当前位置:文档之家› 基于单片机的红外解码.温度及液晶显示

基于单片机的红外解码.温度及液晶显示

基于单片机的红外解码.温度及液晶显示
基于单片机的红外解码.温度及液晶显示

中国矿业大学徐海学院

技能考核培训

姓名:顾嘉诚学号: 22110818

专业:信息11-2班

题目:基于单片机的红外解码.温度及液晶显示专题:红外解码

指导教师:宥鹏老师翟晓东老师

设计地点:电工电子实验室

时间: 2014 年 4 月

通信系统综合设计训练任务书

学生姓名顾嘉诚专业年级信息11-2班学号22110818

设计日期:2014年4 月5日至2014 年4 月10 日

同组成员:姜怀修,刘剑桥,顾嘉诚,彭传锁,何子豪,王业飞

设计题目:

基于单片机的红外无线控制

设计专题题目:

红外解码

设计主要内容和要求:

1.主要内容:

2.

单片机内部结构

红外遥控解码

C语言程序设

Ds18b20的使用

Lcd1602的使用

2. 功能扩展要求

环境温度液晶显示

指导教师签字:

目录

正文 (5)

1.概述 (5)

1.1功能描述 (5)

1.2单片机资源 (5)

2.1管脚图 (5)

3.1. 使用资源 (5)

2.原理篇 (6)

2.1红外发送及接收 (6)

2.1.1红外接收概述 (6)

2.1.2硬件及原理图 (7)

2.1.3红外中断接收部分程序 (8)

2.2温度原理 (9)

2.2.1 DS18B20 的主要特性 (9)

2.2.2原理图与硬件 (10)

2.2.3 DS18B20时序和程序 (10)

2.3 QC1602A (12)

2.3.1 1602外部结构及管脚说明 (12)

2.3.2 写命令/数据时序与部分程序 (13)

3.效果图 (15)

4.软件篇 (15)

4.1程序框图 (15)

4.1.1 Main函数 (15)

4.1.2 中断 (16)

4.1.3 60ms定时中断 (16)

4.2 完整程序 (16)

4.2.1 Project.c文件 (16)

4.2.2 onewire.c 文件 (23)

5.参考文献 (26)

技能考核培训

摘要:利用单片机所学内容进行拓展,我们实现了基于单片机的红外解码.温度及液晶显示。Lcd液晶显示实时环境温度和接收显示红外遥控器的键值,在收到红外信号时会用蜂鸣器作为反馈,以提醒红外一体接收头有接到信号。

关键词:单片机液晶显示红外解码

正文

1.概述

1.1功能描述

Lcd液晶显示实时环境温度和接收显示红外遥控器的键值,在收到红外信号时会用蜂鸣器作为反馈,以提醒红外一体接收头有接到信号。

1.2单片机资源

2.0资源

与MCS-51单片机产品兼容

8K字节在系统可编程Flash存储器

1000次擦写周期

全静态操作:0Hz~33Hz

三级加密程序存储器

32个可编程I/O口线

三个16位定时器/计数器

八个中断源

全双工UART串行通道

低功耗空闲和掉电模式

掉电后中断可唤醒

看门狗定时器

双数据指针

掉电标识符

2.1管脚图

3.1. 使用资源

P1:用于连接LCD1602的数据线

P3.5,P3.7:分别连接LCD1602的RS,R/W控制脚

P3.2:使用第二功能,用于接收红外信号

P2.7:DS18B20数据脚

P2.5:用于控制蜂鸣器

2.原理篇

2.1红外发送及接收

2.1.1红外接收概述

NEC 标准:

遥控载波的频率为38KHz(占空比为1:3);当某个按键按下时,系统首先发射一个完整的全码,如果键按下超过108ms 仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。

一个完整的全码=引导码+用户码+用户码+数据码+数据反码。

其中,引导码高电平9ms,低电平4.5ms;系统码8 位,数据码8 位,共32 位;其中前16 位为用户识别码,能区别不同的红外遥控设备,防止不同机种遥控码互相干扰。后 16 位为 8 位的操作码和 8 位的操作反码,用于核对数据是否接收准确。收端根据数据码做出应该执行什么动作的判断。连发代码是在持续按键时发送的码。它告知接收端,某键是在被连续地按着。

NEC 标准下的发射码表示

发射数据时0 用“0.56ms 高电平+0.565ms 低电平=1.125ms”表示;

数据1 用“高电平0.56ms+低电平1.69ms=2.25ms”表示。

遥控器发射的信号:

一体化接收头接收到的信号:

需要注意的是;一体化接收头输了的波形是与发射波形是反向的。

我的遥控器使用的是NEC标准的WD6122芯片,遥控器编码如下:

2.1.2硬件及原理图

2.1.3红外中断接收部分程序

void IR_IN() interrupt 0 using 0 //外部中断0程序

{

unsigned char j,k,n=0; //先定义变量,记住n=0

EX0=0; //禁止中断,以免再次进入中断delay(15); //延时0.14ms*15=2.1ms

if(IRIN==1) //如果在这期间有高电平说明

{ //信号不是来自遥控的,返回主程序

EX0=1;

return;

}

while(!IRIN){delay(1);} //死循环,等待9ms前导低电平信号的结束

//////////////////////////////////////////////////////

for(j=0;j<4;j++) //一共有4组数据

{

for(k=0;k<8;k++) //每组数据有8位

{

while(IRIN) {delay(1);} //死循环,等待4.5ms前导高电平的结束

while(!IRIN) {delay(1);} //等待0.56ms低电平的结束,准备采集数据,

while(IRIN) //开始采集数据

{

delay(1); //延时0.14ms,每过0.14ms时n就加1

n++; //用n记录一共有多少个0.14ms

if(n>=30) //如果超过0.14ms*30=4.2ms

{ //说明是乱码,放弃不要

EX0=1;

return;

}

}

IRCOM[j]=IRCOM[j]>>1; //右移1位,xxxx xxxx变成0xxx xxx if(n>=8){IRCOM[j]=IRCOM[j]|0x80;}//但是如果不是0呢,

//0xxx xxxx和0x80相或后变成了1xxx xxxx

//这样这一们数据就被记录为1了/*想一下这里为什么是8呢,0.14ms*8=1.12ms,知道了吧*/

/*这样反复执行8次,8位数据就存在IRCOM[j]中了*/

中了*/

n=0; //n计数后一定要记得清0,否则下一次就不能准确计数了

}

}

////////////////////////////////////////////////////

if(IRCOM[2]!=~IRCOM[3]) //这里我们判断数据码和数据反码是不是相反

{ //因为相反才是正确的,否则就放弃

EX0=1;

return;}

beep();

EX0=1; //记得开中断,你可以去掉这句话试一试

}

2.2温度原理

2.2.1 DS18B20 的主要特性

(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电。(2)独特的单线接口方式,DS18B20 在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20 的双向通讯。

(3)DS18B20 支持多点组网功能,多个DS18B20 可以并联在唯一的三线上,实现组网多点测温。

(4)DS18B20 在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内。

(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃。

(6)可编程的分辨率为9~12 位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。

(7)在9 位分辨率时最多在93.75ms 内把温度转换为数字,12 位分辨率时最多在750ms 内把温度值转换为数字,速度更快。

(8)测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC 校验码,具有极强的抗干扰纠错能力。

(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。

2.2.2原理图与硬件

2.2.3 DS18B20时序和程序

2.2.

3.1初始化时序及程序

//DS18B20初始化

bit init_ds18b20(void)

{

bit initflag = 0;

DQ = 1;

Delay_OneWire(12);

DQ = 0;

Delay_OneWire(80); // 延时大于480us

DQ = 1;

Delay_OneWire(10); // 14

initflag = DQ; // initflag等于1初始化失败Delay_OneWire(5);

return initflag;}

2.2.

3.2写/读时序及写/读一字节程序

//从DS18B20读取一个字节

unsigned char Read_DS18B20(void) {

unsigned char i;

unsigned char dat;

for(i=0;i<8;i++)

{

DQ = 0;

dat >>= 1;

DQ = 1;

if(DQ)

{

dat |= 0x80;

}

Delay_OneWire(5);

}

}

//通过单总线向DS18B20写一个字节

void Write_DS18B20(unsigned char dat) {

unsigned char i;

for(i=0;i<8;i++)

{

DQ = 0;

DQ = dat&0x01;

Delay_OneWire(5);

DQ = 1;

dat >>= 1;

}

Delay_OneWire(5);

}

2.3 QC1602A

2.3.1 1602外部结构及管脚说明

RAM 地址映射图控制器内部带有80*8位的RAM缓冲区

2.3.2 写命令/数据时序与部分程序

//写命令

void write_com(uchar com) //液晶写命令{

lcdrs=0;

P1=com;

delay_lcd(10);

lcden=1;

delay_lcd(10);

lcden=0;

}

//写数据

void write_data(uchar date) //液晶写数据{

lcdrs=1;

P1=date;

delay_lcd(10);

lcden=1;

delay_lcd(10);

lcden=0;

}

3.效果图

4.软件篇

4.1程序框图

4.1.1 Main函数

4.1.2 中断

4.1.3 60ms定时中断

4.2 完整程序

4.2.1 Project.c文件

#include

#include

#include "onewire.h" //单总线函数库

#define uchar unsigned char

#define uint unsigned int

uchar code table[]="temperature:"; //液晶

uchar code table1[]="infrared value:"; //液晶

unsigned char IRCOM[7]; //定义数组,用来存储红外接收到的数据

sbit lcden=P3^7; //液晶

sbit lcdrs=P3^5; //液晶

sbit IRIN=P3^2; //定义红外接收头的外部接口,即外部中断0 sbit BEEP=P2^5; //定义蜂鸣器接口,我的在P1^5

uchar num; //液晶

char now_tem; //存得到的温度

char shinow,genow; //当前温度的十个位

char wendu_show_shi,wendu_show_ge; //温度送入液晶的ASCALL码 char hongwai_jian_zhi ; //红外送入液晶的ASCALL码

void delay_lcd(uint z) //液晶延时

{

uint x,y;

for(x=z;x>0;x--)

for(y=110;y>0;y--);

}

//写命令

void write_com(uchar com) //液晶写命令

{

lcdrs=0;

P1=com;

delay_lcd(10);

lcden=1;

delay_lcd(10);

lcden=0;

}

//写数据

void write_data(uchar date) //液晶写数据

{

lcdrs=1;

P1=date;

delay_lcd(10);

lcden=1;

delay_lcd(10);

lcden=0;

}

void init_lcd() //液晶初始化

{

lcden=0;

write_com(0x38);

write_com(0x0e);

write_com(0x06);

write_com(0x10);

write_com(0x80+0x00);

}

void init_show() //液晶初始显示

{

for(num=0;num<12;num++)

write_data(table[num]);

delay_lcd(5);

}

write_com(0x80+0x40);

for(num=0;num<15;num++)

{

write_data(table1[num]);

delay_lcd(5);

}

ET0=1; //开定时中断

EX0=1;

}

/*void init_infrared() // 红外初始化

{

IE=0x81;

TCON=0X01;

BEEP=1;

IRIN=1;

} */

/******************************************/

// 红外延时

/*****************************************/

void delay(unsigned char x)

{ //延时子程序

unsigned char i; //延时约x*0.14ms

while(x--) //不同遥控器应设置不同的参数

{for(i=0;i<13;i++){}} //参数的选择咱们先不管,先看这个}

/*******************************************************/

// 蜂鸣器

/*******************************************************/

{

unsigned char i; //蜂鸣器发声子程序

for(i=0;i<100;i++)

{

delay(4); //这个得看你的蜂鸣器内部是否有振荡源

BEEP=~BEEP;

} //如果没有振荡源就应该输入脉冲信号BEEP=1;

}

/****************************************************/

// 温度服务程序

/****************************************************/

void dis_work() // 温度显示处理

{

shinow=now_tem/10;

genow= now_tem%10;

//温度

switch (shinow)

{

case 0 :wendu_show_shi=0x30;break;

case 1 :wendu_show_shi=0x31;break;

case 2 :wendu_show_shi=0x32;break;

case 3 :wendu_show_shi=0x33;break;

case 4 :wendu_show_shi=0x34;break;

case 5 :wendu_show_shi=0x35;break;

case 6 :wendu_show_shi=0x36;break;

case 7 :wendu_show_shi=0x37;break;

case 8 :wendu_show_shi=0x38;break;

case 9 :wendu_show_shi=0x39;break;

}

switch (genow)

{

case 0 :wendu_show_ge=0x30;break;

case 1 :wendu_show_ge=0x31;break;

case 2 :wendu_show_ge=0x32;break;

case 3 :wendu_show_ge=0x33;break;

case 4 :wendu_show_ge=0x34;break;

case 5 :wendu_show_ge=0x35;break;

case 7 :wendu_show_ge=0x37;break;

case 8 :wendu_show_ge=0x38;break;

case 9 :wendu_show_ge=0x39;break;

}

//红外

switch (IRCOM[2])

{

case 0x16 :hongwai_jian_zhi=0x30;break;

case 0x0c :hongwai_jian_zhi=0x31;break;

case 0x18 :hongwai_jian_zhi=0x32;break;

case 0x5e :hongwai_jian_zhi=0x33;break;

case 0x08 :hongwai_jian_zhi=0x34;break;

case 0x1c :hongwai_jian_zhi=0x35;break;

case 0x5a :hongwai_jian_zhi=0x36;break;

case 0x42 :hongwai_jian_zhi=0x37;break;

case 0x52 :hongwai_jian_zhi=0x38;break;

case 0x4a :hongwai_jian_zhi=0x39;break;

default:hongwai_jian_zhi= 0x21;break;

}

}

/****************************/

// 显示函数

/*****************************/

void show ()

{

write_com(0x80+0x0d);

write_data(wendu_show_shi);

write_com(0x80+0x0e);

write_data(wendu_show_ge);

write_com(0x80+0x4F);

write_data(hongwai_jian_zhi);

}

/*************************************************/

// 主函数

基于单片机模拟红外编码解码的设计

开放实验报告 课题名称基于单片机的红外解码器的设计学生姓名 系、年级专业信息工程系、11、12级电子信息工程指导教师江世明 2014年 5 月20日

基于单片机的红外解码器的设计 一.实验目的 1、了解红外编码原理,模拟红外发射信号; 2、用程序实现红外编码的解码; 二.实验内容 设计基于单片机的红外解码器,实现红外遥控信号智能解码,要求制作出实物,实现解码功能。 三.电路设计 1、红外编码原理 在实际应用中红外编码将二进制码调制到38MHz的载波频率上,通过在空中传播,由红外接收头接收之后,由内部的解调电路进行解调, 解调出来的就是我们发送的那些二进制码。红外编码方式根据日本NEC 协议编码。每次发送四个字节:用户码,用户反码,数据码,数据反码。数据 0和 1的区别通常体现在高低电平的时间长短上。一次按键首先发送9ms的低电平和4.5ms的高电平的引导码。 实际生活中,用遥控器发出的信号与上面的信号是相反的,经过红外线接收头解码以后就和上图一样了,值得大家注意的是发射模块的芯片不同,引导区的时间和数据都有所不同,但解决的方法都是一样的。 引导码后就是用户码。但是怎么来区分0和1呢?前面我们提到了PWM(脉宽调制)。根据脉冲的宽度来区别0和1.0.56ms低电平之后接0.56ms高电平为0,接1.12ms高电平为1.

2、红外解码方法 在实际生活中红外解码一般由红外接收头接收并解码。解码时先跳过9ms 高电平和4.5ms的低电平,然后跳过0.56ms的低电平,最后通过循环等待搞电平的结束并计时。通过判断高电平时间的长短来区分0(0.56ms)和1(1.12ms)。最后判断接收到的四个字节(用户码,用户反码,数据码,数据反码)中数据码和取反后的数据反码相不相等。 3、红外编解码电路 四、程序设计 见附录 五、系统仿真

基于51单片机的红外遥控

基于51单片机的红外遥控 红外遥控是无线遥控的一种方式,本文讲述的红外遥控,采用STC89C52单片机,1838红外接收头和38k红外遥控器。 1838红外接收头: 红外遥控器: 原理: 红外接收的原理我不赘述,百度文库上不少,我推荐个网址,这篇文章写得比较清楚,也比较全面,https://www.doczj.com/doc/1913539167.html,/view/c353e8360b4c2e3f57276349.html 我主要讲下程序的具体意思,在了解原理的基础上,我们知道,当我们在遥控器上每按下一个键,遥控器上的红外发射头都会发出一个32位的编码(32位编码分成4组8位二进制编码,前16位为用户码和用户反码,后16位为数据码和数据反码,用户码表示遥控器类型,数据码表示按键编码),不同的键对应不同的编码,红外接收头接收到这个编码后,发送给单片机,再进行相关操作。 源程序1:(这个程序的功能是将用户码和用户反码,数据码和数据反码显示在1602液晶上,因为遥控器买回来是不会说明按键对应什么码值,所以先自己测试,确定每个 按键的码值) #include #include #include #define uint unsigned int #define uchar unsigned char #define _Nop() _nop_() #define TURE 1 #define FALSE 0

/*端口定义*/ sbit lcd_rs_port = P3^5; /*定义LCD控制端口*/ sbit lcd_rw_port = P3^6; sbit lcd_en_port = P3^4; #define lcd_data_port P0 /////////////////////////////////// void delay1 (void)//关闭数码管延时程序 { int k; for (k=0; k<1000; k++); } //////////////////////////////////// uchar code line0[16]={" user: "}; uchar code line1[16]={" data: "}; uchar code lcd_mun_to_char[16]={"0123456789ABCDEF"}; unsigned char irtime;//红外用全局变量 bit irpro_ok,irok; unsigned char IRcord[4];//用来存放用户码、用户反码、数据码、数据反码unsigned char irdata[33];//用来存放32位码值 void ShowString (unsigned char line,char *ptr); ////////////////////////////////////////////// void Delay(unsigned char mS); void Ir_work(void); void Ircordpro(void); void tim0_isr (void) interrupt 1 using 1//定时器0中断服务函数 { irtime++; } void ex0_isr (void) interrupt 0 using 0//外部中断0服务函数 { static unsigned char i; static bit startflag; if(startflag){ if(irtime<63&&irtime>=33)//引导码TC9012的头码 i=0; irdata[i]=irtime; irtime=0; i++; if(i==33){ irok=1; i=0; }

基于单片机的液晶显示

滨江学院 学年论文 题目基于单片机的液晶显示 院系自动控制系 专业电气工程与自动化学生姓名 学号 指导教师 二零一三年十二月二十五号

目录 1.引言 (1) 2.现状 (1) 3.主要目的 (2) 4.实现方案和步骤 (2) 4.1 KS0108 (2) 4.1.1 KS0108特点 (2) 4.1.2 KS0108的引脚功能 (3) 4.1.3 KS0108的指令系统 (4) 4.2 图形点阵式液晶显示控制 (5) 4.3汉字编码原则 (8) 4.4程序实现流程 (9) 5.实验结果及结果讨论 (10) 6.结论 (11) 7.参考文献 (11) 8.附件 (12)

南京信息工程大学滨江学院学年论文 基于单片机的液晶显示 南京信息工程大学滨江学院自动控制系,南京 210044 摘要:本文围绕设计以单片机作为LCD液晶显示系统控制器为主线,基于单片机8051,采用的液晶显示控制器的芯片是SED1520,主要实现中文显示、滚屏以及左右移动功能。同时也对部分芯片和外围电路进行了介绍和设计,并附以系统结构框图加以说明,着重介绍了本系统应用的各硬件接口技术和各个接口模块的功能及工作过程,并详细阐述了程序的各个模块。 关键字:单片机、液晶显示、8051、SED1520 1、引言 单片机液晶显示系统主要是指单片机以及由单片机驱动的点阵式液晶显示屏所组成的一个显示系统[1]。我们在许多地方可以看到LCD显示屏的应用,例如空调,车内广告,冰箱和显示仪表盘等等,它们都是一个小型的单片机控制液晶显示系统。在日常生活中,我们也可以看到一些类似的由单片机控制的显示系统,如火车站售票大厅的候车信息显示屏,在这些屏幕上,可以显示各种不同的图形、汉字等,并且可以实现上下滚屏与左右移动等。这就是在现代工业控制和一些智能化仪器仪表中,越来越多的场所需要用点阵图形显示器显示汉字,需要能够显示更丰富信息和通用性较强的显示器,便于开发和应用,并要求其体积小、重量轻、功耗小。图形点阵式LCD不仅可以显示字符、数字,还可以显示各种图形、曲线及汉字,并且可以实现屏幕画面滚动等功能,是信息处理、信息输出的重要手段之一,具有广泛的应用前景[2]。我选择的单片机液晶显示系统的开发,是基于KS0108液晶显示控制器,在C8051F020单片机实验系统上实现KS0108是点阵型液晶显示控制器,利用单片机控制液晶显示系统的原理,完成单片机液晶显示系统的设计。 2、现状 液晶显示器具有功耗低、体积小、重量轻、超薄等许多其它显示器无法相比的优点。近年来被广泛用于单片机控制的智能仪器、仪表和低功耗电子产品当中。液晶显示器分为字符型LCD显示模块和点阵型LCD显示模块。字符型LCD是一种用5×7点阵图形来显示字符的

单片机的红外遥控器解码设计

第1章红外解码系统分析 第1节设计要求 整个控制系统的设计要求:被控设备的控制实时反应,从接收信号到信号处理及对设备控制反映时间应小于1s;整个系统的抗干扰能力强,防止误动作;整个系统的安装、操作简单,维护方便;成本低。 红外载波、编码电路设计要求:单片机定时器精确产生38KHz红外载波;根据控制系统要求能对红外控制指令信号精确编码并迅速发送。 红外解码电路设计要求:精确接收红外信号,并对所接收信号进行解码、放大、整形、解调等处理,最后输出TTL电平信号;对非红外光及边缘红外光抗干扰能力强。 设备扩展模块设计要求:直流控制交流;抗干扰能力强;反应迅速不产生误动作;能承受大电流冲击。 第2节总体设计方案 2.1方案论证 驱动与开关 方案一:采用晶闸管直接驱动。 其优点是体积小,电路简单,外围元件少。但控制电流小,大电流晶闸管成本高,并且隔离性能差。 方案二:采用三极管驱动继电器。 其体积大,外围元件多。优点是控制电流大,隔离性能好。 根据实际情况,拟采用方案二。 2.2总体设计框图 经过上述方案的分析选择,得出系统硬件由以下几部分组成:电视红外遥控器,51单片机最小系统,接收放大于一体集成红外接收头,1602液晶显示驱动电路。 整体设计思路为:根据扫描到不同的按键值转至相对应的ROM表读取数据。确认设备及菜单选择键后AT89S2将从ROM读取出来的值,按照数据处理要求从P2.5输出控制脉冲与T0产生的38KHz的载波(周期是26.3μs)进行调制,经NPN三极管对信号放大驱动红外发光管将控制信号发送出去。红外数据接收则是采用HS0038一体化红外接收头,内部集成红外接收、数据采集、解码的功能,只要在接收端INT0检测头信号低电平的到来,就可完成对整个串行的信号进行分析得出当前控制指令的功能。然后根据所得的指令去操作相应的用电器件工作,如图1-1所示。

基于单片机的红外遥控系统设计

课程设计 基于单片机的红外遥控系统设计 学院:计算机与通信工程学院 专业:通信工程 班级:通信11-3班 姓名: 学号:

天津理工大学 摘要 本设计采用51单片机作为遥控发射接收芯片,HS003B作为红外一体化接收发射管,在此基础上设计了一个简易的智能红外遥控系统。系统包括接收和发射两大部分,发射部分有16个按键,接收部分含有8盏彩色LED灯、一片二位数码管和蜂鸣器系统。发射部分通过键盘扫描判断哪个键被按下,经过单片机编码程序进行编码,控制红外发射电路发送信号。接收部分解码信号,实现相应的输出。本设计方案结合红外遥控设计简单、作方便、成本低廉等特点。 关键字:红外遥控信号调制编码解码

天津理工大学 目录 摘要................................................................................................................................................... I I 1.绪论 (1) 1.1课题目的和意义 (1) 1.2红外线简介 (1) 1.3红外遥控系统简介 (1) 2 课题方案和设计思路 (2) 2.1总体方案 (2) 2.2红外发射器设计 (3) 2.2.1红外发射器原理 (3) 2.2.2红外编码 (3) 2.3红外接收端设计 (4) 3硬件结构设计与介绍 (5) 3.1AT89C51系列单片机功能特点 (5) 3.1.1主要特性 (5) 3.1.2管脚说明 (5) 3.1.3基本电路 (7) 3.2红外发射电路 (8) 3.3红外接收电路设计 (9) 3.3.1红外接收模块 (9) 3.3.2数码管 (9) 3.3.3彩灯系统 (10) 3.3.4蜂鸣器系统 (11) 3.3.5红外接收端电路图 (12) 4 软件设计 (12) 4.1定时/计数器功能简介 (12) 4.2遥控码的发射 (13) 4.3红外接收 (14) 5.课程设计总结和心得 (15) 参考文献 (16) 附录 (17) 附录1P ROTEUS仿真图 (17) 附录2发射程序 (17) 附录3接收程序 (20)

基于51单片机的红外遥控器设计

天津职业大学 二○一五~二○一六学年第1学期 电子信息工程学院 通信系统综合实训报告书 课程名称:通信系统综合实训 班级:通信技术(5)班 学号:1304045640 1304045641 1304045646姓名:韩美红季圆圆陈真真指导教师:崔雁松 2015年11月17日

一、任务要求 利用C51单片机设计开发一套红外线收发、显示系统。 具体要求: ●编写相关程序(汇编、C语言均可); ●用Proteus绘制电路图并仿真实现基本功能; ●制作出实物 二、需求分析(系统的应用场景、环境条件、参数等) 现在各种红外线技术已经源源不断进入我们的生活中,在很多场合发挥着作用。 机场、宾馆、商场等的自动门,会在人进出时自动地开启和关闭。原来,在自动门的一侧有一个红外线光源,发射的红外线照射到另一侧的光电管上,红外线是人体察觉不到的。当人走到大门口,身体挡住红外线,电管接收不到红外线了。根据设计好的指令,触发相应开关,就把门打开了。等人进去后,光电管又可以接到红外线,恢复原来的线路,门又会自动关闭。因此这种光电管被称为“电眼”,在许多自动控制设备中大显身手。 在家庭中,许多电子设备如彩色电视、空调、冰箱和音响等,都使用了各种“红外线遥控器”。利用它我们可以非常方便的转换电视频道或设定空调的温度档次。 三、概要设计(系统结构框图/系统工作说明流程图) 红外线收发、显示系统硬件由以下几部分组成:红外遥控器,51单片机最小系统,接收放大器一体集成红外接收头,LED灯显示电路。 红外线接收是把遥控器发送的数据(已调信号)转换成一定格式的控制指令脉冲(调制信号、基带信号),是完成红外线的接收、放大、解调,还原成发射格式(高、低电位刚好相反)的脉冲信号。这些工作通常由一体化的接收头来完成,输出TTL兼容电平。最后通过解码把脉冲信号转换成数据,从而实现数据的传输。 红外遥控系统电路框图

根据C51单片机的键盘及LCD显示

基于C51单片机的键盘及LCD显示 一、实验目的 1.掌握矩阵式键盘的数字键和功能键的编程方法。 2.掌握LCD的接口技术和编程方法。 3.掌握仪器监控程序设计和调试方法。 二、预习与参考 1. 结合ST7920 控制器系列中文图形液晶模块有关资料手册,详细了解ST7920接口设计技术。 2. 参考资料 1)实验板说明书 2)ST7920 控制器系列中文图形液晶模块资料手册 三、设计指标 利用实验板上提供的键盘电路,LCD显示电路,设计一人机界面,能实现以下功能: 1.LCD上显示“重庆科技学院” 2.按键至少包括0-9的数字键 3.LCD显示按键值 4.电子钟显示:时,分,秒(选作) 四、实验要求 1.以单片机为核心,设计4*4非编码键盘及LCD的硬件电路,画出电路原理图。 2.设计4*4非编码键盘及LCD的控制软件,画出流程图,编写控制程序。

五、实验仪器设备和材料清单 单片机实验板、连接导线、ST7920图形液晶模块、PC机; Keil c51软件 六、实验设计及实施的指导 1.实验课前布置实验任务,提出实验要求,预习相关资料,完成硬件草图设计和软件流程图备查。 2.经指导教师检查,预习达到要求者进入实验室实验。 3.按照设计的电路连线,构建键盘及显示系统,经检查无误方可进入下一步。 4.在指导教师指导下调试LCD显示程序。 5.在指导教师指导下调试按键程序。 6.综合调试直到满足设计要求。 七、实验成绩评定方法 实验成绩包括预习、实验完成质量、实验报告质量4部分组成,各部分所占比例分别为30%、30%、40%。 八、实验报告要求 1.实验报告格式: 一.实验名称 二.实验目的 三.实验内容 四.设计思想 五.硬件设计 六.程序代码

单片机红外遥控原理

红外遥控原理 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76um;紫光的波长范围为0.38~0.46。比紫光的波长还要短的光叫紫外线,比红光的波长还要长的光叫红外线。红外线遥控技术就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。常用的红外遥控系统一般分发射和接收两个部分。发射部分的主要元件为红外发光二极管。它实际上是一只特殊的发光二极管,由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。目前大量使用的红外发光二极管发出的红外线波长为940nm左右,外形与普通5发光二极管相同,只是颜色不同。红外发光二极管一般有黑色、深蓝、透明三种颜色。判断红外发光二极管好坏的办法与判断普通二极管一样:用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉距法来粗略判定。接收部分的红外接收管是一种光敏二极管。 在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率都较小,所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。 前些年常用μPC1373H、CX20106A等红外接收专用放大电路。最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。均有三只引脚,即电源正、电源负和数据输出(VO或OUT)。红外接收

单片机实验lcd显示实验

实验19 LCD显示实验 一、实验目的: 学习液晶显示的编程方法,了解液晶显示模块的工作原理。 掌握液晶显示模块与单片机的接口方法。 二、所需设备 CPU挂箱、8031CPU模块 三、实验内容 编程实现在液晶显示屏上显示中文汉字“北京理工达盛科技有限公司”。四、实验原理说明 五、实验步骤 1、实验连线 8255的PA0~PA7接DB0~DB7,PC7接BUSY,PC0接REQ,CS8255接CS0。 2、运行实验程序,观察液晶的显示状态。 六、程序框图 七、程序清单

八、附:点阵式LCD模块 点阵式LCD模块由一大一小两块液晶模块组成。两模块均由并行的数据接口和应答信号接口两部分组成,电源由接口总线提供。 (1)OCMJ2×8液晶模块介绍及使用说明 OCMJ中文模块系列液晶显示器内含 GB 2312 16*16点阵国标一级简体汉字和ASCII8*8(半高)及8*16(全高)点阵英文字库,用户输入区位码或 ASCII 码即可实现文本显示。 OCMJ中文模块系列液晶显示器也可用作一般的点阵图形显示器之用。提供有位点阵和字节点阵两种图形显示功能,用户可在指定的屏幕位置上以点为单位或以字节为单位进行图形显示。完全兼容一般的点阵模块。 OCMJ中文模块系列液晶显示器可以实现汉字、ASCII 码、点阵图形和变化曲线的同屏显示,并可通过字节点阵图形方式造字。 本系列模块具有上/下/左/右移动当前显示屏幕及清除屏幕的命令。一改传统的使用大量的设置命令进行初始化的方法,OCMJ 中文模块所有的设置初始化工作都是在上电时自动完成的,实现了“即插即用”。同时保留了一条专用的复位线供用户选择使用,可对工作中的模块进行软件或硬件强制复位。规划整齐的10个用户接口命令代码,非常容易记忆。标准用户硬件接口采用REQ/BUSY 握手协议,简单可靠。 1)表—1:OCMJ2X8(128X32)引脚说明 硬件接口 接口协议为请求/应答(REQ/BUSY)握手方式。应答BUSY 高电平(BUSY =1)表示 OCMJ 忙于内部处理,不能接收用户命令;BUSY 低电平(BUSY =0)表示 OCMJ 空闲,等待接收用户命令。发送命令到 OCMJ可在BUSY =0 后的任意时刻开始,先把用户命令的当前字节放到数据线上,接着发高电平REQ 信号(REQ =1)通知OCMJ请求处理当前数据线上的命令或数据。OCMJ模块在收到外部的REQ高电平信号后立即读取数据线上的命令或数据,同时将应答线BUSY变为高电平,表明模块已收到数据并正在忙于对此数据的内部处理,此时,用户对模块的写操作已经完成,用户可以撤消数据线上的信号并可作模块显示以外的其他工作,也可不断地查询应答线BUSY是否为低(BUSY =0?),如果BUSY =0,表明模块对用户的写操作已经执行完毕。可以再送下一个数据。如向模块发出一个完整的显示汉字的命令,包括坐标及汉字代码在内共需5个字节,模块在接收到最后一个字节后才开始执行整个命令的内

c51、c52单片机红外线遥控接收解码c程序(可直接使用)

/ 亲,此程序以经过测试,可直接使用!!!/ #include #define uchar unsigned char #define uint unsigned int void delay(uchar x); sbit IRIN = P3^2; uchar IRCOM[4]; void main() { IE = 0x81; TCON = 0x01; IRIN=1; /* 此处可以根据按键码自由编写程序 /以下为3*7遥控按键码/ /(也可以应用与其他类型遥控,本程序只以3*7遥控为例)/ / 0x45 0x46 0x47 / / 0x44 0x40 0x43 / / 0x07 0x15 0x09 / / 0x16 0x19 0x0d / / 0x0c 0x18 0x5e / / 0x08 0x1c 0x5a / / 0x42 0x52 0x4a / 例如: while(1) {switch(IRCOM[2]) {case 0x45: P2=0x7f; break; case 0x44: P2=0xbf; break; case 0x07: P2=0xdf; break; case 0x16: P2=0xef; break; case 0x0c: P2=0xf7; break; case 0x08: P2=0xfb; break; case 0x42: P2=0xfd; break; case 0x52: P2=0xfe; break; case 0x4a: P2=0xff; break; case 0x5a: P2=0x00; break;} } */ while(1); } //end main /**********************************************************/ void IR_IN(void) interrupt 0 //外部中断服务程序 {unsigned char j,k,N=0; EX0 = 0; delay(15); if (IRIN==1) { EX0 =1;

基于单片机的红外遥控系统设计

单片机红外遥控系统设计 随着社会的发展、科技的进步以及人们生活水平的逐步提高,各种方便于生活的遥控系统开始进入了人们的生活。传统的遥控器采用专用的遥控编码及解码集成电路,这种方法虽然制作简单、容易,但由于功能键数及功能受到特定的限制,只实用于某一专用电器产品的应用,应用范围受到限制。而采用单片机进行遥控系统的应用设计,具有编程灵活多样、操作码个数可随便设定等优点。 本设计主要应用了AT89C51单片机作为核心,综合应用了单片机中断系统、定时器、计数器等知识,应用红外光的优点,设计了一个红外线遥控系统。本系统包含发射和接收两大部分,利用编码/解码芯片来进行控制操作。发射部分包括键盘矩阵、编码调制、LED 红外线发射器;接收部分包括红外线接收芯片、光电转换器、调解电路。其优点硬件电路 简单,软件功能完善,性价比较高等特点,具有一定的使用和参考价值。 关键词:单片机AT89C51;LED红外线发射器

目录 目录 (2) 1 绪论 (2) 1.1研究背景 (2) 1.2国内外研究现状 (3) 1.3研究目的与意义 (3) 2系统方案设计论证 (5) 2.1单片机红外遥控发射器设计原理 (5) 2.2单片机红外遥控接收器设计原理 (5) 2.3方案选择和论证 (6) 3红外解码硬件电路设计 (8) 3.1红外解码系统设计 (8) 3.2单片机及其硬件电路设计 (8) 3.3红外发射电路设计 (10) 3.4红外接收电路设计 (11) 3.5本章小结 (13) 4红外解码程序设计 (14) 4.1红外接收电路主程序流程图 (14) 4.2红外接收电路子程序流程图 (14) 4.3本章小结 (15) 5 联机与调试 (16) 结论和展望 (23) 附录A:系统原理图 (24) 附录B:系统PCB图 (25) 附录C:系统仿真图 (26) 附录D:系统源程序 (27) 1 绪论 1.1研究背景 目前市场上采用的一般是遥控编码及解码集成的电路。此方案的特点是制作简单、容

实验八单片机液晶显示实验

实验八单片机液晶显示实验 一、实验目的 1、了解液晶显示屏的控制原理及方法。 2、了解点阵汉字的显示原理。 二、实验说明 1、利用实验上的液晶显示屏电路,编写程序控制显示,输出汉字。 2、本实验仪采用的液晶显示屏内置控制器为SED1520,点阵为122x32,需要两片SED1520组成,由E1、E2分别选通,以控制显示屏的左右两半屏。图形液晶显示模块有两 种连接方式。一种为直接访问方式,一种为间接控制方式。本实验仪采用直接控制方式。 三、实验仪器 计算机 伟福实验箱(lab2000P ) 四、实验内容 1、利用实验上的液晶显示屏电路,编写程序控制显示,输出汉字。 2、本实验仪采用的液晶显示屏内置控制器为SED1520,点阵为122x32,需要两片SED1520组成,由E1、E2分别选通,以控制显示屏的左右两半屏。图形液晶显示模块有两 种连接方式。一种为直接访问方式,一种为间接控制方式。本实验仪采用直接控制方式。 3、直接控制方式就是将液晶显示模块的接口作为存储器或I/O设备直接挂在计算机总线上。计算机通过地址译码控制E1和E2的选通;读/写操作信号R/W由地址线A1控制;命令/数据寄存器选择信号AO由地址线A0控制。实际电路如上图所示。地址映射 如下(地址中的X由LCD CS决定,可参见地址译码部分说明) 五、思考题 1、显示自己的班级和姓名; 2、可以动态显示,上下或者左右移动; 六、源程序修改原理及其仿真结果 CWADD1 EQU 08000H ;写指令代码地址(E1) DWADD1 EQU 08001H ;写显示数据地址(E1) CRADD1 EQU 08002H ;读状态字地址(E1) DRADD1 EQU 08003H ;读显示数据地址(E1) CWADD2 EQU 08004H ;写指令代码地址(E2) DWADD2 EQU 08005H ;写显示数进地址(E2) CRADD2 EQU 08006H ;读状态字地址(E2) DRADD2 EQU 08007H ;读显示数据地址(E2) PD1 EQU 3DH ;122/2 分成左右两半屏122x32 COLUMN EQU 30H PAGE_ EQU 31H ;页地址寄存器D1,DO:页地址 CODE_ EQU 32H ;字符代码寄存器 COUNT EQU 33H ;计数器 DIR equ 34h dtp1 equ 35h

红外遥控解码单片机课程设计报告

单片机课程设计报告 ——————————红外遥控解码 学校:东莞理工学院 院系:电子工程学院 作者:官炎钦 同组人员:陈帅、林志鹏、洪楚明

目录: 一、前言 ------------------------------------------- 1 二、设计原理 --------------------------------------- 1 1、红外通信原理 -------------------------------------------------- 1 2、红外编码原理 -------------------------------------------------- 3 三、硬件电路设计 ----------------------------------- 5 1、总体电路图 ----------------------------------------------- 5 2、数码管与LED显示电路图 ---------------------------------------6 四、软件设计 --------------------------------------- 7 1、程序框图 ----------------------------------------------------- 8 2、程序清单 ----------------------------------------------------- 8 3、总结与心得 --------------------------------- 14

一、前言 随着科学技术的发展,单片机因其该可靠性和高性价比,在智能化家用电器仪表仪器等恒多领域得到极为广泛的应用。在很多实际单片机系统中,常常使用非电信号,如光信号,超声波信号等,来传播信息,以实现遥控和遥测的功能,其中红外遥控是目前最广泛的一种通信和控制手段。由于红外遥控使用方便、功耗低、成本低廉、功能强、抗干扰强等特点,因而,继彩电、录像机之后,在录音机、音响备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。 本设计以STC89C52单片机作为控制中心,综合应用了单片机内部结构及中断系统等知识,应用红外光的优点,实现对红外遥控器的解码和通信。 二、设计原理 1、红外通信原理 红外通信,即以红外线作为通信载体,通过红外光在空中的传播来传输数据的通信方式,它有发射红外线的电路和接收端来完成。在发射端,发送的数字信号经过适当的调制编码后,送入电光变换电路,经红外发射管转变为红外光脉冲发射到空中;在接收端,红外接收器对接收到的红外光脉冲进行光电变换,解调,再经单片机处理,便可以恢复出原数据信号。 红外通信原理图 2、红外编码原理 常用的红外线信号传输协议有ITT 协议、NEC 协议、Nokia NRC 协议、Sharp 协议、Philips RC-5 协议、Philips RC-6协议,Philips RECS-80协议,以及Sony SIRC 协议等。 1)协议组成:一般由引导码,用户码,数据码,重复码或数据码的反码和结束码构成。2)载波:常用的有33K,36K,36.6K,38K,40K,56K,无载波 3)占空比:常用的有1/3,1/2,不常用1/4 4)调制方式:脉宽调制,相位调制,脉冲位置调制 本次设计红外发射端选用的是NEC协议编码的,由38K载波调制的红外编码的红外遥控器。 (1)0和1的编码 遥控器发射的信号由一串0和1的二进制代码组成。不同芯片对0和1的编码有所不同。通常有曼彻斯特编码和脉冲宽度编码。TC9012的0和1采用PWM方法编码,即脉冲宽度调制。以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,如下图所示:

基于单片机的红外无线控制

中国矿业大学徐海学院 技能考核培训 姓名:陈思彤学号: 22110838 专业:信息11-2班 题目:基于单片机的红外无线控制 专题:音乐播放器 指导教师:有鹏老师翟晓东老师 设计地点:电工电子实验室 时间: 2014 年 4 月

通信系统综合设计训练任务书 学生姓名陈思彤专业年级信息11-2班学号22110838 设计日期:2014年4 月5日至2014 年4 月10 日 设计题目: 基于单片机的红外无线控制 设计专题题目: 音乐播放器 设计主要内容和要求: 1. 主要内容: 单片机内部结构 红外遥控解码 C语言程序设 2. 功能扩展要求 实现音乐播放器的功能 指导教师签字:

摘要:近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入。红外线技术也被广泛应用于各个电子领域,先设计一种基于单片机的红外遥控的简易音乐播放器。通信蜂鸣器来发声,来完成音乐播放器的功能。该系统可实现对音乐播放的远距离遥控,且结构简单,速度快,抗干扰能力强。通过本次课程设计,我对单片机中断系统等知识有了进一步的了解,对单片机的相关知识做到理论联系实际。 关键词:单片机,中断系统,红外遥控,音乐播放

目录 1 绪论 (4) 1.1概述 (4) 1.2功能 (4) 2 硬件电路 (5) 2.1总体设计方 (5) 2.2单片机最小系统 (5) 2.3红外遥控收发电路 (5) 2.3.1 红外遥控发射电路 (6) 2.3.2 红外遥控接收电路 (7) 2.4蜂鸣器电路 (7) 2.5 LED指示灯电路 (8) 3软件编程 (9) 3.1 C语言实现系统设计 (9) 3.2乐谱的改编 (10) 参考文献 (11) 附录 (12)

单片机实验--LCD显示实验

实验19L C D显示实验 一、实验目的: 学习液晶显示的编程方法,了解液晶显示模块的工作原理。 掌握液晶显示模块与单片机的接口方法。 二、所需设备 CPU挂箱、8031CPU模块 三、实验内容 编程实现在液晶显示屏上显示中文汉字“北京理工达盛科技 有限公司”。 四、实验原理说明 五、实验步骤 1、实验连线 8255的PA0~PA7接DB0~DB7,PC7接BUSY,PC0接REQ,CS8255 接CS0。 2、运行实验程序,观察液晶的显示状态。 六、程序框图 八、附:点阵式LCD 模块 点阵式LCD模块 由一大一小两块液晶 模块组成。两模块均 由并行的数据接口和 应答信号接口两部分 组成,电源由接口总 线提供。 (1)OCMJ2×8液晶 模块介绍及使 用说明 OCMJ中文模块系列液晶显示器内含 GB 2312 16*16点阵国标一级简体汉字和 ASCII8*8(半高)及8*16(全高)点阵英文字库,用户输入区位码或 ASCII 码即可实现文本显示。 OCMJ中文模块系列液晶显示器也可用作一般的点阵图形显示器

之用。提供有位点阵和字节点阵两种图形显示功能,用户可在指定的屏幕位置上以点为单位或以字节为单位进行图形显示。完全兼容一般的点阵模块。 OCMJ中文模块系列液晶显示器可以实现汉字、ASCII 码、点阵图形和变化曲线的同屏显示,并可通过字节点阵图形方式造字。 本系列模块具有上/下/左/右移动当前显示屏幕及清除屏幕的命令。一改传统的使用大量的设置命令进行初始化的方法,OCMJ 中文模块所有的设置初始化工作都是在上电时自动完成的,实现了“即插即用”。同时保留了一条专用的复位线供用户选择使用,可对工作中的模块进行软件或硬件强制复位。规划整齐的10个用户接口命令代码,非常容易记忆。标准用户硬件接口采用REQ/BUSY 握手协议,简单可靠。 硬件接口 接口协议为请求/应答(REQ/BUSY)握手方式。应答BUSY 高电平(BUSY =1)表示 OCMJ 忙于内部处理,不能接收用户命令;BUSY 低电平(BUSY =0)表示 OCMJ 空闲,等待接收用户命令。发送命令到 OCMJ可在BUSY =0 后的任意时刻开始,先把用户命令的当前字节放到数据线上,接着发高电平REQ 信号(REQ =1)通知OCMJ请求处理当前数据线上的命令或数据。OCMJ模块在收到外部的REQ高电平信号后立即读取数据线上的命令或数据,同时将应答线BUSY变为高电平,表明模块已收到数据并正在忙于对此数据的内部处理,此时,用户对模块的写操作已经完成,用户可以撤消数据线上的信号并可作模块显示以外的其他工作,也可不断地查询应答线BUSY是否为低(BUSY =0?),如果BUSY =0,表明模块对用户的写操作已经执行完毕。可以再送下一个数据。如向模块发出一个完整的显示汉字的命令,包括坐标及汉字代码在内共需5个字节,模块在接收到最后一个字节

单片机如何通过捕获来实现对红外遥控器解码

单片机如何通过捕获来实现对红外遥控器解码 一、内容提要 上讲介绍并应用了单片机动态扫描驱动数码管,并给出了实例。这一讲将重点介绍单片机如何通过捕获来实现对红外遥控器解码。通过该讲,读者可以掌握红外遥控器的编码原理以及如何通过单片机对遥控器进行解码。 二、原理简介 随着家用电器、视听产品的普及,红外线遥控器已被广泛使用在各种类型的家电产品上(如遥控开关、智能开关等)。其具有体积小、抗干扰能力强、功耗低、功能强、成本低等特点,在工业设备中也得到广泛应用。 一般而言,一个通用的红外遥控系统由发射和接收两大部分组成,如图1 所示: 图1 红外遥控系统框图 其中发射部分主要包括键盘矩阵、编码调制、红外发射管;接收部分包括光、电信号的转换以及放大、解调、解码电路。举例来说,通常我们家电遥控器信号的发射,就是将相应按键所对应的控制指令和系统码(由0 和1 组成的序列),调制在32~56kHz 范围内的载波上,然后经放大、驱动红外发射管将信号发射出去。此外,现在流行的控制方法是应用编/ 解码专用集成电路芯片来实现(如下文提到的SAA3010 红外编码芯片和HS0038 红外接收头)。 不同公司的遥控芯片,采用的遥控码格式也不一样。在此介绍目前广泛使用较普遍的两种,一种是NEC Protocol 的PWM(脉冲宽度调制)标准,一种是Philips RC-5 Protocol 的PPM(脉冲位置调制)标准。 NEC 标准:遥控载波的频率为38kHz(占空比为1:3);当某个按键按下时,系统首先发射一个完整的全码,然后经延时再发射一系列简码,直到按键松开即停止发射。简码重复为延时108ms,即两个引导脉冲上升沿之间的间隔都是108ms。一个完整的全码如图2所示。

基于51单片机的红外遥控

基于51单片机的红外遥控 红外遥控就是无线遥控的一种方式,本文讲述的红外遥控,采用STC89C52单片机,1838红外接收头与38k红外遥控器。 1838红外接收头: 红外遥控器: 原理: 红外接收的原理我不赘述,百度文库上不少,我推荐个网址,这篇文章写得比较清楚,也比较全面, 我主要讲下程序的具体意思,在了解原理的基础上,我们知道,当我们在遥控器上每按下一个键,遥控器上的红外发射头都会发出一个32位的编码(32位编码分成4组8位二进制编码,前16位为用户码与用户反码,后16位为数据码与数据反码,用户码表示遥控器类型,数据码表示按键编码),不同的键对应不同的编码,红外接收头接收到这个编码后,发送给单片机,再进行相关操作。 源程序1:(这个程序的功能就是将用户码与用户反码,数据码与数据反码显示在1602液晶上,因为遥控器买回来就是不会说明按键对应什么码值,所以先自己测试,确定每个按 键的码值) #include #include #include #define uint unsigned int #define uchar unsigned char #define _Nop() _nop_() #define TURE 1 #define FALSE 0

/*端口定义*/ sbit lcd_rs_port = P3^5; /*定义LCD控制端口*/ sbit lcd_rw_port = P3^6; sbit lcd_en_port = P3^4; #define lcd_data_port P0 /////////////////////////////////// void delay1 (void)//关闭数码管延时程序 { int k; for (k=0; k<1000; k++); } //////////////////////////////////// uchar code line0[16]={" user: "}; uchar code line1[16]={" data: "}; uchar code lcd_mun_to_char[16]={"0123456789ABCDEF"}; unsigned char irtime;//红外用全局变量 bit irpro_ok,irok; unsigned char IRcord[4];//用来存放用户码、用户反码、数据码、数据反码unsigned char irdata[33];//用来存放32位码值 void ShowString (unsigned char line,char *ptr); ////////////////////////////////////////////// void Delay(unsigned char mS); void Ir_work(void); void Ircordpro(void); void tim0_isr (void) interrupt 1 using 1//定时器0中断服务函数 { irtime++; } void ex0_isr (void) interrupt 0 using 0//外部中断0服务函数 { static unsigned char i; static bit startflag; if(startflag){ if(irtime<63&&irtime>=33)//引导码TC9012的头码 i=0; irdata[i]=irtime; irtime=0; i++; if(i==33){ irok=1; i=0; }

用单片机解码红外遥控器

用单片机解码红外遥控器 遥控器使用方便,功能多.目前已广泛应用在电视机、VCD、DVD、空调等各种家用电器中,且价格便宜,市场上非常容易买到。如果能将遥控器上许多的按键解码出来.用作单片机系统的输入.则解决了常规矩阵键盘线路板过大、布线复杂、占用I/O口过多的弊病。而且通过使用遥控器,操作时可实现人与设备的分离,从而更加方便使用。下面以TC9012编码芯片的遥控器为例。谈谈如何用常用的51系统单片机进行遥控的解码。 一、编码格式 1、0和1的编码 遥控器发射的信号由一串O和1的二进制代码组成.不同的芯片对0和1的编码有所不同。通常有曼彻斯特编码和脉冲宽度编码。TC9012的O和1采用PWM方法编码,即脉冲宽度调制,其O码和1码如图1所示(以遥控接收输出的波形为例)。O码由O.56ms低电平和0.56ms高电平组合而成.脉冲宽度为1.12ms.1码由0.56ms低电平和1.69ms高电平组合而成.脉冲宽度为2.25ms。在编写解码程序时.通过判断脉冲的宽度,即可得到0或1。 2、按键的编码

当我们按下遥控器的按键时,遥控器将发出如图2的一串二进制代码,我们称它为一帧数据。根据各部分的功能。可将它们分为5部分,分别为引导码、地址码、地址码、数据码、数据反码。遥控器发射代码时.均是低位在前。高位在后。由图2分析可以得到.引导码高电平为4.5ms,低电平为4.5ms。当 接收到此码时.表示一帧数据的开始。单片机可以准备接收下面的数据。地址码由8位二进制组成,共256种.图中地址码重发了一次。主要是加强遥控器的可靠性.如果两次地址码不相同.则说明本帧数据有错.应丢弃。不同的设备可以拥有不同的地址码.因此。同种编码的遥控器只要设置地址码不同,也不会相互干扰。图中的地址码为十六进制的0EH(注意低位在前)。在同一个遥控器中.所有按键发出的地址码都是相同的。数据码为8位,可编码256种状态,代表实际所按下的键。数据反码是数据码的各位求反,通过比较数据码与数据反码.可判断接收到的数据是否正确。如果数据码与数据反码之间的关系不满足相反的关系.则本次遥控接收有误.数据应丢弃。在同一个遥控器上.所有按键的数据码均不相同。在图2中,数据码为十六进制的0CH,数据反码为十六进制的0F3H(注意低位在前).两者之和应为0FFH。 二、单片机遥控接收电路

相关主题
文本预览
相关文档 最新文档