当前位置:文档之家› SiC(碳化硅)功率元器件的理解和活用事例

SiC(碳化硅)功率元器件的理解和活用事例

各类电子元器件简介

一、可控硅 可控硅又称晶闸管(Silicon Controlled Rectifier,SCR)。它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶可控硅闸管、快速晶闸管等等。可控硅整流器件是一种非常重要的功率器件,可用来做高电压和大电流的控制。可控硅器件主要用在开关方面,使器件从关闭或是阻断的状态转换为开启或是导通的状态,反之亦然。可控硅器件有较宽广范围的电流、电压控制能力。 结构:大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的 电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导 体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二 极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具 有与二极管完全不同的工作特性。 用途:普通晶闸管最基本的用途就是可控整流。 1:小功率塑封双向可控硅通常用作声光控灯光系统。额定电流:IA小于2A。 2:大中功率塑封和铁封可控硅通常用作功率型可控调压电路。像可调压输出直流电源等等。 主要厂家品牌:ST,NXP/PHILIPS,NEC,ON/MOTOROLA,RENESAS/MITSUBISHI,LITTELFUSE/TECCOR,TOSHIBA,JX ,SANREX,SANKEN ,EUPEC,IR等。 二、晶体管 晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、 信号调制和许多其它功能。晶体管输出信号的功率可以大于输入信号的功率,因此晶体管可 以作为电子放大器,有许多市售的分立晶体管,但集成电路中的晶体管数量远大于分立晶体 管的数量。例如超大规模集成电路(VLSI)其中至少有一万个晶体管。晶体管作为一种可变 开关,基于输入的电压,控制流出的电流,因此晶体管可做为电流的开关,和一般机械开关 (如Relay、switch)不同处在于晶体管是利用电讯号来控制,而且开关速度可以非常之快, 在实验室中的切换速度可达100GHz以上。 晶体管主要分为两大类:双极性晶体管(BJT)和 场效应晶体管(FET)。 晶体管有三个极: 双极性晶体管的三个极,分别由N 型跟P型组成发射极(Emitter)、基极(Base)和集电 极(Collector); 场效应晶体管的三个极,分别是源极 (Source)、栅极(Gate)和泄极(Drain)。 晶体管因为有三种极性,所以也有三种的使用方式, 分别是发射极接地(又称共射放大、CE组态)、基极接 地(又称共基放大、CB组态)和集电极接地(又称共集 放大、CC组态、发射极随隅器)。 在双极性晶体管中,射极到基极的很小的电流,会使得发射极到集电极之间,产生大电 流;在场效应晶体管中,在栅极施加小电压,来控制源极和泄极之间的电流。

碳化硅功率器件在新能源汽车行业的应用

碳化硅功率器件在新能源汽车行业的应用 随着全球经济和技术的蓬勃发展,能源消耗逐年增加。目前,全球的二氧化碳(CO2)排放中有25%来源于汽车。有报告指出,截至2030年,全球CO2排放量将曾至423亿t。在我国,汽车排放带来的污染已经成为城市大气污染中的主要因素,我国的CO2排放目前已居全球第2,节能减排已成为汽车业发展的重大课题。因此,发展新能源汽车是实现节能减排及我国汽车产业跨越式和可持续发展的必然战略措施。电力驱动系统是影响新能源汽车动力性能、可靠性和成本的关键因素。目前,EV和HEV的电力驱动部分主要由硅(Si)基功率器件组成。随着电动汽车的发展,对电力驱动的小型化和轻量化提出了更高的要求。然而,由于材料限制,传统Si基功率器件在许多方面已逼近甚至达到了其材料的本征极限,如电压阻断能力、正向导通压降、器件开关速度等,尤其在高频和高功率领域更显示出其局限性。因此,各汽车厂商都对新一代碳化硅(SiC)功率器件寄予了厚望,希望通过应用SiC功率器件大幅实现电动汽车逆变器和DC-DC 转换器(为转变输入电压后有效输出固定电压的电压转换器)等驱动系统的小型轻量化。由于SiC器件与Si器件相比,有更高的电流密度。在相同功率等级下,SiC功率模块的体积显著小于Si基绝缘栅双极型晶体管(IGBT)模块。丰田的技

术人员在一场演讲会上公开表达了对SiC器件的期待,他所强调的SiC功率器件的优点之一就是能实现功率模块的小型化。以智能功率模块(Intelligent Power Module,IPM)为例,利用SiC功率器件,其模块体积可缩小至Si基功率模块的1/3~2/3。由于SiC器件的能量损耗只有Si器件的50%,发热量也只有Si基器件的50%;另外,SiC器件还有非常优异的高温稳定性。因此,散热处理也更加容易进行,不但可以显著减小散热器的体积,还可以实现逆变器与马达的一体化。基于上述原因,SiC器件也被美誉为“重环保时代的关键元件”。SiC功率半导体已成为节能、高效、环保的代名词。为此,汽车业界对SiC的期待十分迫切,丰田汽车表示“SiC 具有与汽油发动机同等的重要性”。在输出功率为30kW 的工况下,试制的逆变器体积为0.5L,输出密度为60kW/L,此时功率元件的温度约为180℃。构成逆变器的器件除了SiC功率模块外,还包括驱动SiC功率器件的控制电路、散热片、冷却风扇及电容器等。因此,国内要想在电力电子器件方面摆脱国外束缚,改变我国电力电子技术长期落后的局面,就需要Si基IGBT和新一代SiC电力电子器件双管齐下,共同追赶国外先进技术的脚步。保证在Si基器件不断成熟的情况下,新一代器件技术也与国外的齐头并进。当新一代器件技术普及时,中国就可以站在电子功率器件的高端领域,改写整个电子功率器件全球产业化竞争的格局。

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

第三代半导体面SiC碳化硅器件及其应用

件)器及其应用i三第代半导体面-SC(碳化硅以其优良的物理化学特性和电特性成为制SiC作为一种新型的半导体材料,造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重器件的特性要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件和各类传感器已逐步成为SiCGaAs器件.因此,远远超过了Si器件和关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC 上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,

均为SiO2,这意味上制造出来.尽管只是简SiC帕型器件都能够在M 器件特别是Si着大多数. 单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC MOSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能. 1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV 的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边

碳化硅电子元器件简介

碳化硅材料的优点 ?高电子饱和速度 (2x Si ) ?高击穿电压 (10x Si ) ?Wide band gap (3x Si ) ?大禁带宽度 (3x Si ) ?高熔点 (2x Si ) ?导通电阻低 ?高频特性好 ?耐高压 ?高温特性好 ?可以超高速开关,大大提高产品效率,减小散热设备面积 ?可以实现设备小型化 (如电动汽车充电器) ?可在高压下稳定工作 (高速列车,电力等) ?可在高温环境下稳定使用 (电动汽车等) 材料 器件 应用

碳化硅器件的耐温特性 GPT SIC DIODES VS SILICON FRD( 600V10A ) Company A Company A GPT

SiC SBD 主要产品 政府项目: SiC BJT: 1200V10A SiC MOS: 1200V40m ?/80m? 碳化硅 BJT/MOS 650V200A/1200V450A 碳化硅混合模块 650V: 3A/4A/5A/6A/8A/10A/20A/30A/50A/80A/100A 1200V: 2A/5A/10A/20A/40A/50A 1700V: 10A/30A 3300V: 0.6A/1A/2A/3A/5A/50A 碳化硅肖特基二极管

产品认证 ISO 9001 认证可靠性试验报告Rohs 认证CE 认证

应用市场 PFC EV Car/Train Traction UPS Solar Inverter ? 耐高温 ?使用碳化硅器件使得光伏逆变器输出功率从10kW 提升至40kW ,但是碳化硅器件的高温特性不需要更大体积的散热片系统,从而避免额外增加系统体积和重量。 ? 高开关效率 更高工作频率下使用碳化硅开关器件大大减小每千瓦输出功率所要求的的电容体积。 ? 低传导损耗 ?碳化硅器件可加倍电流输送。同样芯片面积的碳化硅器件即可承担硅器件输出功率的4倍以上。

碳化硅功率器件的发展现状及其在电力系统中的应用展望

碳化硅功率器件的发展现状及其在电力系统中的应用展望 摘要:碳化硅作为一种宽禁带材料,具有高击穿场强、高饱和电子漂移速率、高热导率等优点,可以实现高压、大功率、高频、高温应用的新型功率半导体器件。该文对碳化硅功率半导体器件的最新发展进行回顾,包括碳化硅功率二极管、MOSFET、IGBT,并对其在电力系统的应用现状与前景进行展望。 关键词:碳化硅;功率器件;电力系统 1 引言 理想的半导体功率器件,应当具有这样的静态和动态特性:在阻断状态,能承受高电压;在导通状态,具有高的电流密度和低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的d i/d t 和d u/d t,具有低的开关损耗,并具有全控功能。半个多世纪以来(自20世纪50年代硅晶闸管的问世),半导体功率器件的研究工作者为实现上述理想的器件做出了不懈的努力,并已取得了世人瞩目的成就。各类硅基功率半导体器件(功率二极管、VDMOS、IGBT、IGCT等)被成功制造和应用,促使各种新型大功率装置成功地应用于各种工业电源、电机驱动、电力牵引、电能质量控制、可再生能源发电、分布式发电、国防和前沿科学技术等领域。 然而由于在电压、功率耐量等方面的限制,这些硅基大功率器件在现代高性能电力电子装置中(要求具有变流、变频和调相能力;快速的响应性能~ms;利用极小的功率控制极大功率;变流器体积小、重量轻等)不得不采用器件串、并联技术和复杂的电路拓扑来达到实际应用的要求,导致装置的故障率和成本大大增加,制约了现代电力系统的进一步发展。 近年来,作为新型的宽禁带半导体材料——碳化硅(SiC),因其出色的物理及电特性,正越来越受到产业界的广泛关注。碳化硅功率器件的重要优势在于具有高压(达数万伏)、高温(大于500℃)特性,突破了硅基功率器件电压(数kV)和温度(小于150℃)限制所导致的严重系统局限性。随着碳化硅材料技术的进步,各种碳化硅功率器件被研发出来,如碳化硅功率二极管、MOSFET、IGBT等,由于受成本、产量以及可靠性的影响,碳化硅功率器件率先在低压领域实现了产业化,目前的商业产品电压等级在600~1700V。近两年来,随着技术的进步,高压碳化硅器件已经问世,如19.5kV的碳化硅二极管[1],10kV的碳化硅MOSFET[2]和13~15kV[3-4]碳化硅IGBT等,并持续在替代传统硅基功率器件的道路上取得进步。这些碳化硅功率器件的成功研发带来了半导体功率器件性能的飞跃提升,引发了

常用电子元器件简介

1.常用电子元器件简介 (1)名称·电路符号·文字符号 (2)555时基集成电路 555时基集成电路是数字集成电路,是由21个晶体三极管、4个晶体二极管和16个电阻组成的定时器,有分压器、比较器、触发器和放电器等功能的电路。它具有成本低、易使用、适应面广、驱动电流大和一定的负载能力。在电子制作中只需经过简单调试,就可以做成多种实用的各种小电路,远远优于三极管电路。 555时基电路国内外的型号很多,如国外产品有:NE555、LM555、A555和CA555等;国内型号有5GI555、SL555和FX555等。它们的内部结构和管脚序号都相同,因此,可以直接互相代换。但要注意,并不是所有的带555数字的集成块都是时基集成电路,如MMV 555、AD555和AHD555等都不是时基集成电路。 常见的555时基集成电路为塑料双列直插式封装(见图5-36),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

(图5-36) 555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。 555时基集成电路的主要参数为(以NE555为例)电源电压4.5~16V。 输出驱动电流为200毫安。 作定时器使用时,定时精度为1%。 作振荡使用时,输出的脉冲的最高频率可达500千赫。 使用时,驱动电流若大于上述电流时,在脚③输出端加装扩展电流的电路,如加一三极管放大。 (3)音乐片集成电路 它同模仿动物叫声和人语言集成电路都是模拟集成电路,采用软包装,即将硅芯片用黑的环氧树脂封装在一块小的印刷电路板上。

电力电子中的碳化硅SiC

电力电子中的碳化硅SiC SiC in Power Electronics Volker Demuth, Head of Product Management Component, SEMIKRON Germany 据预测,采用SiC的功率模块将进入诸如可再生能源、UPS电源、驱动器和汽车等应用。风电和牵引应用可能会随之而来。到2021年,SiC功率器件市场总额预计将上升到10亿美元 [1]。在某些市场,如太阳能,SiC器件已投入运行,尽管事实上这些模块的价格仍然比常规硅器件高。是什么使这种材料具有足够的吸引力,即使价格更高也心甘情愿地被接受?首先,作为宽禁带材料,SiC提供了功率半导体器件的新设计方法。传统功率硅技术中,IGBT开关被用于高于600V的电压,并且硅PIN-续流二极管是最先进的。硅功率器件的设计与软开关特性造成相当大的功率损耗。有了SiC的宽禁带,可设计阻断电压高达15kV的高压MOSFET,同时动态损耗非常小。有了SiC,传统的软关断硅二极管可由肖特基二极管取代,并带来非常低的开关损耗。作为一个额外的优势,SiC具有比硅高3倍的热传导率。连同低功率损耗,SiC是提高功率模块中功率密度的一种理想材料。目前可用的设计是SiC混合模块(IGBT和SiC肖特基二极管)和全SiC模块。 SiC混合模块 SiC混合模块中,传统IGBT与SiC肖特基二极管一起开关。虽然SiC器件的主要优势是与低动态损耗相关,但首先讨论SiC肖特基二极管的静态损耗。通常情况下,SiC器件的静态损耗似乎比传统的硅器件更高。图1.a显示了传统软开关600V赛米控CAL HD续流二极管的正向压降V f ,为低开关损耗而优化的快速硅二极管和SiC肖特基二极管,所有的额定电流为10 A。 图1.a中:25℃和150℃下不同续流二极管的正向电流与正向压降。对比了10A的SiC肖特基二极管,传统的软开关硅二极管(CAL HD)和快速硅二极管(硅快速)。1.b:同一二极管的正向压降和电流密度(正向电流除以芯片面积)。 在10A的额定电流下,硅续流二极管展现出最低的正向压降,SiC肖特基二极 管的V f 更高,而快速硅二极管展现出最高的正向压降。正向电压与温度之间的关 联差别很大:快速硅二极管具有负的温度系数,150°C下的V f 比25°C下的V f 低。 对于12A以上的电流,CAL的温度系数为正,SiC肖特基二极管即使电流为4A时,温度系数也为正。由于二极管通常并联以实现大功率器件,需要具有正温度系数以避免并联二极管中的电流不平衡和运行温度不均匀。这里,SiC肖特基二极管显示出最佳的性能。但与常规硅二极管相比,SiC肖特基二极管的静态损耗较高。由于二极管是基于10A额定电流进行比较的,考虑不同供应商的器件之间有时不同

碳化硅让功率器件更加高效

碳化硅让功率器件更加高效 尽管坠落的陨石非常罕见,但作为外太空的一种天然矿物质(似乎不是非常罕见),碳化硅(SiC)通常被人们看作是一种复合物质,此物质是美国发明家爱德华·古德 里奇·艾奇逊于19世纪90年代发现的。爱德华·古德里奇·艾奇逊在此之前离开了托马斯·爱迪生(白炽灯先驱)的团队,并从事人造金刚石的开发工作。正是在此过 程中,当使用碳弧光灯对铁碗中的粘土和焦炭混合物进行加热时,他注意到了一些闪耀的蓝色晶体。后来他获得了许多专利,并首次将超硬晶体硅与碳的化合物作为产品(如砂纸、研磨和切割工具)中的磨料应用于我们的生活中,且在之后将该物质应用于防弹背心、汽车制动器和火箭发动机、发光二极管(早在1907年,世界 首根发光二极管,您能相信吗)以及功率半导体中。 为什么碳化硅可应用于功率半导体中?主要原因是它的能带隙较宽,这决定了需要多少能量来使电子在SiC材料上的能带之间进行跳变,使其载流。三个电子伏周围的宽带隙意味着热量、辐射和其他外部因素将不会对其性能产生破坏性影响。 因此,碳化硅是在这些特性方面(例如允许运行温度和辐射暴露)优于硅的材料,并且在高电压情况下绝缘击穿电场强度方面也拥有有利的性能;高电子速度意味着可以在较高频率下使用该材料;用于散热的高导热性为其提供了可在功率器件中使用的较大潜能。 或者更简单地说,可保证小型设计中高温下的更高效率和更少损失。因此,为什么不普及碳化硅的应用呢?我们想说,在不久以后——当在一些应用过程中阻碍商业化的晶体缺陷问题被持续解决之后、生产效率改善之后,瑞萨电子公司将在一段时间内生产肖特基势垒二极管。碳化硅功率场效应晶体管(SiCPowerMOSFET)和 绝缘栅双极晶体管(IGBT)已经面临SiC和二氧化硅接口方面的额外挑战,但是,在反复对这些问题进行广泛调查之后,情况日益得到了改善,由于持续开发SiC-MOSFET,已经可以使用瑞萨电子的混合器件,并将容易使用的传统硅MOSFET 与大规模导通电阻改进相结合,使其具有更高效率,同时也增加了约26%的效率,我们的混合IGBT将SiC二极管嵌入到IGBT包内,节省了传统需要的大约50%的PCB空间,前提是还应考虑由于减少的热损失而导致散热器更小。 除了大量SiC元件供应商的晶体生产产量以及工艺效率提高之外,市场因素在引领碳化硅电力技术(尤其是在效率方面)方面也发挥了一定作用。在一些应用中(例如空调和太阳能阵列),对于有效功率变换的需求非常强,并且功率切换效率和逆变电路由立法以及客户态度所支配。 出于这种考虑,瑞萨电子开发了在功率变换及其他此类应用中使用的碳化硅肖特基势垒二极管(SBD),以确保更快转换速度以及更低运行电压。

第三代半导体面-SiC(碳化硅)器件及其应用

第三代半导体面-SiC(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在Si C上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC M OSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC 材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和K ansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. 1.2 SiC功率器件 由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了已报道的最好的SiC功率MOSFET器件的性能数据Si功率MOSFET的功率优值的理论极限

碳化硅电力电子器件的发展现状分析

碳化硅电力电子器件的发展现状分析在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1. SiC二极管实现产业化 SiC电力电子器件中,SiC二极管最先实现产业化。2001年德国Infineon公司率先推出SiC二极管产品,美国Cree和意法半导体等厂商也紧随其后推出了SiC二极管产品。在日本,罗姆、新日本无线及瑞萨电子等投产了SiC二极管。很多企业在开发肖特基势垒二极管(SBD)和JBS结构二极管。目前,SiC二极管已经存在600V~1700V电压等级和50A电流等级的产品。 SiC 肖特基二极管能提供近乎理想的动态性能。做为单子器件,它的工作过程中没有电荷储存,因此它的反向恢复电流仅由它的耗尽层结电容造成,其反向恢复电荷以及其反向恢复损耗比Si超快恢复二极管要低一到两个数量级。更重要的是,和它匹配的开关管的开通损耗也可以得到大幅度减少,因此提高电路的开关频率。另外,它几乎没有正向恢复电压,因而能够立即导通,不存在双极型器件的开通延时现象。在常温下,其正态导通压降和Si

碳化硅功率器件可靠性综述 (1)

碳化硅功率MOSFET可靠性综述 陈思哲 1.碳化硅功率器件的提出 过去的几十年间,电力电子器件在结构设计,工艺流程以及材料品质等方面取得了长足的进步。然而,与此同时,技术的进步也使得传统硅基器件在许多方面已逼近甚至达到了其材料的本证极限,如电压阻断能力,正向导通压降,器件开关速度等。近二十年里,这样的事实和随之而来的紧迫感使得电力电子技术人员不断寻求一种新的方法,以获得更为优异的器件特性,更高的功率密度以及更低的系统能耗。其中,人们最为期待是使用宽禁带半导体材料代替硅制备功率器件[1]。 相比于其他宽禁带半导体材料(如GaN等),碳化硅(SiC)所具有的一个先天优势是可以形成自然的氧化层(SiO2),这使得碳化硅器件可轻易的继承在硅器件中已广泛使用的金属-氧化物-半导体(MOS)结构以及相关技术。目前,以碳化硅为基底电力电子功率器件研究方兴未艾。相比于传统的硅材料,碳化硅材料具有的优势包括:10倍以上的电场承受能力,3倍左右的禁带宽度,以及大于3倍的导热系数等。极高的电场承受能力使得碳化硅功率器件具有很薄的衬底和较高的掺杂浓度,更大的禁带宽度使得它能够工作在更高的温度下并有强的抗辐射能力。而碳化硅材料的高导热系数(4.9℃/W)则意味着更为迅速的热量耗散,即器件可以承受更高的功率密度和工作温度。不过,虽然使用碳化硅材料制备电力电子功率器件前景广阔,相关器件的可靠性,尤其是长期工作的可靠性一直是人们关注的重点。 本篇文章主要讨论碳化硅器件,特别是碳化硅功率MOSFET的可靠性以及相关问题。功率MOSFET是一种使用金属-氧化物-半导体结构控制器件表面电流通断的一种电力电子器件,具有开关速度快,驱动简单等特点,目前已广泛应用于中低压电力变换装置中。而若改用碳化硅材料,则可使制得的MOSFET器件阻断电压大幅提升,并保持较低的导通阻抗,从而有望取代目前占领中高压市场的IGBT器件。然而,值得注意的是,虽然碳化硅展现了出众的电学和物理学特性,但相关器件在设计和制备中出现的一系列问题是我们无法回避的。尽管大部分可归咎于材料和器件工艺的不成熟,并能够通过长期的研究加以解决,另一些可能是使用这种材料所带来的根本性缺陷。在下文中,作者将针对这些问题展开讨论。

宽禁带功率MOSFET半导体器件的研究进展

宽禁带功率MOSFET半导体器件的研究进展半个世纪以来,功率半导体器件得到长足发展,极大地促进了电力电子技术的进步,而功率半导体器件的发展主要基于整个微电子领域的基石——硅材料。19世纪80年代以来,硅材料本身的物理特性对硅基功率器件性能的限制被认识得越来越清晰。 实现低导通电阻的方法是提高材料的临界击穿电场,也就是选择宽禁带的半导体材料。根据更符合实际应用,以及综合考虑功率器件的导通损耗、开关损耗和芯片面积等因素的估算,碳化硅、氮化镓和金刚石功率器件大大降低了损耗和器件面积,新型宽禁带半导体材料将引发功率器件的巨大进步。 同时,以碳化硅、氮化镓和金刚石为代表的宽禁带半导体材料具有较大的电子饱和速度,可以应用于射频器件领域。碳化硅和金刚石具有较高的热导率,适用于对需要耗散较大功率并且半导体芯片热阻是系统热阻一个重要组成部分的大功率应用领域。 基于材料的优越性能,宽禁带半导体功率器件受到广泛关注和深入研究。由于其器件性能的优势基本来源于材料本身,所以宽禁带半导体材料的研究是新型功率器件研究首先要面临的挑战。 2.碳化硅功率器件 碳化硅SiC、氮化镓GaN和金刚石是典型的宽禁带半导体材料。基于碳化硅材料的功率器件经过了长时间研究,已经具有较高的成熟度和可靠性。2004年,Cree公司成功研发微管密度低于10cm-2的高质量3英寸4H-SiC材料,并投放市场。2007年,该公司又推出了4英寸零微管密度的4H-SiC材料,可用于制作大尺寸的高功率器件。 目前Cree公司、II-VI公司、Dow Corning公司和Nippon Steel已经批量生产4英寸碳化硅晶圆。2010年业界发布了6英寸的碳化硅晶圆。150mm的晶圆毫无疑问会降低碳化硅器件制造成本,并且为4H-SiC功率器件的发展提供坚实基础。 2.1 碳化硅功率二极管

采用碳化硅器件的高效率光伏逆变器研究_潘三博

第33卷 第4期 2011-4(下) 【131】 收稿日期:2010-12-05 基金项目:河南省科技厅科技发展计划项目(102102210212) 作者简介:潘三博(1974-),男,湖北孝感人,博士后,研究方向为电力电子技术及其应用。 0 引言 随着能源的枯竭与应对温室效益的需要,光伏等可再生能源的应用日趋重要。为更加高效地利用新能源,光伏逆变器的技术发展趋势是提高效率,减小体积与重量,提高可靠性。而碳化硅半导体器件具有禁带宽、耐压高、通态电阻低、漏电流小、开关速度高、电流密度高、耐高温等优点,这决定了它在高可靠性、高频率、高效率的应用场合是理想的下一代电力电子器件[1]。近年来,国内外对碳化硅结型场效应功率晶体管在光伏逆变器的应用开展了探索性的研究[2]。 本文首先讨论了碳化硅结型场效应功率器件驱动电路特性与驱动波形。然后对碳化硅光伏逆变器的损耗进行了理论分析与计算,最后通过样机实验测试,对比了分别采用碳化硅新型器件与常规的硅IGBT 模块的光伏逆变器的效率。结果验证了采用碳化硅器件的光伏逆变器能有效提高逆变器的效率,并且提高开关频率,这对于发展体积小、重量轻、效率高的下一代光伏逆变器具有积极的影响。 1 器件的工作特性和效率分析 图1为光伏逆变器主电路,其中开关器件J1~J6均采用碳化硅结型场效应功率晶体管。光伏逆变器的一个重要指标就是效率,逆变器的损耗主要分为导通损耗、关断损耗与开关损耗。碳化硅新型器件的漏电流较小,器件的关断损耗通 常可以忽略,一般只分析导通损耗与开关损耗。下面从碳化硅器件的使用及逆变器损耗方面进行研究。 1.1 碳化硅器件的工作特性 图1 采用碳化硅器件的光伏逆变器主电路图 图2为碳化硅结型场效应功率晶体管的驱动电路简图。碳化硅结型场效应是“常通”型器件[3],即,不加栅极电压时,器件是开通状态, 栅极加负压才能使得器件关断,这就需要一个电平转换电路,把从控制器来的控制信号5V 高电平信号转化为0V,来开通碳化硅结型场效应功率晶体管。把从控制器来的0V 低电平信号转化为-24V,来有效关断碳化硅结型场效应功率晶体管。同时,因为碳化硅器件的开关速度很快,达到40kv/μs,所以要用高速光耦作为隔离元件。为快速驱动器件的开通与关断,采用了图2中T r1与T r2的图腾柱输出,使器件最大驱动电流能力达到6A。选择合适的输出阻抗可以减小器件高速开关所带来的震 采用碳化硅器件的高效率光伏逆变器研究 Research of high ef ? ciency solar inverter using SiC devices 潘三博,郝夏斐 PAN San-bo, HAO Xia-fei (安阳师范学院,安阳 455002) 摘 要: 采用新型碳化硅结型场效应功率晶体管的光伏逆变器与采用硅IGBT模块的传统光伏逆变器相 比,具有开关频率高、体积小、效率高的特点。本文对桥式碳化硅模块的驱动,以及以碳化硅器件组成的单相光伏逆变器的开关特性、开关损耗以及效率进行了理论分析与实验研究。通过实验样机的测试,验证了方案的有效性与优越性。 关键词: 碳化硅;结型场效应晶体管;光伏;逆变器 中图分类号:TN615 文献标识码:A 文章编号:1009-0134(2011)4(下)-0131-03Doi: 10.3969/j.issn.1009-0134.2011.4(下).38

关于碳化硅功率器件的调研

关于碳化硅功率器件的调研 前言 以硅器件为基础的电力电子技术,因大功率场效应晶体管(功率MOSFET)和绝缘栅双极晶体管(IGBT)等新型电力电子器件的全面应用而日臻成熟。目前,这些器件的开关性能己随其结构设计和制造工艺的相当完善而接近其由材料特性决定的理论极限,依靠硅器件继续完善和提高电力电子装置与系统性能的潜力已十分有限。 首先,硅低的击穿电场意味着在高压工作时需要采用厚的轻掺杂层,这将引起较大的串联电阻,特别是对单极器件尤其如此。为了减少正向压降,电流密度必须保持在很低的值,因此硅器件的大电流是通过增加硅片面积来实现的。在一定的阻断电压下,正向压降由于载流子在轻掺杂区的存储而降低,这种效应称为结高注入的串联电阻调制效应。然而存储电荷的存储和复合需要时间,从而降低了器件的开关速度,增加了瞬态功率损耗。硅器件由于小的禁带宽度而使在较低的温度下就有较高的本征载流子浓度,高的漏电流会造成热击穿,这限制了器件在高温环境和大功率耗散条件下工作。其它限制是硅的热导率较低。 于是,依靠新材料满足新一代电力电子装置与系统对器件性能的更高要求,早在世纪交替之前就在电力电子学界与技术界形成共识,对碳化硅电力电子器件的研究与开发也随之形成热点。 1 碳化硅材料 以SiC,GaN 为代表的宽禁带半导体材料,是继以硅和砷化镓为代表的第一代&第二代半导体材料之后迅速发展起来的新型半导体材料。表1列出了不同半导体材料的特性对比。从表中可以看出,碳化硅作为一种宽禁带半导体材料,不但击穿电场强度高,还具有电子饱和漂移速度高、热导率高等特点,可以用来制作各种耐高温的高频大功率器件。SiC 由碳原子和硅原子组成,其晶体结构具有同质多型体的特点,在半导体领域最常用的是4H-SiC 和6H-SiC 两种。 碳化硅材料的优异性能使得SiC 电力电子器件与Si 器件相比具有以下突出的性能优势: 表1 不同半导体材料的特性对比 类型 Si GaAs GaN SiC 4H-SiC 6H-SiC 3C-SiC 禁带宽度/eV 1.12 1.42 3.45 3.2 3.0 2.2 击穿电场 (MV/cm ) 0.6 0.6 >1 2.2 2.4 2 热导率 (W/cm.k ) 1.5 0.5 1.3 4.9 4.9 5 介电常数 11.9 13.1 9 9.7 9.7 9.72 电子饱和漂 移速度(10e7 cm/s ) 1.0 1.2 2.2 2 2 2.2 电子迁移率 (cm2/v.s ) 1200 6500 1250 1020 600 1000 空穴迁移率 (cm2/v.s ) 420 320 850 120 40 40

碳化硅在功率器件的用途 碳化硅制品的应用

碳化硅在功率器件的用途碳化硅制品的应用碳化硅(SiC)是通过在电阻炉中高温熔炼石英砂、石油焦(或煤焦)和木屑而生产的。碳化硅也是自然界中一种罕见的矿物,莫桑石。碳化硅也被称为碳硅石。碳化硅是碳、氮、硼等应用广泛、经济的非氧化物高科技耐火材料。那么碳化硅在功率器件的应用有哪些?今天千家信耐材的小编就给大家唠一唠碳化硅的宿世前生! 碳化硅的宿世前生 碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料用外,还有很多其他用途。 低品级碳化硅(含SiC约85%)是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量。此外,碳化硅还大量用于制作电热元件硅碳棒。 碳化硅的硬度很大,莫氏硬度为9.5级,仅次于世界上最硬的金刚石(10级),具有优良的导热性能,是一种半导体材料,高温时能抗氧化。 碳化硅的应用 碳化硅有四个主要应用领域,即:功能陶瓷、高级耐火材料、磨料和冶金原料。碳化硅粗料已经可以大量供应,不能算作高科技产品,而应用技术含量极高的纳米碳化硅粉,不能在短时间内形成规模经济。 ⑴作为磨料,可用来做磨具,如油石、磨头、砂瓦类等。 ⑵作为冶金脱氧剂和耐高温材料。 ⑶高纯度的单晶,可用于制造半导体、制造碳化硅纤维。 主要用途:用于3-12英寸单晶硅、多晶硅、砷化钾、石英晶体等线切割。太阳能光伏产业、半导体产业、压电晶体产业工程性加工材料。 用于半导体、避雷针、电路元件、高温应用、紫外光侦检器、结构材料、天文、碟刹、离合器、柴油微粒滤清器、细丝高温计、陶瓷薄膜、裁切工具、加热元件、核燃料、珠宝、钢、护具、触媒担体等领域。 碳化硅在功率器件的应用 目前,第三代半导体材料正在引发清洁能源和新一代电子信息技术的革命。无论是照明、家用电器、消费电子设备、新能源汽车、智能电网还是军事用品,对这种高性能半导体材料的需求都很大。

碳化硅电子器件发展分析完整版

碳化硅电子器件发展分 析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

碳化硅电力电子器件的发展现状分析 目录 在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、 6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC 单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上

相关主题
文本预览
相关文档 最新文档