当前位置:文档之家› 高等仪器分析实验-荧光分光光度计的使用

高等仪器分析实验-荧光分光光度计的使用

高等仪器分析实验-荧光分光光度计的使用
高等仪器分析实验-荧光分光光度计的使用

高等仪器分析实验(荧光分光光度计的使用)

实验目的

1.掌握荧光分光光度计的基本使用方法:扫描激发光谱,发射光谱,荧光强度,同步荧光光谱

2.掌握荧光定量分析方法

实验原理

荧光分光光度计是常用的光学仪器,在定量分析,样品的光谱性质表征时经常用到。

荧光分光光度计的基本功能是完成激发光谱,发射光谱的扫描,进行相对荧光强度的测量。从激发光谱可以获得样品激发态能级的分布情况,用来选择定量分析的最佳激发波长。从发射光谱可以知道样品基态能级的分布情况,用来选择定量分析的最佳发射波长。荧光定量分析法的方法与紫外可见吸收光谱法类似,但需要注意荧光强度值是相对值,同一样品,同一仪器在不同仪器参数时获得的荧光强度是不同的。只有当测量时仪器参数完全相同时,不同样品荧光强度的相互比较才有意义。

与紫外可见吸收光谱类似,分子荧光光谱也是分子光谱,其谱峰较宽,特征性不是很强,谱峰重叠现象比较普遍。为了减小谱峰宽度,避免谱峰重叠,提高分析的选择性,在定量分析时常采用同步荧光的方法进行。同步荧光是同时扫描荧光分光光度计的激发和发射单色仪得到的谱图,通过选择合适的扫描参数,可以使样品谱峰变窄,并避免不同组份的谱峰重叠,得到比较好的分析效果。

同步荧光扫描有固定波长同步荧光法,固定能量同步荧光法,可变角同步荧光法,导数同步荧光法等,其中以固定波长同步荧光法最为常用。

扫描已知样品荧光激发和发射光谱时,可先根据参考波长来进行。扫描未知样品的荧光光谱,可以将发射波长先每隔一定波长(例如50nm)扫描一个激发光谱。对比不同位置的激发光谱,从最强的激发光谱中选择最大激发波长,设定该波长为激发波长,扫描发射光谱。再从新得到的发射光谱中找到最大发射波长,在最大发射波长处重新扫描激发光谱。

扫描样品激发光谱和发射光谱时,需要注意:扫描激发光谱时,激发单色器扫描范围的长波端一般应小于发射波长;扫描发射光谱时,发射单色器扫描范围的短波端应大于激发波长。否则在发射光谱(激发光谱)中与激发波长(发射波长)波长相同的位置会出现很强的散射谱峰,这不是样品的荧光引起的,应注意区分。

如果样品不是真正的溶液,或包含有不溶颗粒物,或是固体样品,如果扫描范围较宽时,通常在发射光谱(激发光谱)中激发波长(发射波长)整数倍波长的位置也会出现弱的散射谱峰,称为倍频峰,在分析光谱情况时也应注意区分。对散射倍频峰或样品荧光峰,可通过适当改变激发波长来进行区分,散射倍频峰的位置会随着激发峰位置的变化而变化,而荧光峰位置通常是不变的。如果倍频峰对样品的测量有干扰,可使用合适的滤光片消除倍频峰。合适的消倍频峰滤光片应可以使发射光透过,而阻挡激发光不能透过。

如果样品荧光较弱,使用高灵敏度档测定时,通常会观察到溶剂的拉曼峰,也应注意与样品荧光进行区分。拉曼峰的位置也与激发波长有关,同时会随着激发波长的变化而变化。其位置估算方法:?laman=1/(1/?ex-?H2O/107),其中波长单位为nm,?H2O为溶剂的红外吸收波长,单位为波数,溶剂为水时,主要的红外吸收是O-H伸缩振动,波长在3300波数。

狭缝的选择:激发和发射狭缝通常并不要求严格一致,为获得较好的灵敏度和准确反应谱峰形状,测定激发光谱时,选用较大的发射狭缝和较小的激发狭缝是比较好的。而测定发射光谱时则恰好相反。

灵敏度档的选择:灵敏度档与仪器中光电倍增管的放大倍数有关,对荧光比较弱的样品,应选择灵敏度较高的档位,反之亦反。但注意不同档位之间的荧光强度值没有确定的换算关系,不能相互比较。进行定量分析时,所有样品必须在同样的狭缝和灵敏度档位测量。

仪器及试剂

970MC荧光分光光度计

缓冲溶液:10-2mol/L Na2HPO4-NaOH缓冲溶液,pH=11-12

1-萘酚储备液:10?g/ml

实验内容

1.溶液配制

1-萘酚溶液:取一定量10?g/ml 1-萘酚储备液到25mL容量瓶中,加入3mL pH=11-12缓冲溶液,用蒸馏水稀释到刻度。得到1-萘酚浓度为2.0?g/ml的标准溶液。

2.1-萘酚荧光光谱的扫描

分别以400,450,500纳米为发射波长,测量样品的激发光谱,初步找到样品发光最强的激发和发射位置,然后以最佳激发波长扫描发射光谱,再从中找到最佳发射波长扫描激发光谱。

3.同步荧光光谱的扫描

分别以??=60,90,120,150纳米为波长差扫描样品的波长固定同步荧光光谱。观察光谱的区别和变化,说明同步荧光和普通激发和发射光谱的区别及如何选择最佳的??。

4.观察水中杂质的荧光

分别取自来水,去离子水,二次蒸馏水,饮用纯净水,以激发波长370纳米,发射范围380-600纳米,测定样品的发射光谱,观察光谱的情况。

5.观察荧光光谱中的瑞利散射

取去离子水,1-萘酚样品,分别按如下条件扫描发射光谱,观察不同样品中拉曼光谱的差别

6.观察荧光光谱中的拉曼散射

7.狭缝宽度对样品荧光强度和谱峰形状的影响

取1-萘酚样品,固定激发波长为332纳米,发射范围350-600纳米,调整不同狭缝宽度,观察荧光强度和发射光谱的变化。

8.灵敏度档次对荧光强度和谱峰形状的影响

取1-萘酚样品,固定激发波长为332纳米,发射范围350-600纳米,固定激发和发射狭缝宽度均为5纳米,调整不同的灵敏度档次,观察荧光强度和发射光谱的变化。

9.荧光光谱仪的稳定性

取1-萘酚样品,固定激发波长为332纳米,发射波长为460纳米,固定激发和发射狭缝宽度均为5纳米,灵敏度档次为?,选择动力学扫描时间为5分钟,时间间隔为秒,扫描样品的荧光强度的变化。

仪器分析实验思考题答案合集汇编

一、离子选择性电极法测定水中微量氟 1、总离子强度调节剂(TISAB)是由那些组分组成,各组分的作用是什么? 答:氯化钠,柠檬酸钠,冰醋酸,氢氧化钠,氯化钠是提高离子强度,柠檬酸钠是掩蔽一些干扰离子,冰醋和氢氧化钠形成缓冲溶液,维持体系PH值稳定!2、测量氟离子标准系列溶液的电动势时,为什么测定顺序要从低含量到高含量? 答:测什么一般都是从低到高,每测一个你都冲洗电极吗,不冲洗的话,从低到高,比从高到低,影响小。还有就是防止测到高浓度的溶液使电极超出使用范围。 3、测定F-浓度时为什么要控制在测定F-离子时,为什么要控制酸度,pH值过高或过低有何影响? 答:因为在酸性溶液中,H+离子与部分F-离子形成HF或HF2-,会降低F-离子的浓度;在碱性溶液中,LaF3 薄膜与OH-离子发生反应而使溶液中F-离子浓度增加。因此溶液的酸度对测定有影响。氟电极的适用酸度范围为pH=5~6,测定浓度在10^0~10^-6 mol/L范围内,△φM与lgC F-呈线性响应,电极的检测下限在10-7 mol/L左右。 二、醇系物的气相色谱分析 1、如何进行纯物质色谱的定性分析? 色谱无法对未知纯物质定性分析(这里所谓未知就是你对它的分子组成、结构一无所知),除非你已经知道它可能是某种物质或某几种物质之一,那么你可以用这几种物质的标准品和待分析的纯物质样品在相同色谱条件下对照,保留时间相同,则证明是同种物质。 为色谱峰面积; A i 为相对重量校正因子,f(甲醇)=1.62、f(乙醇)=1.65、f(正丙醇)=1.05、f(正f i 丁醇)=0.87 三、邻二氮菲分光光度法测定铁 1、 2、制作标准曲线和进行其他条件试验时,加入还原剂、缓冲溶液、显色剂等试 剂的顺序能否任意改变?为什么?

LS55操作说明书荧光-磷光-发光分光光度计中文培训手册

LS-45/55荧光/磷光/发光 分光光度计 使用说明书 美国Perkin Elmer公司 2003 年4月

一、理论基础 荧光、磷光、化学发光及生物发光均属于分子发光。现将其原理简介如下: 室温下,大多数分子处于基态的最低振动能层。处于基态的分子吸收能量后被激发为激发态。激发态不稳定,将很快衰变到基态。若返回到基态时伴随着光子的辐射,这种现象被称为“发光”。 每个分子具有一系列严格分立的能级,称为电子能级,而每个电子能级中又包含了一系列的振动能层和转动能层。图中基态用S0表示,第一电子激发单重态和第二电子激发单重态分别用S1、S2表示,0、1、2、3…表示基态和激发态的振动能层(见图1),第一、二电子的激发三重态分别用T1和T2表示(见图2)。 图1荧光的能级图 1、荧光的产生 当分子处于单重激发态的最低振动能级时,去活化过程的一种形式是以10-9~10-6秒左右的短时间内发射一个光子返回基态,这一过程称为荧光发射(见图1)。2、磷光的产生 从单重态回到三重态的分子系间跨越越迁发生后,接着发生快速的振动驰豫而到达三重态的最低振动能层上,当没有其他过程同它竞争时,在10-4~102秒左右的时间内跃迁回基态而发生磷光(见图2)。 由此可见,荧光与磷光的的根本区别是:荧光是由激发单重态最低振动能层至基态各振动能层的跃迁产生的,而磷光是由激发三重态的最低振动能层至基态各振动能层间跃迁产生的。

图2磷光的能级图 3、化学发光及生物发光的产生 某些物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出了一定波长的光,这种吸收化学能使分子发光的过程称为化学发光。化学发光也发生于生命体系,这种发光被称为生物发光。 二、仪器简介 1、仪器原理 图3LS45/55荧光/磷光/发光分光光度计的原理图

仪器分析实验习题及参考答案

色谱分析习题及参考答案 一、填空题 1、调整保留时间是减去的保留时间。 2、气相色谱仪由五个部分组成,它们 是 3、在气相色谱中,常以和来评价色谱柱效能,有时也用 表示柱效能。 4、色谱检测器按响应时间分类可分为型 和型两种,前者的色谱图为 曲线,后者的色谱图为曲线。 5、高效液相色谱是以为流动相,一般叫做,流动相的选择对分离影响很大。 6、通过色谱柱的和之比叫阻滞因子, 用符号表示。 7、层析色谱中常用比移值表示。由于比移值Rf重现性较差,通常 用做对照。他表示与移行距离之比。 8、高效液相色谱固定相设计的原则是、以达到减少谱带变宽的目的。 二、选择题

1、色谱法分离混合物的可能性决定于试样混合物在固定相中______的差别。 A. 沸点差, B. 温度差, C. 吸光度, D. 分配系数。 2、选择固定液时,一般根据_____原则。 A. 沸点高低, B. 熔点高低, C. 相似相溶, D. 化学稳定性。 3、相对保留值是指某组分2与某组分1的_______。 A. 调整保留值之比, B. 死时间之比, C. 保留时间之比, D. 保留体积之比。 4、气相色谱定量分析时______要求进样量特别准确。 A.内标法; B.外标法; C.面积归一法。 5、理论塔板数反映了______。 A.分离度; B. 分配系数;C.保留值;D.柱的效能。 6、下列气相色谱仪的检测器中,属于质量型检测器的是 A.热导池和氢焰离子化检测器;B.火焰光度和氢焰离子化检测器; C.热导池和电子捕获检测器;D.火焰光度和电子捕获检测器。 7、在气-液色谱中,为了改变色谱柱的选择性,主要可进行如下哪种(些)操作?() A. 改变固定相的种类 B. 改变载气的种类和流速 C. 改变色谱柱的柱温 D. (A)和(C) 8、进行色谱分析时,进样时间过长会导致半峰宽______。 A. 没有变化, B. 变宽, C. 变窄, D. 不成线性

荧光分光光度计

荧光分光光度计 1、功能:荧光、磷光和生物/化学发光的测定都是标准功能,波长扫描,时间扫描,三维时间扫描,定量分析,磷光寿命测定,三波长测定,可扩展功能低温荧光测定,绝对量子产率测定。 *2、波长移动速度: 60,000nm/min 3、预扫描功能,优化未知样品的测量条件。 4、具有内置的切光器功能,可使样品在激发光束下的暴露时间缩短,从而保护容易发生光反应的样品 *5、灵敏度:800:1水的拉曼峰(RMS);250:1(P-P);(测试条件:水的拉曼峰,激发波长350nm,光谱带宽5nm,响应时间2s);基线处最低信噪比优于15000:1(RMS)(激发波长350nm,光谱带宽10nm,响应时间4s) 6、狭缝方式:水平狭缝,最小样品量:0.6毫升(使用标准10mm方形样品池) 7、光度模式:单色光监控比率计算 *8、单色器:机刻凹面衍射光栅:900条/mm,;激发侧闪耀波长:300nm;发射侧闪耀波长:400nm 9、测量波长范围(EX和EM):200~750nm,零级光,配置备选检测器R928F扩展至200-900nm. *10、光谱带宽:激发侧和发射侧:1,2.5,5,10,20nm 11、分辨率:1.0nm 12、波长准确性:1nm *13、波长扫描速度:不低于60,000nm/min,2s内扫描可得到一张典型的全范围光谱;2min内扫描得到一张典型的三维光谱图; *14、响应时间:从0到98%;0.002,0.004,0.01,0.05,0.1,0.5,2,4s 15、光度计的显示范围:-9999~9999 *16、全波段的光谱校正,排除仪器的依赖性,确保高精度的数据 *17、动态范围宽:六个数量级 *18可选配77K低温附件,用于液氮温度下荧光、磷光测量,可选配细胞内离子测定附件进行钙镁等离子的测量。(提供彩页图片和货号证明) *19、可选配积分球附件进行绝对量子产率测定。(提供彩页图片和货号证明)20、工作温度/湿度: 15~35℃,45~8O%(不可有冷凝现象,35℃以上时湿度为70%以下 21、电源: 220, 230, 240Ⅴ AC 50/60Hz *22、配备温控支架及冷却循环水一套。 二、配置 1. 主机1台(含原装荧光比色皿1只和软件1套) 配套固体样品支架1套 2.电脑打印机1套 3.温控支架1套 冷却循环水1套

F-27000荧光分光光度计使用操作步骤

F-2700荧光分光光度计操作规程 1、开机: (1)开启计算机 (2)开启仪器主机电源按下仪器主机左侧面板下方的黑色按钮(POWER)同时,观察主机正面面板右侧的Xe LAMP 和RUN指示灯依次亮起来,都显示绿色为正常。 (3)双击桌面图标(FL Solutions 4.1 for F-7000),主机自行初始化,扫描界面自动进入 (4)初始化结束后,须预热15-20分钟,出现操作主界面(界面右下角出现Ready) 2、点击扫描界面右侧“Method” 在“General”选项中的“Measurement”选择“wavelength scan”测量模式 在“Instrument”选项中设置仪器参数和扫描参数 选择扫描模式“Scan Mode”:Emission/Excitation(发射光谱/激发光谱) 选择数据模式“Data Mode”:Fluorescence (荧光测量) 设定波长扫描范围 扫描荧光激发光谱(Excitation):需设定激发光的起始/终止波长(EX Start/End WL)和荧光发射波长(EM WL) 扫描荧光发射光谱(Emission):需设定发射光的起始/终止波长(EM Start/End WL)和荧光激发波长(EX WL) 其他选项可选择默认值(也可根据具体实验要求自行设定) 参数设置好后,点击“确定” 3、设置文件存储路径(此步也可不进行参数设置,可以在按5中方法进行保存) (1)点击扫描界面右侧“Sample” (2)样品名可自行命名 (3)选中“Auto File”,可以自动保存原始文件和TXT格式文本文档数据(4)参数设置好后,点击“OK” 4、扫描测试 (1)打开盖子,放入待测样品后,盖上盖子(请勿用力) (2)点击扫描界面右侧“Measure”,窗口在线出现扫描谱图 5、数据处理与保存 (1)选中自动弹出的数据窗口 (2)右键--“Trace”,进行读数并寻峰等操作 (3)“File”--“Save as”对数据进行保存 6、关机顺序: (1)关闭运行软件FL Solution 2.1 for F-7000 (2)选中“Close the lamp,then close the monitor windows?”点击“Yes”窗口自动关闭同时,观察主机正面面板右侧的Xe LAMP指示灯暗下来,而RUN指示灯仍显示绿色 (4)约十分钟后,关闭仪器主机电源,即按下仪器主机左侧面板下方的黑色按钮(POWER)(目的是仅让风扇工作,使Xe灯室散热) (5)从样品池中取出所有比色皿,清洗干净以便下一次使用 (6)关闭计算机

荧光分光光度计- 原理

分子荧光分析法 发光光谱:物质分子或原子吸收辐射被激发后,电子以无辐射跃迁至第一电子激发态的最低振动能级,再以辐射的方式释放这一部分能量而产生的光谱称为荧光、磷光。 根据物质接受的辐射能量的大小及与辐射作用的质点不同,荧光分析法可分为以下几种: 1. X射线荧光分析法 用X射线作光源,待测物质的原子受激发后在很短时间内(10-8 s)发射波长在X 射线范围内的荧光。 2. 原子荧光分析法: 待测元素的原子蒸气吸收辐射激发后,在很短的时间内(10-8 s),部分将发生辐射跃迁至基态,这种二次辐射即为荧光,根据其波长可进行定性,根据谱线强度进行定量。 荧光的波长如与激发光相同,称为共振荧光。 荧光的波长比激发光波长长,称为stokes荧光;若短,称为反stokes荧光。 3. 分子荧光分析法: 有些物质的多原子分子,在用紫外、可见光(或红外光)照射时,也能发射波长在紫外、可见(红外)区荧光,根据其波长及强度可进行定性和定量分析,这就是通常的(分子)荧光分析法。

基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂, 称“单线态”; 图1 单线基态(A)、单线激发态(B)和三线激发态(C) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1:S=1/2+1/2=1 其多重性:M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比“单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的10-6~10-7。(二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能

仪器分析实验考查试卷

仪器分析实验考查试卷 (笔试,共100分,考试时间1小时) 2008-2009学年第一学期年级:06 专业:环境、材料 姓名:__________________ 学号:____________________ 成绩:_____________ 一、填空题(每空2分,共48分) 1.用氟离子选择性电极法测定水中微量F-,以()为工作电极,以()为参比电极,浸入试液组成工作电池。测定标准溶液系列要按浓度由()到()的顺序进行测定,原因是()。 2. 色谱分析法中,对物质进行定性的依据是:()。 3. 火焰法原子吸收光谱中,对仪器灵敏度影响较大的实验参数有:()、()和()等。 4.在紫外-可见分光光度分析中,吸收池中试液的加入量应控制在(),拿取时手不能接触(),若表面有少许液体时,应用()纸擦干净。 5. 气相色谱中,常用载气有:()和()等;常用检测器有:()

和()等。 6.紫外分光光度法测定环己烷中的微量苯时,以()为空白调零。 7.邻二氮菲与Fe2+可形成()色络合物,λmax为()。 8. 苯甲酸红外吸收光谱的绘制实验中,KBr的作用是:()和()。 9. 液相色谱中常见的流动相有:()、()和()等。 二、简答题(1-5题,每题8分;第6题12分;共52分) 1.电导滴定法测定阿司匹林药片中乙酰水杨酸含量的实验中,所得到的曲线为什么是先下降、后上升? 2. 乙酸正丁酯中杂质的气相色谱内标法测定实验中,实验条件若有所变化是否影响测定结果,为什么?

3. 邻二氮菲分光光度法测定微量铁实验,为什么选用试剂空白为参比溶液而不用蒸馏水? 4. 火焰法原子吸收光谱实验中,从实验安全上考虑,操作时应注意什么问题?

高等仪器分析实验-荧光分光光度计的使用

高等仪器分析实验(荧光分光光度计的使用) 实验目的 1.掌握荧光分光光度计的基本使用方法:扫描激发光谱,发射光谱,荧光强度,同步荧光光谱 2.掌握荧光定量分析方法 实验原理 荧光分光光度计是常用的光学仪器,在定量分析,样品的光谱性质表征时经常用到。 荧光分光光度计的基本功能是完成激发光谱,发射光谱的扫描,进行相对荧光强度的测量。从激发光谱可以获得样品激发态能级的分布情况,用来选择定量分析的最佳激发波长。从发射光谱可以知道样品基态能级的分布情况,用来选择定量分析的最佳发射波长。荧光定量分析法的方法与紫外可见吸收光谱法类似,但需要注意荧光强度值是相对值,同一样品,同一仪器在不同仪器参数时获得的荧光强度是不同的。只有当测量时仪器参数完全相同时,不同样品荧光强度的相互比较才有意义。 与紫外可见吸收光谱类似,分子荧光光谱也是分子光谱,其谱峰较宽,特征性不是很强,谱峰重叠现象比较普遍。为了减小谱峰宽度,避免谱峰重叠,提高分析的选择性,在定量分析时常采用同步荧光的方法进行。同步荧光是同时扫描荧光分光光度计的激发和发射单色仪得到的谱图,通过选择合适的扫描参数,可以使样品谱峰变窄,并避免不同组份的谱峰重叠,得到比较好的分析效果。 同步荧光扫描有固定波长同步荧光法,固定能量同步荧光法,可变角同步荧光法,导数同步荧光法等,其中以固定波长同步荧光法最为常用。 扫描已知样品荧光激发和发射光谱时,可先根据参考波长来进行。扫描未知样品的荧光光谱,可以将发射波长先每隔一定波长(例如50nm)扫描一个激发光谱。对比不同位置的激发光谱,从最强的激发光谱中选择最大激发波长,设定该波长为激发波长,扫描发射光谱。再从新得到的发射光谱中找到最大发射波长,在最大发射波长处重新扫描激发光谱。 扫描样品激发光谱和发射光谱时,需要注意:扫描激发光谱时,激发单色器扫描范围的长波端一般应小于发射波长;扫描发射光谱时,发射单色器扫描范围的短波端应大于激发波长。否则在发射光谱(激发光谱)中与激发波长(发射波长)波长相同的位置会出现很强的散射谱峰,这不是样品的荧光引起的,应注意区分。 如果样品不是真正的溶液,或包含有不溶颗粒物,或是固体样品,如果扫描范围较宽时,通常在发射光谱(激发光谱)中激发波长(发射波长)整数倍波长的位置也会出现弱的散射谱峰,称为倍频峰,在分析光谱情况时也应注意区分。对散射倍频峰或样品荧光峰,可通过适当改变激发波长来进行区分,散射倍频峰的位置会随着激发峰位置的变化而变化,而荧光峰位置通常是不变的。如果倍频峰对样品的测量有干扰,可使用合适的滤光片消除倍频峰。合适的消倍频峰滤光片应可以使发射光透过,而阻挡激发光不能透过。 如果样品荧光较弱,使用高灵敏度档测定时,通常会观察到溶剂的拉曼峰,也应注意与样品荧光进行区分。拉曼峰的位置也与激发波长有关,同时会随着激发波长的变化而变化。其位置估算方法:?laman=1/(1/?ex-?H2O/107),其中波长单位为nm,?H2O为溶剂的红外吸收波长,单位为波数,溶剂为水时,主要的红外吸收是O-H伸缩振动,波长在3300波数。 狭缝的选择:激发和发射狭缝通常并不要求严格一致,为获得较好的灵敏度和准确反应谱峰形状,测定激发光谱时,选用较大的发射狭缝和较小的激发狭缝是比较好的。而测定发射光谱时则恰好相反。 灵敏度档的选择:灵敏度档与仪器中光电倍增管的放大倍数有关,对荧光比较弱的样品,应选择灵敏度较高的档位,反之亦反。但注意不同档位之间的荧光强度值没有确定的换算关系,不能相互比较。进行定量分析时,所有样品必须在同样的狭缝和灵敏度档位测量。 仪器及试剂 970MC荧光分光光度计 缓冲溶液:10-2mol/L Na2HPO4-NaOH缓冲溶液,pH=11-12 1-萘酚储备液:10?g/ml

荧光分光光度计

基本原理 由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光. 不同物质由于分子结构的不同,其激发态能级的分布具有各自不同的特征,这种特征反映在荧光上表现为各种物质都有其特征荧光激发和发射光谱;,因此可以用荧光激发和发射光谱的不同来定性地进行物质的鉴定。 在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫 外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。 基本结构 1. 光源: 为高压汞蒸气灯或氙弧灯,后者能发射出强度较大的连续光谱,且在300nm~400nm 范围内强度几乎相等,故较常用。 2.激发单色器: 置于光源和样品室之间的为激发单色器或第一单色器,筛选出特定的激发光谱。3.发射单色器: 置于样品室和检测器之间的为发射单色器或第二单色器,常采用光栅为单色器。筛选出特定的发射光谱。 4.样品室: 通常由石英池(液体样品用)或固体样品架(粉末或片状样品)组成。测量液体时,光源与检测器成直角安排;测量固体时,光源与检测器成锐角安排。 5.检测器: 一般用光电管或光电倍增管作检测器。可将光信号放大并转为电信号

荧光分光光度计 科技名词定义 中文名称:荧光分光光度计 英文名称:spectrofluorophotometer;fluorescence spectrophotometer;spectrofluorometer;spectroflurimeter 定义1:利用某些物质受激发出的荧光,其光强度与该物质的含量成一定函数关系的性质而制成的分光光度计。 应用学科:机械工程(一级学科);光学仪器(二级学科);物理光学仪器(三级学科) 定义2:分析物质荧光特性的仪器。具有两套单色光器,对物质荧光进行定性分析时,固定入射的激发光波长可获得发射光光谱,而固定所测发射光波长时就可扫描得激发光谱,从中可以得到最大的发射光波长和最大的激发光波长。固定激发光波长和强度测量发射光强度,可作定量分析。 应用学科:生物化学与分子生物学(一级学科);方法与技术(二级学科) 定义3:在荧光波长范围内,对溶液中物质进行浓度测定的仪器。 应用学科:细胞生物学(一级学科);细胞生物学技术(二级学科)

高等仪器分析实验-荧光分光光度计的使用

高等仪器分析实验(荧光分光光度计的使用) 实验目的 1.掌握荧光分光光度计的基本使用方法:扫描激发光谱,发射光谱,荧光强度,同步 荧光光谱 2.掌握荧光定量分析方法 实验原理 荧光分光光度计是常用的光学仪器,在定量分析,样品的光谱性质表征时经常用到。 荧光分光光度计的基本功能是完成激发光谱,发射光谱的扫描,进行相对荧光强度的 测量。从激发光谱可以获得样品激发态能级的分布情况,用来选择定量分析的最佳激发波长。从发射光谱可以知道样品基态能级的分布情况,用来选择定量分析的最佳发射波长。 荧光定量分析法的方法与紫外可见吸收光谱法类似,但需要注意荧光强度值是相对值,同一样品,同一仪器在不同仪器参数时获得的荧光强度是不同的。只有当测量时仪器参数完全相同时,不同样品荧光强度的相互比较才有意义。 与紫外可见吸收光谱类似,分子荧光光谱也是分子光谱,其谱峰较宽,特征性不是很 强,谱峰重叠现象比较普遍。为了减小谱峰宽度,避免谱峰重叠,提高分析的选择性,在定量分析时常采用同步荧光的方法进行。同步荧光是同时扫描荧光分光光度计的激发和发射单色仪得到的谱图,通过选择合适的扫描参数,可以使样品谱峰变窄,并避免不同组份的谱峰重叠,得到比较好的分析效果。 同步荧光扫描有固定波长同步荧光法,固定能量同步荧光法,可变角同步荧光法,导 数同步荧光法等,其中以固定波长同步荧光法最为常用。 扫描已知样品荧光激发和发射光谱时,可先根据参考波长来进行。扫描未知样品的荧 光光谱,可以将发射波长先每隔一定波长(例如50nm)扫描一个激发光谱。对比不同位

置的激发光谱,从最强的激发光谱中选择最大激发波长,设定该波长为激发波长,扫描发射光谱。再从新得到的发射光谱中找到最大发射波长,在最大发射波长处重新扫描激发光谱。 扫描样品激发光谱和发射光谱时,需要注意:扫描激发光谱时,激发单色器扫描范围的长波端一般应小于发射波长;扫描发射光谱时,发射单色器扫描范围的短波端应大于激发波长。否则在发射光谱(激发光谱)中与激发波长(发射波长)波长相同的位置会出现很强的散射谱峰,这不是样品的荧光引起的,应注意区分。 如果样品不是真正的溶液,或包含有不溶颗粒物,或是固体样品,如果扫描范围较宽时,通常在发射光谱(激发光谱)中激发波长(发射波长)整数倍波长的位置也会出现弱的散射谱峰,称为倍频峰,在分析光谱情况时也应注意区分。对散射倍频峰或样品荧光峰,可通过适当改变激发波长来进行区分,散射倍频峰的位置会随着激发峰位置的变化而变化,而荧光峰位置通常是不变的。如果倍频峰对样品的测量有干扰,可使用合适的滤光片消除倍频峰。合适的消倍频峰滤光片应可以使发射光透过,而阻挡激发光不能透过。 如果样品荧光较弱,使用高灵敏度档测定时,通常会观察到溶剂的拉曼峰,也应注意与样品荧光进行区分。拉曼峰的位置也与激发波长有关,同时会随着激发波长的变化而变化。其位置估算方 法:?laman=1/(1/? ex-?H2O /10 7),其中波长单位为nm,?H2O 为溶剂的红外吸收波长,单位为波数,溶剂为水时,主要的红外吸收是O-H 伸缩振动,波长在3300波数。 狭缝的选择:激发和发射狭缝通常并不要求严格一致,为获得较好的灵敏度和准确反 应谱峰形状,测定激发光谱时,选用较大的发射狭缝和较小的激发狭缝是比较好的。而测 定发射光谱时则恰好相反。 灵敏度档的选择:灵敏度档与仪器中光电倍增管的放大倍数有关,对荧光比较弱的样 品,应选择灵敏度较高的档位,反之亦反。但注意不同档位之间的荧光强度值没有确定的 换算关系,不能相互比较。进行定量分析时,所有样品必须在同样的狭缝和灵敏度档位测 量。 仪器及试剂 970MC荧光分光光度计 缓冲溶液:10-2mol/L Na 2HPO4-NaOH 缓冲溶液,pH=11-12

仪器分析实验试题及答案

一、填空题 1、液相色谱中常使用甲醇、乙腈和四氢呋喃作为流动相,这三种溶剂在反相液相色谱中的洗脱能力大小顺序为甲醇<乙腈<四氢呋喃。 2、库仑分析法的基本依据是法拉第电解定律。 3、气相色谱实验中,当柱温增大时,溶质的保留时间将减小;当载气的流速增大时,溶质的保留时间将减小。 二、选择题、 1、、色谱法分离混合物的可能性决定于试样混合物在固定相中___D___的差别。 A. 沸点差 B. 温度差 C. 吸光度 D. 分配系数。 2、气相色谱选择固定液时,一般根据___C__原则。 A. 沸点高低 B. 熔点高低 C. 相似相溶 D. 化学稳定性。 3、在气相色谱法中,若使用非极性固定相SE-30分离乙烷、环己烷和甲苯混合物时,它们的流出顺序为(C ) A. 环己烷、乙烷、甲苯; B. 甲苯、环己烷、乙烷; C. 乙烷、环己烷、甲苯; D. 乙烷、甲苯、环己烷 4、使用反相高效液相色谱法分离葛根素、对羟基苯甲醛和联苯的混合物时,它们的流出顺序为(A ) A. 葛根素、对羟基苯甲醛、联苯; B. 葛根素、联苯、对羟基苯甲醛; C. 对羟基苯甲醛、葛根素、联苯; D. 联苯、葛根素、对羟基苯甲醛 5、库仑滴定法滴定终点的判断方式为(B ) A. 指示剂变色法; B. 电位法; C. 电流法 D. 都可以 三、判断题 1、液相色谱的流动相又称为淋洗液,改变淋洗液的组成、极性可显著改变组分的分离效果。(√) 2、电位滴定测定食醋含量实验中电位突越点与使用酸碱滴定法指示剂的变色点不一致(×) 四、简答题 1、气相色谱有哪几种定量分析方法? 答:气相色谱一般有如下定量分析方法:内标法、外标法、归一法、标准曲线法、标准加入法。 2、归一化法在什么情况下才能应用?

LS-50荧光分光光度计操作手册

LS-45/55荧光/磷光/发光 分光光度计 使用说明书 美国Perkin Elmer公司 王国强黄建权编译 2002年4月

一、理论基础 荧光、磷光、化学发光及生物发光均属于分子发光。现将其原理简介如下: 室温下,大多数分子处于基态的最低振动能层。处于基态的分子吸收能量后被激发为激发态。激发态不稳定,将很快衰变到基态。若返回到基态时伴随着光子的辐射,这种现象被称为“发光”。 每个分子具有一系列严格分立的能级,称为电子能级,而每个电子能级中又包含了一系列的振动能层和转动能层。图中基态用S 0 表示,第一电子激发单重态和第二电子激发单重 态分别用S 1、S 2 表示,0、1、2、3…表示基态和激发态的振动能层(见图1),第一、 二电子的激发三重态分别用T 1和T 2 表示(见图2)。 图1荧光的能级图 1、荧光的产生 当分子处于单重激发态的最低振动能级时,去活化过程的一种形式是以10-9~10-6秒左右的短时间内发射一个光子返回基态,这一过程称为荧光发射(见图1)。2、磷光的产生 从单重态回到三重态的分子系间跨越越迁发生后,接着发生快速的振动驰豫而到达三重态的最低振动能层上,当没有其他过程同它竞争时,在10-4~102秒左右的时间内跃迁回基态而发生磷光(见图2)。 由此可见,荧光与磷光的的根本区别是:荧光是由激发单重态最低振动能层至基态各振动能层的跃迁产生的,而磷光是由激发三重态的最低振动能层至基态各振动能层间跃迁产生的。

图2磷光的能级图 3、化学发光及生物发光的产生 某些物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出了一定波长的光,这种吸收化学能使分子发光的过程称为化学发光。化学发光也发生于生命体系,这种发光被称为生物发光。 二、仪器简介 1、仪器原理 图3LS45/55荧光/磷光/发光分光光度计的原理图

仪器分析实验

实验一苯及其衍生物的紫外吸收光谱的测绘及溶剂对紫外吸收光谱的影响 一、目的要求 1.了解不同的助色团对苯的紫外吸收光谱的影响。 2.观察溶剂极性对丁酮、异亚丙基丙酮的吸收光谱以及pH 对苯酚的吸收光谱的影响。 3.学习并掌握紫外可见分光光度计的使用方法。 二、实验原理 具有不饱和结构的有机化合物,特别是芳香族化合物,在紫外区(200~ 400nm)有特征吸收,为鉴定有机化合物提供了有用的信息。方法是比较未知物与纯的已知化合物在相同条件(溶剂、浓度、pH 值、温度等)下绘制的吸收光谱,或将未知物的紫外光谱与标准谱图(如Sadtler紫外光谱图)比较,如果两者一致,说明至少它们的生色团和分子母核是相同的。 E1带、E2带和B带是苯环上三个共轭体系中的的π→π*跃迁产生的,E1带和E2带属强吸收带,在230~270nm范围内的B带属弱吸收带,其吸收峰常随苯环上取代基的不同而发生位移。 影响有机化合物的紫外吸收光谱的因素有:内因(共轭效应、空间位阻、助色效应)和外因(溶剂的极性和酸碱性)。 溶剂的极性和酸碱性不仅影响待测物质吸收波长的移动,还影响吸收峰吸收强度和它的形状。 三、仪器 紫外可见分光光度计(自动扫描型)石英吸收池容量瓶(10 mL,5 mL)吸量管(1 mL,0.1 mL)四、试剂 苯、乙醇、氯仿、丁酮、异亚丙基丙酮、正庚烷(均为A.R) 苯的正庚烷溶液(以1︰250比例混合而成)、甲苯的正庚烷溶液(以1︰250比例混合而成) 0.3 mg ·mL-1苯酚的乙醇溶液、0.3 mg ·mL-1苯酚的正庚烷溶液、0.4 mg ·mL-1苯酚的水溶液、0.8 mg ·mL-1苯甲酸的正庚烷溶液、0.8 mg ·mL-1苯甲酸的乙醇溶液、0.3 mg ·mL-1 苯乙酮的正庚烷溶液、0.3 mg ·mL-1苯乙酮的乙醇溶液 异亚丙基丙酮分别用水、甲醇、正庚烷配成浓度为0.4 mg ·mL-1的溶液 五、实验步骤 1.苯及其一取代物的吸收光谱的测绘 在五只5 mL容量瓶中分别加入0.50 mL苯、甲苯、苯乙酮、苯酚、苯甲酸的正庚烷溶液,用正庚烷稀释至刻度,摇匀。将它们依次装入带盖的石英吸收池中,以正庚烷为参比,从220~320 nm进行波长扫描,得吸收光谱。 观察各吸收光谱的图形,找出最大吸收波长λmax,并计算各取代基使苯的λmax红移了多少?2.溶剂性质对紫外吸收光谱的影响 (1)溶剂极性对n→π* 跃迁的影响在三只5 mL的容量瓶中,各加入0.02 mL(长嘴滴管1滴)的丁酮,分别用水、乙醇、氯仿稀释至刻度,摇匀。将它们依次装入石英吸收池,分别相对各自的溶剂,从220~350 nm进行波长扫描,制得吸收光谱。比较它们吸收光谱的最大吸收波长的变化,并解释。 (2)溶剂极性对π→π* 跃迁的影响在三只10 mL的容量瓶中依次加入0.20 mL分别用水、甲醇、正庚烷配制的异亚丙基丙酮溶液,并分别用水、甲醇、正庚烷稀释至刻度,摇匀。将它们依次装入石英吸收池,相对各自的溶剂,从200 ~300 nm 进行波长扫描,制得吸收光谱。比较吸收光谱的最大吸收波长的变化,并解释。 (3)溶剂极性对吸收峰吸收强度和形状的影响在三只5 mL的容量瓶中,分别加入0.50 mL苯酚、苯乙酮、苯甲酸乙醇溶液,用乙醇稀释至刻度,摇匀。将它们依次装入带盖的石英吸收池中,以乙醇为参比,从220~320 nm进行波长扫描,得吸收光谱。与苯酚、苯乙酮、苯甲酸的正庚烷溶液的吸收光谱相比较,得出结论。 3.溶液的酸碱性对苯酚吸收光谱的影响在二只5 mL的容量瓶中,各加入0.50 mL苯酚的水溶液,分别用0.1 mol·L-1HCl、0.1 mol·L-1NaOH溶液稀释至刻度,摇匀。将它们分别依次装入石英吸收池,相对水,从220~350 nm进行波长扫描,制得吸收光谱。比较它们的最大吸收波长,并解释。 六、思考题 1.举例说明溶剂极性对n→π*跃迁和π→π* 跃迁吸收峰将产生什么影响? 2.在本实验中能否用蒸馏水代替各溶剂作参比溶液,为什么? 实验二紫外分光光度法测定芳香族化合物 一、实验目的 1、了解紫外吸收光谱在有机结构分析的应用;借助“标准吸收光谱图”鉴定未知物; 2、学习有机物的定量分析方法。 二、实验原理

荧光分光光度计使用

工作原理 荧光产生的原理 荧光的定义:某些物质受紫外光或可见光照射激发后能发射出比激发光波长较长的光。 荧光产生的原理:化学物质能从外界吸收并储存能量(如光能、化学能等)而进入激发态,当其从激发态再回复到基态时,过剩的能量可以电磁辐射的形式放射(即发光)。 荧光化合物的两种特征光谱 1. 荧光激发光谱,就是通过测量荧光体的发光通量随波长变化而获得的光谱,它反映了不同波长激发光引起荧光的相对效率。 2. 荧光发射光谱,如使激发光的波长和强度保持不变,而让荧光物质所产生的荧光通过发射单色器后照射于检测器上,扫描发射单色器并检测各种波长下相应的荧光强度,然后通过记录仪记录荧光强度对发射波长的关系曲线,所得到的谱图称为荧光光谱。 物质的激发光谱和荧光发射光谱,可以用作该物质的定性分析。当激发光强度、波长、所用溶剂及温度等条件固定时,物质在一定浓度范围内,其发射光强度与溶液中该物质的浓度成正比关系,可以用作定量分析。 荧光分析法的灵敏度一般较紫外分光光度法或比色法为高,浓度太大的溶液会有“自熄灭”作用,以及由于在液面附近溶液会吸收激发光,使发射光强度下降,导致发射光强度与浓度不成正比,故荧光分析法应在低浓度溶液中进行。 荧光发射的特点:可产生荧光的分子或原子在接受能量后即刻引起发光;而一旦停止供能,发光(荧光)现象也随之在瞬间内消失。 溶液荧光光谱通常具有的特征: (1) 斯托克斯位移:在溶液荧光光谱中,所观察到的荧光的波长总是大于激发光的波长。 (2) 荧光发射光谱的形状与激发波长无关。 (3) 荧光发射光谱的形成与吸收光谱的形状有镜像关系 荧光的猝灭:荧光分子的辐射能力在受到激发光较长时间的照射后会减弱甚至猝灭,这是由于激发态分子的电子不能回复到基态,所吸收的能量无法以荧光的形式发射。一些化合物有天然的荧光猝灭作用而被用作猝灭剂,以消除不需用的荧光。因此荧光物质的保存应注意避免光(特别是紫外光)的直接照射和与其他化合物的接触。 荧光效率:荧光分子不会将全部吸收的光能都转变成荧光,总或多或少地以其他形式释放。荧光效率是指荧光分子将吸收的光能转变成荧光的百分率,与发射荧光光量子的数值成正比。

仪器分析实验的课后习题答案及讨论 2

高效液相色谱 1.高效液相色谱法的特点 特点:检测的分辨率和灵敏度高,分析速度快,重复性好,定量精确度高,应用范围广。适用于分析高沸点、大分子、强极性、热不稳定有机及生化试样的高效分离分析方法。 2.高效液相色谱与气相色谱的主要区别可归结于以下几点: (1)进样方式的不同:高效液相色谱只要将样品制成溶液,而气相色谱需加热气化或裂解; (2)流动相不同,在被测组分与流动相之间、流动相与固定相之间都存在着一定的相互作用力; (3)由于液体的粘度较气体大两个数量级,使被测组分在液体流动相中的扩散系数比在气体流动相中约小4~5个数量级; (4)由于流动相的化学成分可进行广泛选择,并可配置成二元或多元体系,满足梯度洗脱的需要,因而提高了高效液相色谱的分辨率(柱效能); (5)高效液相色谱采用5~10Lm细颗粒固定相,使流体相在色谱柱上渗透性大大缩小,流动阻力增大,必须借助高压泵输送流动相; (6)高效液相色谱是在液相中进行,对被测组分的检测,通常采用灵敏的湿法光度检测器,例如,紫外光度检测器、示差折光检测器、荧光光度检测器等。 3. 高效液相色谱的定性和定量分析的方法 定性:(1)利用纯物质定性的方法 利用保留值定性:通过对比试样中具有与纯物质相同保留值的色谱峰,来确定试样中是否含有该物质及在色谱图中位置。不适用于不同仪器上获得的数据之间的对比。利用加入法定性:将纯物质加入到试样中,观察各组分色谱峰的相对变化。 (2)利用文献保留值定性 相对保留值r21:相对保留值r21仅与柱温和固定液性质有关。在色谱手册中都列有各种物质在不同固定液上的保留数据,可以用来进行定性鉴定。 定量:有归一法、内标法、外标法 在定量分析中,采用测量峰面积的归一化法、内标法或外标法等,但高效液相色谱在分离复杂组分式样时,有些组分常不能出峰,因此归一化法定量受到限制,而内标法定量则被广泛使用。 4.高效液相色谱实验时,选择流动相时应注意的几个问题 (1)尽量使用高纯度试剂作流动相,防止微量杂质长期累积损坏色谱柱和使检测器噪声增加。 (2)避免流动相与固定相发生作用而使柱效下降或损坏柱子。如使固定液溶解流失;酸性溶剂破坏氧化铝固定相等。 (3)试样在流动相中应有适宜的溶解度,防止产生沉淀并在柱中沉积。

仪分实验期末考试复习(答案)

这是我跟顺光同学共同努力找出来的,大家可以看看,若发现有什么错误请及时纠正,并告知其他同学! 仪器分析实验复习提纲 1、紫外可见光谱法: 紫外-可见光谱分析分别使用的比色皿是什么? 紫外光谱分析使用的比色皿是石英比色皿 紫外可见光波长范围是多少? 200~400nm 物质浓度对吸光度和摩尔吸光度的影响 2、红外吸收光谱法: 红外光谱分析的区域划分范围; 答:红外吸收光谱分析的区域划分范围:基频区(4000~1350cm-1)和指纹区(1350~650cm-1) 红外光谱分析的主要作用; 用于分子振动偶极矩变化不为零的所有化合物的官能团定性和结构分析。

红外光谱测定固体和液体样品时,制备样品的方法分别是什么; 液体:①液膜法——难挥发液体(BP》80 C)②溶液法——液体池 固体:①研糊法(液体石腊法)②KBr压片法③薄膜法 试样干燥及测定时作背景扫描的目的 水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。 测定时作背景扫描的目的:扣除背景干扰,避免给光谱的解析带来困难。 3、荧光分析法: 荧光分析法测定奎宁时,影响奎宁荧光产生的因素有哪些; 答:荧光分析法测定奎宁时,对奎宁荧光产生影响的因素: ①溶剂:溶剂能影响荧光效率,改变荧光强度,因此,在测定时必须用同一溶剂。 ②浓度:在较浓的溶液中,荧光强度并不随溶液浓度呈正比增长。因此,必须找出与荧光强度呈线性的浓度范围。 ③酸度:荧光光谱和荧光效率常与溶液的酸度有关,因此,须通过条件试验,确定最适宜的pH值范围。 ④温度:荧光强度一般随温度降低而提高,因此,有些荧光仪的液槽配有低温装置,使荧光强度增大,以提高测定的灵敏度。Rohs检测仪⑤时间:有些荧光化合物需要一定时间才能形成;有些荧光物质在激发光较长时间照射下会发生光分解。因此,过早或过晚测定荧光强度均会带来误差。必须通过条件试验确定最适宜的测定时间,使荧光强度达到量大且稳定。 ⑥共存干扰物质:有些干扰物质能与荧光分子作用使荧光强度显著下降,这种现象称为荧光的猝灭(quenching);有些共存物质能产生荧光或产生散射光,也会影响荧光的正确测量。故应设法除去干扰物,并使用纯度较高的溶剂和试剂。 荧光光度计的组成部件; 荧光光度计的组成:光源、单色器、检测器。 为消除入射光和散射光的影响,荧光的测量通常检测器与激发光成什么方向进行? 为消除入射光和散射光的影响,荧光的测量通常在与激发光成垂直方向进行。 荧光测量时所用比色皿的特点及原因。 荧光用的样品池须用低荧光的材料制成,通常用石英,形状以方形和长方形为宜(无磨砂面的石英比色皿)。因为石英不吸收荧光,对荧光有良好的透光性。而普通玻璃对荧光具有吸收作用。 紫外可见分光光度与荧光光度计的比色皿有什么不一样?为什么? 紫外可见分光光度计用的比色皿是两面带有磨砂面的石英比色皿,荧光光度计所用的比色皿是不带磨砂面的比色皿。原因是两者的光源与检测器所成的角度不同。紫外可见分光光度计的光源与检测器成一条直线,而荧光光度计的光源与检测器成直角。所以其用的比色皿必须是四面都透光,不然无法测到荧光强度。 5、为什么荧光分析法的灵敏度比吸光光度法高? 答:荧光分析法的灵敏度比吸光光度法高的原因:荧光分析法是测量I非A,提高激发光

荧光分光光度计操作规程

日本日立F-7000荧光分光光度计基本操作规程 1、开机顺序 (1)开启计算机。(按图中圆圈按钮) (2)开启仪器主机电源。按下仪器主机左侧面板下方的黑色按钮(POWER)。(按下图中圆圈按钮) (3)观察主机正面面板右侧的Xe LAMP 和RUN指示灯依次亮起来,

都显示黄绿色。Xe LAMP灯先亮,RUN灯后亮。 2、打开运行软件。 (1)双击桌面图标(FL Solution 2.1 for F-7000)。主机自行初始化,扫描界面自动进入。 (2)初始化结束后,须预热15-20分钟(若要进行定量分析,须预热

30分钟以上,按界面提示选择操作方式。 3.点击右上角Method,进行方法设置。 若要预扫描,可选择3-D scan(如下图).设置好方法后(见下图),再点击右上角Pre Scan(如上图),

在Instrument Monitor菜单(见下图)的Data mode中选择Fluorescence, 在EX Start WL中输入激发波长200,EX End WL中输入激发波长500,在EM Start WL中输入发射波长210(有利于保护检测器),在EM End WL中输入700(nm),为节约扫描时间,扫描速度Scan speed可设置为30000。点击update,可知扫描需要多少时间。EX slit和EM slit一般选择5.0(若荧光强度太弱,可提高该数值, 若强度太高,可降低该数值),PMT Voltage (电压)中可选择700

(若荧光强度太弱,可提高该数值,若强度太高,可降低该数值),PMT Voltage 0-1000v前面的方框打勾后,可在上面的PMT Voltage 中随意填写电压值。在Response 中选择Auto。 在Processing菜单中(见下图)的 Y Axis中的Max中填5000或

仪器分析实验10

实验十气相色谱-质谱法(GC-MS)对酯类混合试样的定性分析 一、实验目的 1. 了解GC-MS的基本结构和工作原理; 2. 初步掌握GC-MS的操作过程; 3. 掌握GC-MS对未知化合物定性的分析方法。 二、基本原理 气相色谱(GC)-质谱(MS)联用仪可看作是以MS为检测器的GC或以GC为进样、分离装置的MS,因此同时具备GC对混合物的高效分离效能和MS对未知物的强定性能力,可在较短时间内实现对多组分混合物质的定性及定量分析。在所有联用技术中,GC-MS的发展最为完善,广泛应用于环保、食品、石油化工、轻工、农药、医药、法医毒品及兴奋剂检测等各个领域。 气相色谱(GC)是以气体为流动相的色谱方法,仪器结构见图9-1,待测样品由进样口注入到色谱分离柱柱顶(进样后瞬间被气化),然后在惰性载气(流动相)的带动下进入色谱柱(常为石英毛细管柱,内壁涂覆固定相),组分在随载气运动的同时与固定相发生作用,由于不同组分与相同固定相的作用力大小不同,因此固定相对不同组分的保留能力不同,作用力小的组分会随流动相在较短时间流出色谱柱,作用力大的组分则需较长的时间才能流出色谱柱,因此实现了分离。利用柱末端的检测器对流出组分的实时测定,就可以获得色谱流出曲线(见图9-2),根据各组分的保留时间(从进样到出现色谱峰值的时间)和峰面积就可分别实现对其的定性和定量分析。但仅利用保留时间定性(相同测定条件下,同一组分的保留时间不变)的可靠性不高,而常用色谱检测器也无法提供其它可反映结构的信息。 图10-1 气相色谱仪器示意图

图10-2 色谱流出曲线 质谱法(MS)是在离子源(能量源)的作用下把待测试样转化为运动的气态离子并按核质比(m/z)大小进行分离记录的方法,测量结果可以质谱图(见图9-3)表示。离子源能量一定时,同一化合物可生成的碎片离子及各离子间的相对强度是一定的,即质谱图可反映化合物的结构特征,因此可用来进行定性及结构解析。此外离子强度(任一离子或总离子强度和)与进样量在一定条件下存在正比关系,这为定量分析提供了依据。 图10-3 采用电子轰击源时谷氨酸的质谱图 质谱仪结构示意图见9-4,离子源、质量分析器和检测器必须处在高真空状态,否则会有以下危害:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;会引起额外的离子-分子反应,改变裂解方式,使质谱图复杂化;干扰离子源正常调节;用作加速离子的几千伏高压会引起放电等问题。质谱具有很强的定性及结构解析能力,而且灵敏度也很高,但通常仅适于纯试样的测定,对混合物的分析很不理想。 10-4 质谱仪的基本结构示意图

相关主题
文本预览
相关文档 最新文档