当前位置:文档之家› 应用随机过程

应用随机过程

应用随机过程
应用随机过程

第一章 随机过程的基本概念

一、随机过程的定义

例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。

例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。

例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。

定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。

E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。

例1:E 为{0,1} 例2:E 为[0, 10]

例3:E 为},2,2,1,1,0{ -- 例4:E 都为),

0[∞+

注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。

(2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。

(3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。

二、有限维分布与Kolmogorov 定理

随机过程的一维分布:})({),(x t X P x t F ≤= 随

T t t x t X x t X P x x F t t ∈≤≤=21221121,,},)(,)({),(21

随机过程的n 维分布:

T t t t x t X x t X x t X P x x x F n n n n t t t n ∈≤≤≤= ,,},)(,)(,)({),,(21221121,,21

1、有限维分布族:随机过程的所有一维分布,二维分布,…n 维分布等的全体

}1,,,),,,({2121,,21≥∈n T t t t x x x F n n t t t n 称为{X(t), t ∈T}的有限维分布族。

2、有限维分布族的性质:

(1)对称性:对(1,2,…n )的任一排列),,(21n j j j ,有

),,(),,(21,,,,21212

1

n t t t j j j t t t x x x F x x x F n n n

j j j

=

(2)相容性:对于m

),(),,(1,1,,111m t t m t t t t x x F x x F m n m m =∞∞+

3、Kolmogorov 定理

定理:设分布函数族}1,,,),,,({2121,,21≥∈n T t t t x x x F n n t t t n 满足上述的对称性和相容性,则必存在一个随机过程{X(t),

t ∈T},使

}1,,,),,,({2121,,21≥∈n T t t t x x x F n n t t t n 恰好是{X(t), t ∈T}的有限维分布族。

定义:设{X(t), t ∈T}是一随机过程:

(1) 称X(t)的期望)]([)(t X E t X =μ(如果存在)为过程的均值函数。

(2) 如果T t ∈?,)]([2

t X E 存在,则称随机过程{X(t), t ∈T}为二阶矩过程。此时,称

函数))]()())(()([(),(221121t t X t t X E t t X X μμγ--=,T t t ∈21,为过程的协方差函数;称),()]([t t t X Var γ=为过程的方差函数;称

T t s t X s X E t s R X ∈=,)],()([),(为自相关函数。

例:)()(0b t a tV X t X ≤≤+=,其中0X 和V 是相互独立的且均服从N(0,1)分布的随机变量,求)(t X μ和),(21t t γ。

三、随机过程的基本类型

独立增量过程:如果对任意,,,,21T t t t n ∈???,21n t t t

)()(1--n n t X t X 是相互独立的,则称{X(t), t ∈T}是独立增量过程。

平稳增量过程:如果对任意21,t t ,有X(t 1+h)-X(t 1)d X(t 2+h)-X(t 2),则称{X(t), t ∈T}是平稳增量过程。

平稳独立增量过程:兼有独立增量和平稳增量的过程称为平稳独立增量过程,例如Poisson 过程和Brownian motion

Poisson 过程 2.1 Poisson 过程

1. 计数过程

定义:随机过程}0),({≥t t N 称为计数过程,如果)(t N 表示从0到t 时刻某一特定事件A 发生的次数,它具备以下两个特点: (1)0)(≥t N 且取值为整数;

(2)t s <时,)()(t N s N ≤且)()(s N t N -表示],(t s 时间内事件A 发生的次数。 2. Poisson 过程

定义2.1.1:计数过程}0),({≥t t N 称为参数为λ(0>λ)的Poisson 过程,如果 (1);0)0(=N

(2)过程具有独立增量性;

(3)在任一长度为t 的时间区间中事件发生的次数服从均值为t λ的Poisson 分布,即对一切0,

0>≥t s ,有 () ,1,0,!

))()((===-+-n n t

e n s N s t N P n t λλ

注:Poisson 过程具有平稳增量性

因为)()(s N s t N -+的分布只依赖于t, 与区间起点s 无关,,0=s 令

() ,1,0,

!

)n )((===-n n t e

t N P n t

λλ

t t EN t m λ==∴)()(

于是可认为λ是单位时间内发生的事件的平均次数,一般称λ是Poisson 过程的强度。 例2.1.1:(Poisson 过程在排队论中的应用)研究随机服务系统中的排队现象时,经常用到Poisson 过程模型。例如:到达电话总机的呼叫数目,到达某服务设施(商场、车站、购票处等)的顾客数,都可以用Poisson 过程来描述。以某火车站售票处为例,设从早上8:00开始,此售票处连续售票,乘客以10人/小时的平均速率到达,则9:00-10:00这一小时内最多有5名乘客来此购票的概率是多少?10:00-11:00没有人来买票的概率是多少?

解:我们用一个Poisson 过程来描述,设8:00为时刻0,则9:00为时刻1,参数10=λ,于是!

10}5)1()2({5

10

n e

N N P n n ∑=-=

≤-, 100

10!010}0)2()3({--===-e e

N N P 例2.1.2:(事故发生次数及保险公司接到的索赔数)若以)(t N 表示某公路交叉口、矿山、工厂等场所在],0(t 时间内发生不幸事故的数目,则Poisson 过程就是}0),({≥t t N 的一种很好近似。例如,保险公司接到赔偿请求的次数(设一次事故导致一次索赔),向315台的

投诉(设商品出现质量问题为事故)等都是可以用Poisson 过程的模型。我们考虑一种最简单的情形,设保险公司每次的赔付都是1,每月平均接到索赔要求4次,则一年中它要付出的金额平均为多少?

解:设一年开始时刻为0,1月末为时刻1,…年末为时刻12,则有

12

4!

)124(})0()12({?-?==-e n n N N P n

∑∞

=?-??=-0

12

4!)124()]0()12([n n e

n n N N E =48 问题:为什么实际中有这么多现象可以用Poisson 过程来反映呢?

{}{}{}).

(2)(0h )iv ( );(1)(0h ,0)iii ( )ii ( ;

0)()i ( 0),(2.1.2h o h N P h o h h N P t N Poisson t t N =≥↓+==↓>=≥时,当时,当存在过程有平稳独立增量

过程,如果满足:

称为:计数过程定义λλ

定理2.1.1:定义1和定义2是等价的。

例2.1.3:事件A 的发生形成强度为λ的Poisson 过程}0),({≥t t N ,如果每次事件发生时以概率p 能够被记录下来,并以M(t)表示到时刻t 被记录下来的事件总数,则}0),(M {≥t t 是一个强度为p λ的Poisson 过程。

例2.1.4:若每条蚕的产卵数服从Poisson 分布,强度为λ,而每个卵变为成虫的概率为p ,且每个卵是否变为成虫彼此间没有关系,求在时间[0, t]内每条蚕养活k 只小蚕的概率。

2.2 与Poisson 过程相联系的若干分布

设n T 表示第n 次事件发生的时刻,n=1,2,…,规定00=T 。n X 表示第n 次与第n-1次事件发生的间隔时间,n=1,2,…。 1. 关于n X 和n T 的分布

定理2.2.1:n X (n=1,2,…)服从参数为λ的指数分布,且相互独立。 定理2.2.2:n T (n=1,2,…)服从参数为n 和λ的Γ分布。

注:如果每次事件发生的时间间隔,....,21X X 相互独立,且服从同一参数为λ的指数分布,则计数过程}0),({≥t t N 是参数为λ的Poisson 过程。

例2.2.1:设从早上8:00开始有无穷多的人排队等候服务,只有一名服务员,且每个人接受服务的时间是独立的并服从均值为20min 的指数分布,则到中午12:00为止平均有多少人已经离去,已有9个人接受服务的概率是多少?

例2.2.2:假设某天文台观测到的流星流是一个Poisson 过程,根据以往资料统计为每小时平均观察到3颗流星。试求:上午8:00-12:00期间,该天文台没有观察到流星的概率。

2. 事件发生时刻的条件分布 对于t s ≤,有t

s t N s T P ==≤}1)(|{1 现在考虑2≥n 的情况:

定理2.2.1:在已知n t N =)(的条件下,事件发生的n 个时刻,,21T T n T 的联合分布密度是n n t

n t t t f !

),,(21=

, n t t t <<<210 例2.2.3:乘客按照强度为λ的Poisson 过程来到某火车站,火车在时刻t 启程,计算在]

,0(t 内到达的乘客等待时间的总和的期望值。即要求])([)

(1

∑=-t N i i

T t E ,其中i

T 是第i 个乘客来到

的时刻。

2.3 Poisson 过程的推广

1. 非齐次Poisson 过程

定义2.3.1:计数过程}0),({≥t t N 称作强度函数为)0(0)(≥>t t λ的非齐次Poisson 过程,如果

{}{}).

(2)()t ()iv ( );()(1)()t ()iii ( }0),({)ii ( ;

0)()i ( h o t N h N P h o h t t N h N P t t N t N ==≥-++==-+≥=λ具有独立增量

等价定义:

定义2.3.2:计数过程}0),({≥t t N 称作强度函数为)0(0)(≥>t t λ的非齐次Poisson 过程,

若(1);0)0(=N

(2)}0),({≥t t N 具有独立增量性; (3)即任意实数0,

0>≥s t ,)()(t N s t N -+为具有参数du

u t m s t m s

t t

?

+=-+)()()(λ的Poisson 分布,称ds s t m t ?=0

)()(λ为非齐次Poisson 过程的均值函数(或累积强度函数)

定理2.3.1:设}0),

({≥t t N 是一个强度函数为)0(0)(≥>t t λ的非齐次Poisson 过程。对

任意的0≥t ,令)),(()(*1t m N t N -= 则)}(*{t N 是一个强度为1的Poisson 过程。

例2.3.1:设某设备的使用期限为10年,在前5年内它平均2.5年需要维修一次,后5年平均2年需维修一次。试求它在试用期内只维修过一次的概率。

2. 复合Poisson 过程

定义2.3.3:称随机过程}0),

({≥t t X 为复合Poisson 过程,如果对于0≥t ,它可以表示

为:∑==

)

(1

)(t N i i

Y

t X ,其中}0),

({≥t t N 是一个Poisson 过程,},2,1,{ =i Y i 是一族独

立 同分布的随机变量,并且与}0),

({≥t t N 独立。

注:复合Poisson 过程不一定是计数过程。

例2.3.2:保险公司接到的索赔次数服从一个Poisson 过程}0),

({≥t t N ,每次要求赔付的

金额i Y 都相互独立,且有相同分布F ,每次的索赔数额与它发生的时刻无关,则],0[t 时间内保险公司需要赔付的总金额}0),

({≥t t X 就是一个复合Poisson 过程,其中

∑==)

(1

)(t N i i Y t X 。

例2.3.3:设顾客到达某服务系统的时刻 ,,21S S ,形成一强度为λ的Poisson 过程,在每个时刻),2,1( =n S n ,可以同时有多名顾客到达。n Y 表示在时刻n S 到达的顾客人数,假定),2,1( =n Y n 相互独立,并且与{n S }也独立,则在],0[t 时间内到达服务系统的顾客总人数可用一复合Poisson 过程来描述。

例2.3.4:假定顾客按照参数为λ的Poisson 过程进人一个商店,又假设各顾客所花的钱数形成一族独立同分布的随机变量。以)(t X 记到时间t 为止顾客在此商店所花费的总值,易见

}0),({≥t t X 是一个复合Poisson 过程。

定理2.3.2:设{∑==)

(1

)(t N i i

Y

t X ,0≥t }是一复合Poisson 过程,Poisson 过程}0),({≥t t N 的

强度为λ,则

(1))(t X 有独立增量;

(2)若+∞<][2

i Y E ,则 ][)]([1Y tE t X E λ=,][)]([2

1Y tE t X Var λ=

例2.3.5:在保险中的索赔模型中,设索赔要求以Poisson 过程到达保险公司,速率为平均每月两次。每次索赔服从均值为10000元的正态分布,则一年中保险公司平均的赔付额是多少?

例2.3.6:设顾客以每分钟6人的平均速率进入某商场,这一过程可用用Poisson 过程来描述。又该进入该商场的每位顾客买东西的概率为0.9,且每位顾客是否买东西互不影响,也与进入该商场的顾客数无关。求一天(12小时)在该商场买东西的顾客数的均值。

3.条件Poisson 过程

定义2.3.4:设随机变量0>Λ,在λ=Λ的条件下,计数过程}0),({≥t t N 是参数为λ的Poisson 过程,则称}0),({≥t t N 为条件Poisson 过程。

定理2.3.3:设}0),({≥t t N 是条件Poisson 过程,且∞<Λ][2E ,则 (1)][)]([Λ=tE t N E ;

(2)][][)]([2Λ+Λ=tE Var t t N Var

例2.3.7:设意外事故的发生频率受某种未知因素影响有两种可能21,λλ,且,)(1p P ==Λλ

q p P =-==Λ1)(2λ,10<

故在t+s 之前不会到来的概率。另外,这个发生频率为1λ的概率是多少?

第三章 Markov 链

3.1 基本概念

定义3.1.1:随机过程}2,1,0,

{ =n X n 称为Markov 链,若它只取有限或可列个值(常

用非负整数集{ 2,1,0}来表示),并且对任意的0≥n ,及任意状态110,,,,

-n i i i j i ,

有},,,|{11001i X i X i X j X P n n n n ====--+ =}|{1i X j X P n n ==+,其中i X n =表示过程在时刻n 处于状态i ,称{ 2,1,0}为该过程的状态空间,记为E . 上式刻画了Markov 链的特性,称为Markov 性。

定义3.1.2:称条件概率}|{1i X j X P n n ==+为Markov 链}2,1,0,

{ =n X n 的一步转

移概率,简称转移概率,记为ij p ,它代表处于状态i 的过程下一步转移到状态j 的概率。 定义3.1.3:当Markov 链的转移概率ij p =}|{1i X j X P n n ==+只与状态j i ,有关,而与n 无关时,称之为时齐Markov 链;否则,就称之为非时齐的。

注:我们只讨论时齐Markov 链,简称Markov 链。

定义3.1.4:当Markov 链的状态为有限时,称为有限链,否则称为无限连。但无论状态有限还是无限,我们都可以将ij p (E j i ∈,)排成一个矩阵的形式,令

P=(ij p )=??

???

????

???

222120121110

020100p p p p p p p p p 为转移概率矩阵,简称转移矩阵。容易看出ij p (E j i ∈,)具有性质:

(1)0≥ij p ,E j i ∈,; (2)∑∈E

j ij

p

=1,E i ∈?。

例3.1.1:考虑一个包含三个状态的模型,若个体健康,认为他处于状态1S ,若他患病,认为他处于状态2S ,若他死亡,认为他处于状态3S ,易见这是一个Markov 链,转移矩阵为

P=????

??????10

2322

21131211

p p p p p p

例3.1.2:(赌徒的破产或称带吸收壁的随机游动)系统的状态时n ~0,反映赌博者在赌博期间拥有的钱数,当他输光或拥有钱数为n 时,赌博停止,否则他将持续赌博。每次以概率p 赢得1,以概率q=1-p 输掉1。这个系统的转移矩阵为

P=???????

?????????10

000

0000000000

00

00001 p q p q

例3.1.3:(带反射壁的随机游动)设上例中当赌博者输光时将获得赞助1继续赌下去,就如同一个在直线上做随机游动的球在到达左侧0点处立刻反弹回一样,这就是一个一侧带有反射壁的随机游动,此时转移矩阵为:

P=???????

?????????10

000

0000000000

00

00010 p q p q

例 3.1.4:(自由随机游动)设一个球在全直线上做无限制的随机游动,它的状态为0,

,2,1±±,它是一个Markov 链,转移矩阵为:

P=??????????

???????????

?

p q p q p q p q 000000000000000000000000

练习:设有一只蚂蚁在图上爬行,当两个节点相邻时,蚂蚁将爬向它邻近的一点,并且爬向任何一个邻近节点的概率是相同的,求转移矩阵。

2. n 步转移概率, C-K 方程

定义3.1.5:称条件概率}|{)

(i X j X P p m n m n ij

===+,1,0;,≥≥∈n m E j i 为Markov

链的n 步转移概率,相应地称)()

()(n ij n p P =为n 步转移矩阵。

规定:?

?

?=≠=j i j

i p ij 10)

0( 问题:)

(n ij

p 和ij p 是什么关系?

定理3.1.1:Chapman-Kolmogorov 方程,简称C-K 方程 对一切E j i n ∈≥,,0m ,有

(1))

()

()

(n kj

m E

k ik

n m ij p p p ∑∈+=

(2)n n n n P P P P P P P ==??=?=-- )2()1()

(

证明:

例3.1.5:(赌徒的破产或称带吸收壁的随机游动)系统的状态时n ~0,反映赌博者在赌博期间拥有的钱数,当他输光或拥有钱数为n 时,赌博停止,否则他将持续赌博。每次以概率p 赢得1,以概率q=1-p 输掉1。设2

1

,

3=

==q p n ,赌博者从2元赌金开始赌博,求他经过4次赌博之后输光的概率。

例3.1.6:甲乙两人进行某种比赛,设每局甲胜的概率是p 。乙胜的概率是q ,和局的概率是r ,1r q p =++。设每局比赛后,胜者记“+1”分,负者记“-1”分,和局不计分,且当两人中有一人获得2分时比赛结束。以n X 表示比赛至第n 局时甲获得的分数,则

},2,1,0,{ =n X n 为时齐Markov 链,求甲获得1分的情况下,不超过两局可结束比赛

的概率。

例3.1.7:质点在数轴上的点集}2,1,0,1,2{--上做随机游动,质点到达点-2后,以概率1停留在原处;到达点2后,以概率1向左移动一点;到达其他点后,分别以概率3

1

向左、右移动一点,以概率

3

1

停留在原处。试求在已知该质点处于状态0的条件下,经3步转移后仍处于状态0的概率。

例3.1.8:(广告效益的推算)某种啤酒A 的广告改变了广告方式,经调查发现买A 种啤酒及另外三种啤酒B, C ,D 的顾客每两个月的平均转换率如下(设市场中只有这四种啤酒):

)

50.0()

10.0()

20.0()

20.0()00.0()70.0()10.0()20.0()04.0()06.0()60.0()30.0()01.0()02.0()02.0()95.0(D C B A D D C B A C D C B A B D C B A A →→→→

假设目前购买A ,B, C ,D 四种啤酒的顾客的分布为(25%,30%,35%,10%),试求半年后啤酒A 的市场份额。

3.2 状态的分类及性质

定义3.2.1:若存在0≥n 使得0)

(>n ij p ,称状态i 可达状态),(E j i j ∈,记为j i →。若

同时有i j →,则称i 与j 互通,记为j i ?。

定理3.2.1:互通是一种等价关系,即满足: (1) 自反性:i i ?;

(2) 对称性:j i ?,则i j ?

(3) 传递性:j i ?,k j ?,则k i ? 证明:

定义3.2.2:把任何两个互通状态归为一类,若Markov 链只存在一个类,就称它是不可约的;否则称为可约的。

例3.2.1:在例3.1.1中考三个状态:健康状态1S ,患病状态2S ,死亡状态3S ,可分为几个类?

定义3.2.3:若集合}0,1:{)

(>≥n ii

p n n 非空,

则称它的最大公约数)(i d d =为状态i 的周期。若1>d ,称i 是周期的。若1=d ,称i 是非周期的。规定,上述集合为空集时,称i 的周期为无穷大。

注:(1)虽然i 有周期d 但并不是对所有的n ,)

(nd ii

p 都大于0。请举出反例:

(2)虽然i 有周期d 但可能0)

(=d ii p ,举出反例:

定理3.2.2:若状态j i ,同属一类,则)()(j d i d =。 证明:

定义3.2.4:对于任何状态j i ,,以)

(n ij

f 记从i 出发经n 步后首次到达j 的概率,则有

1

},|1,2,1,,{0)

()0(≥=-=≠===n i X n k j X j X P f f k n n ij

ij

ij δ

令∑∞

==1

)(n n ij

ij f

f ,如果1=jj f ,称状态j 为常返状态;如果1

态。

问题:ij f 的含义是什么?

定义3.2.4:(1)对于常返状态i ,定义∑∞

==

1

)

(n n ii i nf

μ,可以知道i μ表示的是由i 出发再返

回到i 所需的平均步数(时间)。

(2)对于常返状态i ,若+∞

态。

(3)若i 为正常返状态,且是非周期的,则称之为遍历状态。若i 是遍历状态,且1)1(=ii f ,

则称i 为吸收状态,此时显然1=i μ。

例3.2.3:设Markov 链的状态空间为}4,3,2,1{=E ,其一步转移概率矩阵为:

??????????

??????

??????=02

10

2

10323100001002121

P 试将状态进行分类。

定理3.2.3:状态i 为常返的当且仅当

∞=∑∞

=0

)(n n ii

p

;状态i 为非常返状态时,有

ii

n n ii f p -=

∑∞

=11

)(。 引理3.2.1:对任意状态j i ,及+∞<≤n 1,有)(1

)()(l n jj l l ij n ij

p f p

-∞

=∑=。

引理3.2.2:若j i ?且i 为常返状态,则1=ji f 。

定理3.2.4:常返性是一个类性质。

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

随机过程及其应用结课论文

硕士研究生课程结课论文 《随机过程》 姓名:xxxx 学号:xxxx 年级:14 级 学科(领域):数学 培养单位:理学院 日期:2014年11月12日 教师评定: 综合评定成绩:任课教师签字:

目录 1 引言 (2) 1.1 研究背景 (2) 1.2 研究意义 (2) 1.3 选题依据 (2) 2 时间序列分析的理论 (3) 2.1 时间序列分析的问题 (3) 2.2 确定与随机性时间序列分析 (3) 2.3 时间序列的概念及性质 (3) 2.3.1 平稳性 (3) 2.3.2 平稳时间序列 (3) 2.3.3 平稳时间序列的统计性质 (4) 2.3.4 平稳性的检验 (4) 2.3.5 纯随机性检验 (4) 3 平稳时间序列分析 (5) 3.1 ARMA 模型 (5) 3.1.1 AR 模型 (5) 3.1.2 MA模型 (5) 4 非平稳序列分析 (8) 4.1 确定性成分 (8) 4.1.1 趋势成分 (8) 4.1.2 季节效应分析 (8) 4.2 非平稳序列的随机分析 (9) 4.2.1 差分 (9) 4.2.2 ARIMA 模型 (9) 4.2.3 ARIMA 模型建模 (9) 4.2.4 异方差及方差齐性变换 (10) 4.2.5 条件异方差模型 (10) 5 基于时间序列分析的股票预测模型的实证分析 (11) 5.1 关于样本数据的描述与调整 (11) 5.2 结论 (15) 参考文献 (16)

基于时间序列分析的股票预测模型研究 摘要:在现代金融浪潮的推动下,越来越多的人加入到股市,进行投资行为,以期得到丰厚的回报。所谓股票预测是指:根据股票现在行情的发展情况地对未来股市发展方向以及涨跌程度的预测行为。时间序列数据因为接受到许多偶然因素的影响,会常常表现出随机性,在统计学上称之为序列的依赖关系。在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理方提供决策依据。 本文主要介绍了时间序列分析方法的概念,特点及时间序列模型,包括建模时对数据时间序列的预处理、及模型预测等。并通过对时间序列分析的实证研究分析,建立时间序列模型,其中包括 ARIMA 等模型,进行误差分析,说明时间序列分析的方法对于股票价格的预测趋势有一定的参考价值。 关键词:股票,预测,时间序列分析,ARIMA 模型 Study on prediction model of time series analysis based on the stock Bian Xiaofei (HeiLongJiang University of science and technology,Harbin City) Abstract:In the modern financial wave, more and more people join the stock market to invest, expecting to get rich return, which has gr eatly promoted the stock market’s prosperity.The so-called stock forecast is defined: with the help of the stock’s recent condition, we’ll predict the future stock’s development, including its later development directions and fluctuations. Time-series data often show some kinds of randomness and dependence between each other because of the influence of various accidental factors.Time series analysis is often used to predict the stock price, which provides decision-making basis for investors and the stock market managers. This thesis mainly introduces time series analysis theory, including its notion, character as well as the expression and description of some models derived from it ,including method of data simulation, method of parameter estimation and method of testing degree of fitting and arrange them by the numbers. Therefore we can establish some models, including ARIMA model and so on. While through this empirical research analysis, we could prove that the method has some value for predicting t he stock’s trend by means of model fitting effect and error analysis. Keywords: stock, predict, time series analysis, ARIMA model

《应用随机过程》教学大纲

《应用随机过程》课程教学大纲 课程代码:090541007 课程英文名称:Applications Stochastic Processes 课程总学时:40 讲课:40 实验:0 上机:0 适用专业:应用统计学 大纲编写(修订)时间:2017.6 一、大纲使用说明 (一)课程的地位及教学目标 随机过程是现代概率论的一个重要的组成部分,其理论产生于上世纪初期,主要是由物理学、生物学、通讯与控制、管理科学等方面的需求而发展起来的。它是研究事物的随机现象随时间变化而产生的情况和相互作用所产生规律的学科。随机过程的理论为许多物理、生物等现象提供诸多数学模型,同时为研究这类现象提供了数学手段。本课程为统计学专业的专业课程,通过本课程的学习,掌握随机过程的基本概念、基本理论、内容和基本方法,了解随机过程的重要应用,为后继课程学习提供知识准备,另一方面,随机过程的发展也是人们认识客观世界的一个重要组成部分,它有助于学生辩证唯物主义世界观的培养。 (二)知识、能力及技能方面的基本要求 1.基本知识:通过本科程的学习,使学生掌握,要求学生掌握随机过程的基本概念、二阶矩过程的均方微积分、马尔可夫过程的基本理论、平稳过程的基本理论、鞅和鞅表示、维纳过程、Ito定理、随机微分方程等理论和方法。 2.基本能力:通过本课程的学习,使学生能较深刻地理解随机过程的基本理论、思想和方法,并能应用其解决实践中遇到的随机问题,从而提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。 3.基本技能:掌握建立随机数学模型、分析和解决问题方面的技能,为进一步自学有关专业应用理论课程作好准备。 (三)实施说明 本大纲是根据沈阳理工大学关于制订本科教学大纲的原则意见专门制订的。在制订过 程中参考了其他学校相关专业应用随机过程教学大纲。 本课程思维方式独特,还需要学生有较高的微积分基础,教学中应注意概率意义的解 释和学生基础情况的把握,处理好抽象与具体,偶然与必然、一维与多维,理论与实践的关系。本课程内容分概率论与数理统计两部分,在教学中应充分注意两者之间的联系,重视基本概念,讲清统计思想。 (四)对先修课的要求 本课的先修课程:数学分析,高等代数,概率论。 (五)对习题课的要求 由于本课程内容多学时少,习题课在大纲中未作安排,建议教师授课过程中灵活掌 握;对于学生作业中存在的问题,建议通过课前和课后答疑解决。通过习题课归纳总结章节知识解决重点难点内容。 (六)课程考核方式 1.考核方式:考试 2.考核目标:在考核学生基本知识、基本原理和方法的基础上,重点考核学生解决实际问题的能力。 3.成绩构成:本课程的总成绩主要由两部分组成:平时成绩20-30%;期末成绩70-80%; 平时成绩构成:出勤,测验,作业。其中测验为开卷,随堂测验。

(完整版)布朗运动以及维纳过程学习难点总结

1、引言 布朗运动的数学模型就是维纳过程。布朗运动就是指悬浮粒子受到碰撞一直在做着不规则的运动。我们现在用)(t W 来表示运动中一个微小粒子从时刻0=t 到时刻0>t 的位移的横坐标,并令0)0(=W 。根据Einstein 的理论,我们可以知道微粒之所以做这种运动,是因为在每一瞬间,粒子都会受到其他粒子对它的冲撞,而每次冲撞时粒子所受到的瞬时冲力的大小和方向都不同,又粒子的冲撞是永不停息的,所以粒子一直在做着无规则的运动。故粒子在时间段],(t s 上的位移,我们可把它看成是多个小位移的总和。我们根据中心极限定理,假设位移)()(s W t W -服从正态分布,那么在不相重叠的时间段内,粒子碰撞时受到的冲力的方向和大小都可认为是互不影响的,这就说明位移)(t W 具有独立的增量。此时微粒在某一个时段上位移的概率分布,我们便能认为其仅仅与这一时间段的区间长度有关,而与初始时刻没有关系,也就是说)(t W 具有平稳增量。 2.维纳过程 2.1独立增量过程 维纳过程是典型的随机过程,属于所谓的独立增量过程,在随机过程的理论和应用中起着很重要的作用。现在我们就来介绍独立增量过程。 定义:}0),({≥t t X 是二阶矩过程, 那么我们就称t s s X t X <≤-0),()(为随机过程在区间],(t s 上的增量。 若对任意的n )(+∈N n 和任意的n t t t <<<≤Λ100,n 个增量 )()(,),()(),()(11201----n n t X t X t X t X t X t X Λ 是相互独立的,那么我们就称}0),({≥t t X 为独立增量过程。 我们可以证明出在0)0(=X 的条件下,独立增量过程的有限维分布函数族可由增量)0(),()(t s s X t X <≤-的分布所确定。 如果对R h ∈和)()(,0h s X h t X h t h s +-++<+≤与)()(s X t X -的分布是相同的,我们就称增量具有平稳性。那么这个时候,增量)()(s X t X -的分布函数只与时间差)0(t s s t <≤-有关,而与t 和s 无关(令s h -=便可得出)。值得注意的是,我们称独立增量过程是齐次的,此时的增量具有平稳性。

《系统建模与及辨识》课程实验报告

《系统建模与及辨识》课程 上机实验报告 专业名称 : 控制工程 上机题目 : 用极大似然法进行参数估计 一 实验目的 通过实验掌握极大似然法在系统参数辨识中的原理和应用。 二 实验原理 1 极大似然原理 设有离散随机过程}{k V 与未知参数θ有关,假定已知概率分布密度)(θk V f 。如果我们得到n 个独立的观测值,21,V V …n V ,,则可得分布密度)(1θV f ,)(2θV f ,…,)(θn V f 。要求根据这些观测值来估计未知参数θ,估计的准则是观测值{}{k V }的出现概率为最大。为此,定义一个似然函数 ) ()()(),,,(2121θθθθn n V f V f V f V V V L = (1.1)

上式的右边是n 个概率密度函数的连乘,似然函数L 是θ的函数。如果L 达到极大值,}{k V 的出现概率为最大。因此,极大似然法的实质就是求出使L 达到极大值的θ的估值∧ θ。为了便于求∧ θ,对式(1.1)等号两边取对数,则把连乘变成连加,即 ∑==n i i V f L 1 )(ln ln θ (1.2) 由于对数函数是单调递增函数,当L 取极大值时,lnL 也同时取极大值。求式(1.2) 对θ的偏导数,令偏导数为0,可得 ln =??θL (1.3) 解上式可得θ的极大似然估计ML ∧ θ。 2 系统参数的极大似然估计 Newton-Raphson 法实际上就是一种递推算法,可以用于在线辨识。不过它是一种依每L 次观测数据递推一次的算法,现在我们讨论的是每观测一次数据就递推计算一次参数估计值得算法。本质上说,它只是一种近似的极大似然法。 设系统的差分方程为 )()()()()(1 1 k k u z b k y z a ξ+=-- (2.1) 式中 111()1...n n a z a z a z ---=+++ 1101()...n n b z b b z b z ---=+++ 因为)(k ξ是相关随机向量,故(2.1)可写成 )()()()()()(1 1 1 k z c k u z b k y z a ε---+= (2.2) 式中 )()()(1 k k z c ξε=- (2.3) n n z c z c z c ---+++= 1111)( (2.4) )(k ε是均值为0的高斯分布白噪声序列。多项式)(1-z a ,)(1-z b 和)(1-z c 中的系数n n c c b b a a ,,,,,10,1和序列)}({k ε的均方差σ都是未知参数。 设待估参数 n a a 1[=θ n b b 0 ]T n c c 1 (2.5) 并设)(k y 的预测值为 +-+++-----=∧ ∧∧∧∧)()()()1()(01n k u b k u b n k y a k y a k y n n )()1(1n k e c k e c n -++-∧ ∧ (2.6) 式中)(i k e -为预测误差;i a ∧ ,i b ∧ ,i c ∧ 为i a ,i b ,i c 的估值。预测误差可表示为 +-+-???--=-=∑∑=∧ =∧ ∧)()()()()()(01 i k u b i k y a k y k y k y k e n i i n i i

应用随机过程——马尔可夫过程的应用

应用随机过程——马尔可夫过程的应用 李文雯,黄静冉,李鑫,苏建武 (国防科学技术大学电子科学与工程学院,湖南,长沙,410072) 摘要:现实生活中,语音处理、人脸识别以及股市走势预测等实际问题都具有马尔可夫性,即未来的走势 和演变仅仅与当前的状态有关而不受过去状态的影响。本文运用这一性质建立了以上三个问题的马尔可夫 链模型并做出了相应分析。 Abstract: In practical, phonetic processing, face recognition and the prediction of trend in stock market all have the MarKov property, that is, the evolvement and trend in the future are just in relationship with present state but not influenced by the past. In this article, we use the property setting up MarKov chain models of the three problems mentioned above and make some corresponding analysis. 关键词:马尔可夫过程语音处理人脸识别股市走势预测 Keyword: MarKov Process Phonetic processing Face recognition Prediction of trend in stock market 一、引言 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程 在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关, 这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。我们称时间离散、状态离散 的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概 率矩阵控制。我们将采用马尔可夫链建模的方法,就马尔可夫模型在语音处理、人脸识别以 及股市走势预测等几个方面的应用进行探讨。 二、马尔可夫过程的应用举例 1、股票市场走势预测 对一支股票来说,令x(n)表示该股票在第n天的收盘价,x(n)是一个随机变量,(x(n), n≥0)是一个参数离散的随机过程。假设股票价格具有无后效性与时问齐次性,这样一来我 们就可以用马尔可夫过程的研究方法预测未来某交易日收盘价格落在每个区间的概率。 以某股份18个收盘交易日的收盘价格为资料 序号 1 2 3 4 5 6 7 8 9 收盘价12.99 13.15 13.78 13.83 12.54 13 13.2 12.96 12.6 序号10 11 12 13 14 15 16 17 18 收盘价13.7 13.58 13.58 13.58 13.49 13.7 14.03 13.77 13.82 这组数据中的最大值为14.03,最小值为12.54,因此可以将这个取值范围划分为 [12.54,12.9125],[12.9125,13.285],[13.285,13.6575],[13.6575,14.03]。故将观测数据划分如下: 价格状态 A B C D 价格区间 [12.54,12.9125] [12.9125,13.285][13.285,13.6575][13.6575,14.03] 频数 2 5 4 7 根据以上的状态划分,可以对状态转移的情况进行统计如下:

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

三国杀随机过程建模研究

基于随机过程的三国杀分析 张鹏缪雨壮洪杰 钟科杰许晨 2010-11-30

目录 1 课题背景 (4) 2 研究目的与报告结构 (4) 3 闪电命中概率 (5) 3.1 背景知识 (5) 3.2 建模场景 (5) 3.3 理论分析 (5) 3.4 仿真结果及讨论 (6) 4 司马懿对甄姬洛神技能的影响 (6) 4.1 背景知识 (6) 4.2 建模场景 (7) 4.3 理论分析 (7) 4.4 仿真结果及讨论 (8) 5 陆逊爆发力 (12) 5.1 背景知识 (12) 5.2 建模场景 (13) 5.3 理论分析 (13) 5.4 仿真结果及讨论 (15) 6 黄盖寿命及攻击力 (17) 6.1 背景知识 (17) 6.2 理论分析 (18) 6.3 仿真结果及讨论 (19) 6.4 补充拓展 (21) 7 郭嘉存活力 (24) 7.1 背景知识 (24) 7.2 建模场景 (25) 7.3 理论分析 (25) 7.4 仿真结果及讨论 (29) 8 周泰存活力 (31) 8.1 背景知识 (31) 8.2 建模场景 (32)

8.3 理论分析 (32) 8.4 仿真结果及讨论 (33) 9 黄月英爆发力 (35) 9.1 背景知识 (35) 9.2 建模场景 (35) 9.3 理论分析 (35) 9.4 仿真结果及讨论 (37) 10 总结 (38) 10.1 课题总结 (38) 10.2 学习感悟 (39) 11 成员分工情况 (39)

1 课题背景 随机过程,作为对一连串随机事件动态关系的定量描述,在自然科学、工程科学以及社会科学各领域具有重要应用。 数学上的随机过程是由实际随机过程概念引起的一种数学结构。人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。随机过程的概念很广泛,因而随机过程的研究几乎包括概率论的全部。虽然不能给出一个有用而又狭窄的定义,但是概率论工作者在使用随机过程这个术语时,通常想到的是其随机变量具有某种有意义的相互关系的随机过程。由于这些过程类在数学上和非数学上的应用中十分重要,用这种理论工具,可以对常见的过程进行分析,进行一系列随机计算,从而可以将随机过程这一理论工具应用到实际中去,可以进行预测与决策,是相关数学模型的理论基础。 本课题选取三国杀桌牌游戏为研究对象,利用随机过程理论进行几个特定场景模式下的人物特性、角色相互关系的建模分析。正是由于摸牌结果的随机性、策略之间的牵制性,游戏过程往往涉及到随机概率、马尔可夫过程等概念;在研究某一问题的统计平均值时,又建模为随机变量的期望值求解。显然,基于随机过程的理论研究方法,可以得到一些三国杀游戏中的规律性认识。 2 研究目的与报告结构 将随机过程应用于对三国杀的建模分析,可以使我们在理解基本概念和方法的基础上,获得更灵活的对随机事件相互关系的探究;能够深刻体会随机过程在生活实际中的运用;并且,熟练掌握利用建模思想,解决问题的方法。当然,对于游戏的取胜功略方面,研究结果也将是颇有指导意义的。 下面的章节将分不同人物及场景来进行相关内容的阐述。其中,3~9节分别对闪电命中概率、司马懿对甄姬洛神技能的影响、陆逊爆发力、黄盖寿命及攻击力、郭嘉存活力、周泰存活力、黄月英爆发力几个问题进行了理论分析,并给出了仿真结果和必要的讨论。综合性的总结在第10节给出。第11节是小组内部成员的分工情况。

《概率论与随机过程》课程自学内容小结

大学2015~2016学年秋季学期本科生 课程自学报告 课程名称:《概率论与随机过程》 课程编号:07275061 报告题目:大数定律和中心极限定理在彩票选号的应用学生: 学号: 任课教师: 成绩: 评阅日期:

随机序列在通信加密的应用 2015年10月10日 摘 要:大数定律与中心极限定理是概率论中很重要的定理,较多文献给出了不同条件下存在的大数定律和中心极限订婚礼,并利用大数定律与中心极限定理得到较多模型的收敛性。但对于他们的适用围以及在实际生活中的应用涉及较少。本文通过介绍大数定律与中心极限定理,给出了其在彩票选号方面的应用,使得数学理论与实际相结合,能够让读者对大数定律与中心极限定理在实际生活中的应用价值有更深刻的理解。 1. 引言 在大数定律与中心极限定理是概率论中很重要的定理,起源于十七世纪,发展到现在,已经深入到了社会和科学的许多领域。从十七世纪到现在,很多国家对这两个公式有了多方面的研究。长期以来,在大批概率论统计工作者的不懈努力下,概率统计的理论更加完善,应用更加广泛,如其在金融保险业的应用,在现代数学中占有重要的地位。 本文主要通过对大数定律与中心极限定理的分析理解,研究探讨了其在彩票选号中的应用,并给出了案例分析,目的旨在给出大数定律与中心极限定理应用对实际生活的影响,也对大数定律与中心极限定理产生更深刻的理解。 2. 自学容小结与分析 2.1 随机变量的特征函数 在对随机变量的分析过程中,单单由数字特征无法确定其分布函数,所以引入特征函数。特征函数反映随机变量的本质特征,可唯一的确定随机变量的分布函数、随机变量X 的特征函数定义为: 定义1 ][)()(juX jux e E dx e x p ju C ==? +∞ ∞ - (1) 性质1 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积。 性质1意味着在傅立叶变换之后,时域的卷积变成频域的相乘,这是求卷积的简便方法。类比可知求独立随机变量之和的分布的卷积,可化为乘法运算,这样就简便了计算,提高了运算效率。 性质2 求矩公式:0)(|) ()(][=-=u n u x n n n du C d j X E (2) 性质3 级数展开式:!)(][!|)()()(0 00n ju X E n u du u C d u C n n n n n n n n X ∑∑∞ ==∞ === (3) 2.2 大数定律与中心极限定理 定义2 大数定律:设随机变量相互独立,且具有相同的μ=)(k X E 和,...2,1,)(2 ==k X D k σ, 则0∈>?,有

雷达系统建模与仿真报告

设计报告一 十种随机数的产生 一 概述. 概论论是在已知随机变量的情况下,研究随机变量的统计特性及其参量,而随机变量的仿真正好与此相反,是在已知随机变量的统计特性及其参数的情况下研究如何在计算机上产生服从给定统计特性和参数随机变量。 下面对雷达中常用的模型进行建模: ● 均匀分布 ● 高斯分布 ● 指数分布 ● 广义指数分布 ● 瑞利分布 ● 广义瑞利分布 ● Swerling 分布 ● t 分布 ● 对数一正态分布 ● 韦布尔分布 二 随机分布模型的产生思想及建立. 产生随机数最常用的是在(0,1)区间内均匀分布的随机数,其他分布的随机数可利用均匀分布随机数来产生。 2.1 均匀分布 1>(0,1)区间的均匀分布: 用混合同余法产生 (0,1)之间均匀分布的随机数,伪随机数通常是利用递推公式产生的,所用的混和同余法的递推公式为: 1 n x =n x +C (Mod m )

其中,C是非负整数。通过适当选取参数C可以改善随机数的统计性质。一般取作小于M的任意奇数正整数,最好使其与模M互素。其他参数的选择 (1) 的选取与计算机的字长有关。 (2) x(1)一般取为奇数。 用Matlab来实现,编程语言用Matlab语言,可以用 hist 函数画出产生随机数的直方图(即统计理论概率分布的一个样本的概率密度函数),直观地看出产生随机数的有效程度。其产生程序如下: c=3;lamade=4*200+1; x(1)=11; M=2^36; for i=2:1:10000; x(i)=mod(lamade*x(i-1)+c,M); end; x=x./M; hist(x,10); mean(x) var(x) 运行结果如下: 均值 = 0.4948 方差 = 0.0840 2> (a,b)区间的均匀分布: 利用已产生的(0,1)均匀分布随机数的基础上采用变换法直接产生(a,b)

应用随机过程教学大纲

《应用随机过程A》课程教学大纲 课程编号: L335001 课程类别:专业限选课适用专业:统计学专业 学分数:3学分学时数: 48学时 应修(先修)课程:数学分析、概率统计、微分方程、高等代数 一、本课程的地位和作用 应用随机过程是数学与应用数学专业的专业限选课程,是统计学专业的专业课程之一。随机过程是研究客观世界中随机演变过程规律性的学科,随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分。随着科学技术的发展,它已广泛地应用于通信、控制、生物、地质、经济、管理、能源、气象等许多领域,国内外许多高等工科院校在研究生中设此课程,大量工程技术人员对随机分析的方法也越来越重视。通过本课程的学习,使学生初步具备应用随机过程的理论和方法来分析问题和解决问题的能力。 二、本课程的教学目标 使学生掌握随机过程的基本知识,通过系统学习,学生的概率理论数学模型解决随机问题的能力得到更加进一步的提高,特别在经济应用上,通过本课程的学习,可以让数学专业的学生很方便地转向在金融管理、电子通讯等应用领域的研究。 三、课程内容和基本要求 ?”记号标记既(用“*”记号标记难点内容,用“?”记号标记重点内容,用“* 是重点又是难点的内容。) 第一章预备知识 1.教学基本要求 (1)掌握概率空间, 随机变量和分布函数, 矩母函数和特征函数的概念和相关性质。 (2)掌握条件概率, 条件期望和独立性的概念和相关性质。 (3)了解概率中收敛性的概念和相互关系。 2.教学内容 (1)概率空间 (2)▽随机变量和分布函数

(3)▽*数字特征、矩母函数和特征函数 (4)▽*条件概率、条件期望和独立性 (5)收敛性 第二章随机过程的基本概念和类型 1.教学基本要求 (1)掌握随机过程的定义。 (2)了解有限维分布族和Kolmogorov定理。 (3)掌握独立增量过程和独立平稳增量过程概念。 2.教学内容 (1)基本概念 (2)▽*有限维分布和Kolmogorov定理 (3)▽随机过程的基本类型 第三章 Poisson过程 1.教学基本要求 (1)了解计数过程的概念。 (2)掌握泊松过程两种定义的等价性。 (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布。(4)了解泊松过程的推广。 2.教学内容 (1)▽ Poisson过程 (2)▽* 与Poisson过程相联系的若干分布 (3)* Poisson过程推广 第四章更新过程 1.教学基本要求 (1)掌握更新过程的定义和基本性质。 (2)掌握更新函数、更新方程。 (3)了解更新定理及其应用,更新过程的若干推广。 (4)了解更新过程的若干推广。 2.教学内容

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

随机过程读书报告

随机过程读书报告 老子云:“合抱之木,生于毫末;九层之台,起于垒土;千里之行,始于足下。”而这句话的哲理就是告诉我们量变最终可以达到质变。而对于任何事物的认识只有逐渐积累,扩大视野,把握其整体基础体系并不断思索,才会上升到一个新的高度。其实考试只是一种形式,而真正的去理解和领悟一门课程知识才是最为重要的,而学期结束时写一篇读书报告有利于我们去对这门课整体把握同时也复习一下已经掌握的知识。因此,我想这也是老师的一番苦心吧! 说实在的,我本科是师范类专业的,从未接触过随机过程这门在工程技术中广泛应用的课程知识。但我感到很庆幸,有幸在读研期间接触到这门课程。并对其有了初步的了解和认识。下面对自己对随机过程的学习做以下报告:学习过程中通过老师的讲解和自己课下的学习我了解到随机过程的理论与方法,已广泛地应用于科学技术各个领域,并越来越显示出十分重要的作用。例如,平稳过程的滤波和预测应用于通信、雷达及导航;时间序列分析应用于系统建模及气象预报;卡尔曼滤波应用于空间技术及信息处理;线性系统在随机作用下的分析计算应用于电力系统运行及船舶自动航行等等。不仅如此,随机过程理论与方法已广泛地渗透到很多专业和技术领域中,特别是,作为控制科学与工程的基础课,为许多后续专业课,如系统辨识与参数估计,自适应控制,随机控制,最优估计,智能控制与专家系统等学习,打下坚实的理论基础。因此,我认识到对于工科院校的研究生以及从事科学研究、工程技术的工作者,随机过程无疑是一门很重要的基础课程。 下面具体谈一下我所了解和学到的随机过程知识。 一般来说,把一组随机变量定义为随机过程。在研究随机过程时人们透过表面的偶然性描述出必然的内在规律并以概率的形式来描述这些规律,从偶然中悟出必然正是这一学科的魅力所在。 古人云:“欲灭一国,必先灭其历史文化。”由此可见历史文化的重要性,下面我们就一起来了解一下随机过程学科的历史发展,随机过程整个学科的理论基础是由柯尔莫哥洛夫和杜布奠定的。这一学科最早源于对物理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。随机过程一般理论的研究通常认为开始于20世纪30年代。1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛钦发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。 在研究方法方面,研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、停时和随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等。实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。而该课程研究的主要内容有:多指标随机过程、无穷质点与马尔可夫过程、概率与位势及各种特殊过程的专题讨论等。中国学者在平稳过程、马

应用随机过程建模报告

Harbin Institute of Technology 课程设计(论文) 课程名称:应用随机过程 设计题目:建模 院系:电子与信息工程学院 班级:通信1班 设计者: 学号: 指导教师: 设计时间:2013-11-9 哈尔滨工业大学 线性模型

——电力负荷时间序列建模 1电力系统负荷预测的意义 随着我国电力事业的发展,电网的管理日趋现代化,对电力系统负荷预测问题的研究也越来越引起人们的注意。电力负荷预测是电力系统调度、用电、计划、规划等管理部门的重要工作之一。提高负荷预测技术水平,有利于计划用电管理,有利于合理安排电网运行方式和机组检修计划,有利于节煤、节油和降低发电成本,有利于制定合理的电源建设规划,有利于提高电力系统的经济效益和社会效益。 电力负荷预测,为编制电力规划提供依据,是电网规划的基础,它规定了电力工业的发展水平、发展速度、源动力资源的需求量,电力工业发展的资金需求量,以及电力工业发展对人力资源的需求量。 因此,国内外许多专家和学者开始致力于现代负荷预测方法的研究,而时间序列模型在国际和国内的电力系统短期负荷预测中得到了广泛应用。 2 平稳时间序列及其随机线性模型 时间序列是指随时间改变而随机的变化的序列。时间序列分析分为时域分析和频域分析,前者是对时间序列在时间域上的各种平均值进行分析研究,后者是进行傅里叶变换以后在频率域进行谱分析。随着计算机技术的飞速发展,时域分析方法为人们所关注。本文所要研究的就是时域分析。 平稳时间序列是平稳序列,它满足期望为0,且任意两个时刻的相关函数与时间t 无关,仅与两个时刻的时间差相关。因为我们所掌握的为平稳时间序列的线性随机模型,而在实际中所遇到的一般都不是平稳时间序列,这就要对其进行相关的处理,使其变化为平稳序列。 均值为0且具有有理谱密度的平稳时间序列必可表示为下面三种形式中的一种(其中{,0,1,2,}t a t =±± 为白噪声): (1)自回归模型——AR 模型 1122,0,1,2,t t t p t p t a t ωφωφωφω-------==±± AR (p )模型由p +2参数来刻画; (2)滑动平均模型——MA 模型 1122,0,1,2,t t t t q t q a a a a t ωθθθ---=---=±± MA(q)模型由q +2参数刻画; (3)自回归滑动平均模型或混合模型——ARMA 模型 11221122, 0,1,2,,0,1,2,t t t p t p t t t q t q a a a a t t ωφωφωφωθθθ----------=---=±±=±± ARMA(p,q)混和模型由p +q +3参数刻画; 通过以上介绍可以看出我们可以把AR(p)和MA(q)模型看成APMA(p,q)的两种特例。 线性模型中有两个重要的参数:自相关函数k ρ和和偏相关函数kk φ。其中偏相关函数kk φ刻画了平稳序列任意一个长1k +的片段在中间量固定的条件下,两端的线性密切程度,而自相关函数k ρ也是刻画两端的线性密切程度,但并不需

随机过程教学大纲

《随机过程》教学大纲 课程编码:1511104303 课程名称:随机过程 学时/学分:48/3 先修课程:《数学分析》、《概率论与数理统计》 适用专业:数学与应用数学 开课教研室:信息与计算科学教研室 一、课程性质与任务 1.课程性质:随机过程是概率论与数理统计的后继课程,是数学与应用数学专业的专业选修课。随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系,具有较强的理论性。该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用。随机过程论在理论与应用两方面都发展迅速,学习、了解这门学科对概率统计及数学其他分支如信息与计算科学、自然学科、工程技术乃至经济管理等方面的学者及科技工作者都是重要而且有益的。本课程开设在第6学期。 2.课程任务:通过本课程的学习,学生应能较好地理解随机数学的基本思想,掌握几个常用过程,如泊松过程、马尔可夫链、生灭过程、更新过程、鞅的基本概念,基本理论及分析方法。提高学生的数学素质,加强学生运用随机过程的思想方法开展科研工作和解决实际问题的能力。 二、课程教学基本要求 《随机过程》要求在熟练掌握概率论的基础上深刻理解随机过程的基本思想,理解随机过程是概率论的动态部分的含义;掌握随机过程的分类方法及常见的随机过程(如Poisson 过程、更新过程、Markov链和鞅等)的各种性质、推广形式及简单应用。 本课程的成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。成绩评定采用百分制,60分为及格。 三、课程教学内容 第一章 准备知识 1.教学基本要求 复习随机变量、分布函数、分布律和概率密度函数的概念,条件分布,函数的分布求法,常见的离散型与连续型分布,及多维随机变量的知识;复习随机变量的数学期望、方差、矩、协方差与协方差阵、相关系数的定义及计算;掌握条件数学期望的求法,全期望

应用随机过程-综述

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:综述 院系:电子与信息工程学院 班级: 09硕通信一班 设计者: 学号: 指导教师:田波平 设计时间: 2009-11至2009-12 哈尔滨工业大学

哈尔滨工业大学课程设计任务书

特征函数在随机过程研究中的作用与意义 1.特征函数的定义 在介绍特征函数在随机过程研究中的作用和意义之前,首先介绍一下特征函数的定义。 特征函数是一个统计平均值,它是由随机变量X 组成的新的随机变量j X e ω的数学期望,记为: ()()j X E e ωωΦ= (1) 当X 为连续随机变量时,则X 的特征函数可表示成 ()()i X i x Ee f x e dx ωωω∞ -∞ Φ== ? (2) 其中()f x 为X 的概率密度函数。 对于随机过程的特征函数的定义与随机变量的特征函数的定义一致。 对任意时刻t ,随机过程的一维特征函数为: () (,)[](,)i X t i x X t E e f x t e dx ωωω∞ -∞ Φ== ? (3) 2.特征函数的性质 以下本文不加证明的给出特征函数的几个性质: (1) |()|(0)1ωΦ≤Φ=; (2) 共轭对称性()()ωωΦ-=Φ; (3) 特征函数()ωΦ在区间(,)-∞∞上一致连续; (4) 设随机变量Y aX b =+,其中,a b 是常数,则()()ib Y X e a ω ωωΦ=Φ; 其中(),()X Y ωωΦΦ分别表示随机变量,X Y 的特征函数。上式对于随机过程同样适用。 (5) 设随机变量,X Y 相互独立,又Z X Y =+,则()()()Z X Y ωωωΦ=ΦΦ; 此式表示两个相互独立随机变量之和的特征函数等于各自特征函数的乘积。 3.特征函数在随机过程研究中的作用与意义 由于特征函数在随机过程中和随机变量中的定义是一致的,仅是将X 变为X (t ),将概率密度函数也做相应的变化即可。故本文为方便起见,将随机过程和随机变量的特征函数的作用与意义做统一的讨论。 利用特征函数求随机过程的概率密度

相关主题
文本预览
相关文档 最新文档