基本不等式专题复习

基本不等式专题复习 一、基础梳理 1.基本不等式: a+b 2 ≥√ab(a ,b >0) 2.变式:⑴a +b ≥2√ab ⑵ ab ≤( a+b 2 )2 3.使用条件:一正二定三相等 二、典型例题 例1.若x>0,则x +2 x 的最小值是________. 解析:由基本不等式可得x +2x ≥2x ·2 x =22, 当且仅当x =2 x 即x =2时取等号,故最小值是2 2. 变式训练:(1) 当x>1时,函数y =x +1 x -1 的最小值是________. (2)已知f(x)=x +1 x -2(x<0),则f(x)的最大值为________. 解析 (1) y =x +1x -1=x -1+1 x -1 +1≥2 x -1·1 x -1 +1=3 当且仅当1 x-1= x-1 ,即x=2时取等号,故最小值是3. (2)∵x<0,∴-x>0, ∴x +1x -2=-(-x +1-x )-2≤-2(-x )·1 -x -2=-4, 当且仅当-x =1 -x ,即x =-1时,等号成立. 所以f(x)的最大值为4. 例2.已知x >0,y >0,2x +3y =60,求xy 的最大值. 解: ∵x >0,y >0,2x +3y =60, ∴xy =1 6?2x ?3y ≤16( 2x+3y 2 )2 =150, 当{2x =3y 2x +3y =60,即x =15,y =10时,xy 取最大值150. 变式训练:(1)求y =3x(4?5x)(0

不等式的基本性质知识点

不等式的基本性质知识点 不等式的基本性质知识点 1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。 ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。 ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 如证明y=x3为单增函数, 设x1, x2∈(-∞,+∞), x1<x2, f(x1)-f(x2)=x13-x23=(x1-x2)(x12+x1x2+x22)=(x1-x2)[( x1+)2 +x22] 再由(x1+)2+x22>0, x1-x2<0,可得f(x1)<f(x2), ∴ f(x)为单增。 2.不等式的性质: ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1) a>bb<a (对称性)

(2) a>b, b>ca>c (传递性) (3) a>ba+c>b+c (c∈R) (4) c>0时,a>bac>bc c<0时,a>bac<bc。 运算性质有: (1) a>b, c>da+c>b+d。 (2) a>b>0, c>d>0ac>bd。 (3) a>b>0an>bn(n∈N, n>1)。 (4) a>b>0>(n∈N, n>1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ② 关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab b a +≤ +≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 已知,,a b c R + ∈,且1a b c ++=,求证:1111118a b c ??????---≥ ??????????? 6、选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 2 23322-≥- 题型二:利用不等式求函数值域

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

高中数学专题复习基本不等式

第六章 不等式 课 题:基本不等式 教学目标:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不 等号“≥”取等号的条件是:当且仅当这两个数相等。 教学重点:2 a b +≤的证明过 程。 教学难点:2 a b +≤等号成立条件。 教学过程: 1.课题导入 2 a b +≤ 的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角形的 两条直角边长为a,b 这样,4个直角三角形的面积的和是2ab ,正方形的面积为2 2 a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:2 2 2a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有2 2 2a b ab +=。 2.得到结论:一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为2 22)(2b a ab b a -=-+ 当a b ≠时22 ,()0,,()0,a b a b a b ->=-=当时 所以,0)(2≥-b a ,即.2)(2 2ab b a ≥+ 4.1)2 a b +

特别的,如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2 a b + 2)2 a b +≤ 用分析法证明: 要证 2 a b +≥只要证 a+b ≥ (2) 要证(2),只要证 a+b- ≥0 (3) 要证(3),只要证 ( - )2 (4) 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 3)2 a b +≤ 的几何意义 探究:课本第110页的“探究” 在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。过点C 作垂直于 AB 的弦DE ,连接AD 、BD 。2 a b +的几何解释吗? 易证Rt △A CD ∽Rt △D CB ,那么CD 2 =CA ·CB 即CD =ab . 这个圆的半径为 2b a +,显然,它大于或等于CD ,即 ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a =b 时,等号成立. 2 a b +≤几何意义是“半径不小于半弦” 评述:1.如果把 2 b a +看作是正数a 、 b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项. 2.在数学中,我们称 2 b a +为a 、 b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数. [补充例题] 例1 已知x 、y 都是正数,求证: (1) y x x y +≥2;

基本不等式知识点归纳教学内容

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+≤≤ 【注意】: a b 、 同向或有0?||||||a b a b +=+≥||||||||a b a b -=-; a b 、反向或有0?||||||a b a b -=+≥||||||||a b a b -=+; a b 、不共线?||||||||||||a b a b a b -<±<+.(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R + ∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0).

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

基本不等式学习知识梳理

基本不等式 【考纲要求】 1. 2 a b +≤ 的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2. 2 a b +≤ 解决最大(小)值问题. 3.会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题 【知识网络】 【考点梳理】 考点一:重要不等式及几何意义 1.重要不等式: 如果,R a b ∈,那么2 2 2a b ab +≥(当且仅当a b =时取等号“=”). 2.基本不等式: 如果,a b 是正数,那么 2a b +≥(当且仅当a b =时取等号“=”). 要点诠释:22 2a b ab +≥ 和2 a b +≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;

(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。 (3)2 2 2a b ab +≥可以变形为:222a b ab +≤,2a b ab +≥可以变形为:2()2 a b ab +≤. 3.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD . 易证~Rt ACD Rt DCB ??,那么2 CD CA CB =?,即CD ab = . 这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a b =时,等号成立. 要点诠释:1.在数学中,我们称 2 b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2.如果把 2 b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项. 考点二:基本不等式2 a b ab +≤的证明 1. 几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形。 设直角三角形的两条直角边长为a 、b 22a b +4个直角三角形 的面积的和是2ab ,正方形ABCD 的面积为2 2 a b +。由于4个直角三角形的面积小于正方形的面积,所 以:22 2a b ab +≥。当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有2 2 2a b ab +=。

(完整版)基本不等式练习题(带答案)

基本不等式 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 111a b c + + ≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .11 1x y +≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则 2,2 a b ab a b ++三个数的大小顺序是 ( ) A.22a b ab a b ++ 22a b ab a b +≤≤ + C. 22ab a b a b ++ D.22 ab a b a b +≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 11. 函数y =的最大值为 .

高级中学数学基本不等式知识点归纳及理解练习知识题

高中数学基本不等式的巧用 1.基本不等式:ab ≤ a + b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ???a +b 22 (a ,b ∈R ); (4) a 2+ b 22 ≥? ?? ? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2 ,几何平均数为ab ,基本不等式可叙述为 两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24 .(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是 2 2 ? ??a +b 22 (a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.

两个变形 (1) a 2+ b 22 ≥? ? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); (2) a 2+ b 22 ≥ a + b 2 ≥ab ≥ 2 1 a + 1 b (a >0,b >0,当且仅当a =b 时取等号). 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+1 2x 2 (2)y =x +1 x 解题技巧: 技巧一:凑项 例1:已知5 4x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。

(完整版)高中数学基本不等式题型总结

The shortest way to do many things is 专题 基本不等式 编者:高成龙 专题 基本不等式 【一】基础知识 基本不等式:) 0,0a b a b +≥>>(1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1);(2);()24a b ab +≤(),a b R ∈)+0,0a b a b ≥>>【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知,且,则的最小值为 .0,0x y >>34x y +=41x y +【变式1】已知,且,则的最小值为 .0,0x y >>34x y +=4x x y +【变式2】(2013年天津)设, 则的最小值为 .2,0a b b +=>1||2||a a b +【例2】(2012河西)已知正实数满足,则的最小值为 . ,a b 211a b +=2a b +【变式】已知正实数满足,则的最小值为 . ,a b 211a b +=2a b ab ++

【例3】已知,且,则的最小值为 . 0,0x y >>280x y xy +-=x y +【例4】已知正数满足,则的最小值为 .,x y 21x y +=8x y xy +【例5】已知,若不等式总能成立,则实数的最大值为 . 0,0a b >>212m a b a b +≥+m 【例6】(2013年天津市第二次六校联考)与圆相交于两点,()1,0by a b +=≠22 1x y +=,A B 为坐标原点,且△为直角三角形,则的最小值为 . O AOB 22 12a b +

【例7】(2012年南开二模)若直线始终平分圆的周长,()2200,0ax by a b -+=>>22 2410x y x y ++-+=则的最小值为 . 11a b +【例8】设分别为具有公共焦点的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足 12,e e 12,F F P ,则的最小值为 120PF PF ?= 22214e e +【例9】已知,则的最小值是( )0,0,lg 2lg 4lg 2x y x y >>+=11x y + A .6 B .5 C . D .3+【例10】已知函数,若,且,则的最小值为 .()4141 x x f x -=+120,0x x >>()()121f x f x +=()12f x x +

基本不等式知识点归纳

基本不等式知识点归纳 1基本不等式.ab空 2 (1) 基本不等式成立的条件: a . 0,b .0. (2) 等号成立的条件:当且仅当a =b时取等号. [探究]1.如何理解基本不等式中“当且仅当”的含义? 提示:①当a = b时,乞_卫_ ab取等号,即a = b= 皂卫hJ ab. 2 2 ②仅当a二b时,-—丄」ab取等号,即 -—=.-;:ab = a =b. 2 2 2?几个重要的不等式 2 2 b a a b 丄2ab(a,b R); 2(ab 0). a b 2 2 a + b 2 a +b 2 a +b ab 臥)(a,b R);( ) (a,b R) 2 2 2 3?算术平均数与几何平均数 设a 0,b 0,则a,b的算术平均数为』~卫,几何平均数为,ab,基本不等式可叙述为:两个正实数的算术 2 平均数不小于它的几何平均数. 4?利用基本不等式求最值问题 已知x 0, y - 0,则 (1) 如果积xy是定值p,那么当且仅当x=y时,x y有最小值是2「p.(简记:积定和最小). 2 (2) 如果和x y是定值p,,那么当且仅当x = y时,xy有最大值是—.(简记:和定积最大). [探究]2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 1 提示:当等号取不到时,可利用函数的单调性等知识来求解?例如,y=x 在x_2时的最小值,利用单调 x 5 性,易知X = 2时丫皿山二. 2 [自测?牛刀小试] 1.已知m?0, n ? 0,且mn =81,则m ? n的最小值为() A. 18 B. 36 C. 81 D . 243 解析:选 A 因为n>0, n>0,所以m+ n>2 mn= 2 81 = 18.

专题:基本不等式常见题型归纳

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2 +b 2 ≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R , a 2+ b 2 2 ≤( a +b 2 )2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2 +b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤( a +b 2 )2 ),当且仅当a =b 时 取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数,x y 满足0x y >>,且22log log 1x y +=,则22 x y x y +-的最小值 为 . 2.若实数,x y 满足1 33(0)2 xy x x +=<< ,则313x y + -的最小值为 . 3.已知0,0,2a b c >>>,且2a b +=,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________

基本不等式专题复习(优.选)

基本不等式专题复习 [基础知识] 1.(1)若R a ∈,则2 a 0, a 222 b a + 2)2 (b a + (3)222c b a ++ ac bc ab ++ (4)若a>b>0,m>0则a b m a m b ++ (5)若a,b 同号且a>b 则a 1 b 1 (6)R b a ∈,,则22b a + ab 2 变形 2.均值不等式: 两个正数的均值不等式: ab b a ≥+2 变形 , 3.最值定理:设,0,x y x y >+≥由 (1)如果x,y 是正数,且积(xy P =是定值),则xy 时,x y +和有最小值 (2)如果x,y 是正数和(x y S +=是定值),则x=y 时,2 2 S xy 积有最大值() 运用最值定理求最值的三要素:一 ,二 ,三 。 4.)0(>+=a x a x y 的草图: [典型例析] 例1. 已知,x y R +∈,且41x y +=,则x y ?的最大值为 . 变式 (1)已知00>>y x ,,且302=++xy y x ,求xy 的最大值 . (2)已知lg lg 1x y +=,则52 x y +的最小值是 . 例2 (1)已知54x <,求函数14245 y x x =-+-的最大值. (2)求函数1 4 2 2++=x x y 的最小值 (3)求22 2 42 y x x =--+的最大值. (4) 已知:0>>x y ,且1=xy ,则22 x y x y +-的最小值是 . (5)已知0<x <3 1 ,求函数y=x(1-3x)的最大值 (6)求函数y=1 3 3224+++x x x 的最小值.

相关主题
文本预览
相关文档 最新文档