当前位置:文档之家› 巅峰对决专题八 四边形证明(第二轮)

巅峰对决专题八 四边形证明(第二轮)

巅峰对决专题八 四边形证明(第二轮)
巅峰对决专题八 四边形证明(第二轮)

专题八 四边形证明 (一)

【中考命题趋势】

四边形尤其是特殊的四边形,在近几年的重庆中考题中所占的比例较大,在24题中均出现.特别是在2013年的试题中,一选、两填、两大题均要运用到四边形的相关知识.全等三角形、特殊三角形和特殊四边形性质的利用和判定,线段中垂线的性质、角平分线的性质,均是重庆中考命题的热点. 【经典专题突破】

例1. 如图,在平行四边形ABCD 中,AD BD ⊥,点E 、

点F 分别在AB 、BD 上,且满足DF AE AD ==,连接DE 、AF 、EF .

(1)若20CDB ∠=°,求EAF ∠的度数; (2)若DE EF ⊥,求证:2DE EF =.

例2. 如图,在□ABCD 中,E 是BC 边的中点,连接AE ,F 为CD 边上一点,且满足∠DF A =2∠BAE .

(1)若∠D =105°,∠DAF =35°.求∠F AE 的度数; (2)求证:AF=CD+CF .

A

B

C

D

E F

例1题图

B

D

E A

F

C

例2题图

例3. 如图,菱形ABCD 中,E 是BC 延长线上一点,连接AE ,使得∠E =∠B ,过D 作DH ⊥AE 于H .

(1)若AB =10,DH =6,求HE 的长; (2)求证:AH=CE+EH .

【仿真题型演练】

1. 如图,在矩形ABCD 中,E 、F 分别是AB 、CD 上的点,AE=CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC . (1)求证:OE=OF ;

(2)若32=BC ,求AB 的长.

2. 如图,在平行四边形ABCD 中,点E 为AB 边上一点,连接DE ,点F 为DE 的中点,且CF ⊥DE , 点M 为线段CF 上一点,使DM=BE

,CM=BC . (

1)若AB=13,

CF=12,求DE 的长度; (2)求证:1

3

DCM DMF ∠=∠. .

第1题图 第2题图 例3题图

3. 如图,在正方形ABCD 中,E 为AD 边上的中点,过A 作AF ⊥BE ,交CD 边于F ,M 是AD 边上 一点,且有BM =DM +CD . (1)求证:点F 是CD 边的中点; (2)求证:∠MBC =2∠ABE .

4. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、DC 上,BE =DF ,∠EAF=60°. (1)若AE =2,求EC 的长;

(2)若点G 在DC 上,且∠AGC =120°,求证:AG=EG+FG .

5. 如图,在正方形ABCD 中,P

在对角线BD 上,E 在CB 的延长线上,且PE=PC ,过点P 作

PF ⊥AE 于F ,直线PF 分别交AB 、CD 于G 、H .

(1)求证: DH =AG+BE ; (2)若BE=1,AB=3,求PE 的长.

第3题图

H

P

G

F

E D

C

B A

第5题图

D

G

A

F

E

C

第4题图

B

6. 如图,在梯形ABCD 中,CD AB //,BC DC AD ==,0

60=∠DAB ,E 是对角线AC 延长线上一点,F 是AD 延长线上的一点,且AB EB ⊥,AF EF ⊥. (1)当1=CE 时,求BCE ?的面积; (2)求证:CE EF BD +=.

7. 如图,在平行四边形ABCD 中,对角线,AC DC CAB ⊥∠与BCA ∠的角平分线交于点E ,过E 作

EF ∥AD 分别交AC 、 DC 于G 、F ,过E 作EH ∥AB 分别交AC 、AD 于K 、H .

(1)若60D ∠=?,CF = 2,求EG 的长; (2)求证:GF GK KH =+.

【一线名师预测】

1. 如图,在□ABCD 中,BE 平分∠ABC ,交AD 于E ,点G 是CD 的中点,GE 的延长线交BA 的延 长线于点F ,∠EBC+∠DEG=90°. (1)若BF =6,求AE 的长; (2)求证:EF=2EG .

第6题图

第7题图

A

B

G

D E

F

C

第1题图

2. 如图,在矩形ABCD 中,AC 是对角线.点P 为矩形外一点且满足AP PC =,AP PC ⊥.PC 交AD 于点N ,连接DP ,过点P 作PM PD ⊥交AD 于M . (1)若1

3

AP AB BC ==

,求矩形ABCD 的面积; (2)若CD PM =,求证:AC AP PN =+.

四边形证明(二)

【经典专题突破】

例1. 如图,在正方形ABCD 中,点G 是BC 边上一点,∠

BAG=15°,以线段AG 为腰作等腰直角

△AGF ,交DC 于点H .延长BC 、AF 交于点E . (1)若AB=3,求线段CE 的长;

(2)求证: GE=AB+3BG .

第2题图

D A B

E

C

F

H

G

例1题图

例2. 如图,在正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接EF ,若BE=DF ,

点P 是EF 的中点.

(1)求证:DP 平分∠ADC ;

(2)若∠AEB=75°,AB=2,求△DFP 的面积.

例3. 如图,在Rt ABC ?中,90ABC ∠=°,分别以AB 、AC 为边,向ABC ?外作正方形ACDE 和正

方形ABGF ,连接EF ,EC ,延长BA 交EF 于H . (1)若2

tan ,123

ABC ACB S ?∠=

=,求BC 的长; (2)求证:2BC AH =.

【仿真题型演练】

1. 如图,在正方形ABCD 中,点E 是BA 延长线上一点,连接DE ,点F 在DE 上,且DF=DC ,DG ⊥CF

于G .DH 平分

∠ADE 交CF 于点H ,连接BH . (1)若DG=2,求DH 的长; (2)求证:BH+DH=2CH .

A

C

D E

H G

F B

第1题图

例2题图

例3题图

2. 如图(1),P 为正方形ABCD 边BC 上任一点,BG ⊥AP 于点G ,在AP 的延长线上取点E ,使AG=GE ,连接BE ,CE . (1)求证:BE=BC ;

(2)如图(2),∠CBE 的平分线交AE 于点N ,连接DN ,求证:BN+DN=2AN .

3. 如图,在正方形ABCD 中,点E 为BC 边上的一点,连接DE ,点G 为DE 中点,连接GA 、GB 、

GC

,GB 与AC 交于点H ,过点B 作BM 垂直DE 的延长线于点M .

(1)求证:GA=GB ; (2)若AH ,求证:AG=2BM .

第2题图

A

C D

E H

G

F

B

M

第3题图

4. 如图,过矩形ABCD 对角线AC 的中点O 作EF ⊥AC ,分别交AB 、CD 于点E 、F ,点G 为AE 的中点, 若∠AOG=30°.求证:DC OG 3

1

=.

5. 如图,在平行四边形ABCD 中,BC AE ⊥,垂足为E ,CE=CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF 、EG 、AG ,21∠=∠ . (1)若CF=2,AE=3,求BE 的长; (2)求证:AGE CEG ∠=∠2

1

6. 如图,在正方形ABCD

中,E 是AD 的中点,F

是AB 边的一点,连接FE 并延长与

CD 的延长线相 交于点G ,作EH FG ⊥交BC 的延长线于点H . (1)若BC = 8,BF = 5,求线段FG 的长; (2)求证:EH = 2EG .

第4题图

第5题图 第6题图

D

C

E

M B

A F

H G

【一线名师预测】

1. 如图,以△ABC 的AB 和AC 为边,分别向外作正方形ABEF 、ACGH ,BC AD ⊥于D .DA 的延长线交FH 于M .

求证:(1)HM FM =; (2)2()AM BD CD BD -=-.

2. 如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,∠ABD=2∠DBC ,AE ⊥BD 于点E . (1)若∠ADB=25°,求∠BAE 的度数; (2)求证:AB=2OE .

.

四边形证明(三)

【经典专题突破】

例1. 如图,在矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD

于点F ,若1=CF ,2=DF ,则BC 的长为( ) A .23 B .62 C .52 D .32 例2. 如图,在菱形ABCD 中,BD AB =,点E 、F 分别在AB 、AD 上,

且DF AE =.连接

BF 、DE 相交于点G ,连接CG 与BD 相交于点H . 下列结论:①△AED ≌△DFB ;②24

3

CG S BCDG =

四边形;③若DF AF 2=, A

B

C

D

E

O

第2题图

第1题图

例2题图

第1题图

A

B

D

C

E

P 第2题图

第3题图

第6题图

则GF BG 6=,其中正确的结论( )

A .只有①②

B .只有①③

C .只有②③

D .①②③ 例3. 如图,

E 、

F 是正方形ABCD 的边AD 上两个动点,满足

DF AE =.连接CF 交BD 于G ,连接BE 交AG 于点H .若

正方形的边长为2,则线段

DH 长度的最小值是 .

【仿真题型演练】

1. 如图,四边形A B CD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,

CED AED ∠=∠2,点G 是DF 的中点,若1=BE ,4=AG ,则AB 的长为 .

2. 如图,在梯形ABCD 中,AB ∥CD ,?=∠90BAD ,6=AB ,对角线AC 平分BAD ∠,点E 在AB 上,且2=AE (AD AE <),点P 是AC 上的动点,则PB PE +的最小值是 .

3. 如图,正方形A B CD 的边长为22,过点A 作AC AE ⊥,1=AE ,连接BE , 则=E tan .

4. 在矩形A B CD 中,4=AB ,3=AD ,P 、Q 是对角线BD 上不重合的两点,点P 关于直线AD ,

AB 的对称点分别是点E 、F ,点Q 关于直线BC 、CD 的对称点分别是点G 、H .若由点E 、F 、G 、H 构成的四边形恰好为菱形,则PQ 的长为 .

5. 在正方形ABCD 中,AC 、BD 相交于点O ,点E 是射线AB 上一点,点F 是直线AD 上一点,

DF BE =,连接EF 交线段BD 于点G ,交AO 于点H .若3=AB ,5=AG ,则线段EH 的长

为 .

6. 如图,正方形ABCD 的对角线交于点O ,过顶点D 作AC 的平行线,在这条线上取一点E ,连接AE 、CE ,使AE=AC ,AE 交CD 于F .则下列结论:①CE=CF ;②∠ACE =?75;③△DFE 是等腰三角形;④若AB=1, 则13-=

CE ;⑤

2

3

2-=

??CFA DFE S S ,其中正确的结论个数是( ) 例3题图

第1题图

A

B

C F

E

D

G

第2题图

A .2

B .3

C .4

D .5 7. 如图,在正方形ABCD 中,点

E 在边BC 上,且CE=2

BE .连结BD 、

DE 、AE ,AE 交BD 于F ,OG 为△BDE 的中位线.下列结论:

①OG CD ⊥;②5AB OG =;③

1

3

ODG ABE S S ??=;④BF OF =;⑤cos 5

BFE ∠=,其中正确结论的个数是( ) A .2

B .3

C .4

D .5

【一线名师预测】

1. 芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图(1),他在边长为1的正方形ABCD 内作等边三角形BCE ,并与正方形的对角线交于F 、G 点,制成如图(2)的图标.则图标中阴影部分图形AFEGD 的面积为

.

2. 如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形

ABCD 内部.将AF 延长交边BC 于点G .若CG BG 5=,则

AD

AB

的值是 .

第7题图

平行四边形常见证明题

1.在□ABCD中,E、F是对角线AC上两点,且AE=CF,四边形DEBF是平行四边形吗?请说明理由. 2.如图,?ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC. 3、如图,延长平行四边形ABCD的边BC至F、DA至E,使CF=AE,EF与BD交于O. 试说明EF与BD互相平分 4.如图,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE, 求证:(1)△ADF≌△CBE;(2)四边形ABCD是平行四边形. 5.如图, 在ABCD中,∠ABC=70 ,∠ABC的平分线交AD于点E,过点D作BE的平行线交BC于点F,求∠CDF的度数. A E D B F A B C D F E

6.已知如图,在□ABCD中,∠ABC的平分线交AD于E,且CE⊥BE。求证:BC=2CD 7.如图,平行四边形ABCD中,AB AC ⊥,1 AB=,.对角线AC BD ,相交于点O,将直线AC绕点O顺时针旋转,分别交BC AD ,于点E F ,. (1)证明:当旋转角为90o时,四边形ABEF是平行四边形; (2)试说明在旋转过程中,线段AF与EC总保持相等; 8、如图,四边形ABCD和四边形EBFD都是平行四边形. 试说明△ABE≌△CDF C 9. 已知:如图, 在ABCD中,E、F分别是AB和CD上的点,AE=CF, M、N分别是DE和BF的中点,求证.四边形ENFM是平行四边形. 10. 已知:如图, 在ABCD中,E、F分别是CD和AB上的点,AE//CF, BE交CF于点H,DF交AE于点G.求证.EG=FH. A B C D O F E

四边形的证明和计算

四边形的证明和计算 教学目标:1、使学生牢固掌握平行四边形、矩形、菱形、正方形、等腰梯 形的定义、性质定理和判定定理,掌握它们之间的内在联系, 并能应用这些知识去分析和解决问题。 2、通过复习提高学生逻辑推理论证的能力,发展学生数学思维 的技能,进一步激励学生自我提高的动机。关注中考中不断出 现的以特殊四边形为背景设计与三角形、相似形、圆、方程、 函数等相结合的综合题 3、如何挖掘隐含条件,合理添加辅助线,转化矛盾解决问题。 教学重点:平行四边形、矩形、菱形、正方形、等腰梯形的定义、性质定理、 判定定理的综合应用和综合思维、分析思维以及逻辑表达能力的 培养。 教学难点:要善于多角度寻求解决问题的途经,筛选简捷的解法、积累解决 问题的策略. 教学过程: 学生整理有关平行四边形、矩形、菱形、正方形、等腰梯形的定义、性 质定理和判定定理,掌握它们之间的内在联系,初步形成这些知识的网络结 构。为下面的复习做好准备。 一、 几何证明题: 例1:如图,在梯形ABCD 中,AD //BC ,AB =DC ,过点D 作DE ⊥BC ,垂 足为E ,并延长DE 至F ,使EF =DE .联结BF 、CD 、AC . (1)求证:四边形ABFC 是平行四边形; (2)如果DE 2=BE ·CE ,求证四边形ABFC 是矩形. (3)只添加一个条件,使四边形EDFA 是正方形.请你至少写出两种不同 图形改为:

的添加方法. 展示2011年中考23题,体现四边形在中考中的重要作用,学生独立完 成,教师巡视指导,学生交流方法,师生共同归纳考点,教师给予方法点析 (2)只添加一个条件,使四边形EDFA 是正方形.请你至少写出两种不同 的添加方法.(不另外添加辅助线,无需证明) 本题较为简单,意在顾及绝大多数学生,减 少对几何的畏惧心理,口答完成,提高积极 性,复习判定方法 巩固训练: 1. 如图,平行四边形ABCD 的对角线AC 的垂直平分线与AD 、 BC 分别交于E 、F , 求证:四边形AFCE 是菱形 分析: 由于四边形AFCE 的对角线互相垂直,那么只需证明对角线互相平 分即可,故只需证OE=OF ,而这可由证明△AOE ≌△COF 得到。 证:(略) 说明:解决此题的关键是要准确理解题意,EF 是线段AC 的垂直平分线。另 一种方法证完后还可问学生,还有其他方法吗?注重一题多解,激活学生的 思维。 学生独立完成,学生板书 分层提高题:2. 已知:如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G . (1) 证:GD CG GF EG ?=?; 例2.如图,在△ABC 中,AB=AC ,D 是BC 的中点,DE⊥AB,DF⊥AC,垂足分 别为E 、F . (1)求证:DE=DF .

平行四边形的证明题

平行四边形的证明题 一.解答题(共30小题) 1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F. (1)求证:BE=DF; (2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由). — 2.如图所示,?AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D. 求证:四边形ABCD是平行四边形. $ 3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F. (1)求证:△ABE≌△CDF; (2)若AC与BD交于点O,求证:AO=CO. #

4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD. ~ 5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. : 6.如图,已知,?ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形. ! 7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA. 求证:四边形AECF是平行四边形.

8.在?ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形. ! 9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE. 10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形? ; 11.如图:已知D、E、F分别是△ABC各边的中点,

(完整版)平行四边形典型证明题(已分类).docx

平行四边形证明题 1. 在□ ABCD中,∠ BAD的平分线 AE 交 DC于 E,若∠ DAE=25o,求□ABCD各角度数 .D E C A B 2.如图,把一张长方形 ABCD的纸片沿 EF 折叠后,ED与 BC的交点为 G,点 D、C 分别落在 D′、 C′的位置上,若∠EFG=55°,求∠ AEG度数. 3.如图在□ABCD 中, E,F 为 BD 上的点, BE=DF ,那么四边形AECF 是什么图形?并证明. 4.如图,在□ABCD 中, E、 F 为对角线BD 上的两点,且∠DAE= ∠ BCF. (1)求证: AE=CF .( 2)求证: AE ∥CF 5.如图,□ABCD 中, AE 平分∠ BAD 交 BC 于点 E, CF 平分∠ BCD 交 AD 于点 F, 求证:四边形AECF 是平行四边形.

6.如图,点 D 、E、 F 分别是△ ABC 各边中点 . (1)求证:四边形 ADEF 是平行四边形 . (2)若 AB=AC=10 , BC=12 ,求四边形 ADEF 的周长和面积 . 7.如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ ADE绕着点E顺时针旋转180°得到△ CFE. 求证:四边形DBCF 是平行四边形。 8. 如图,一张矩形纸片ABCD ,其中 AD= 8cm,AB= 6cm,先沿对角线BD 对折,点 C 落在点 C′的位置, BC′交 AD 于 点G.(1)求证: AG= C′G. (2) 求△ BDG的面积 9.如图,矩形ABCD 中, AC 与 BD 相交于点 O.若 AO=3 ,∠OBC=30°,求矩形的周长和面积。

四边形的证明与计算

热点 四边形的证明与计算 (时间:100分钟 总分:100分) 一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.下列命题正确的是( ) A .对角线互相平分的四边形是菱形; B .对角线互相平分且相等的四边形是菱形 C .对角线互相垂直且相等的四边形是菱形; D .对角线互相垂直且平分的四边形是菱形. 2.平行四边形ABCD 中,∠A 、∠B 、∠C 、∠D 四个角的度数比可能是( ) A .1:2:3:4 B .2:3:2:3 C .2:2:3:3 D .1:2:2:3 3.如果菱形的边长是a ,一个内角是60°,那么菱形较短的对角线长等于( ) A . 12a B a C .a D 4.用形状、大小完全相同的图形不能进行密铺的是( ) A .任意三角形 B .任意四边形 C .正五边形 D .正四边形 5.已知一个等腰梯形的下底与上底之差等于一腰长,?则这个等腰梯形中的较小的角的度数为( ) A .30° B .60° C .45° D .75° 6.已知四边形ABCD 中,在①AB ∥CD ;②AD=BC ;③AB=CD ;④∠A=∠C 四个条件中,不能推出四边形ABCD 是平行四边形的条件是( ). A .①② B .①③ C .①④ D .②③ 7.如图1,ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12,BD=10,则AB 的长m?取值范围是( ) A .1

平行四边形证明题

平行四边形证明题 第一篇:特殊平行四边形:证明题 特殊四边形之证明题 1、如图8,在abcd中,e,f分别为边ab,cd的中点,连接de,bf,bd.? (1)求证:△ade≌△cbf. (2)若ad?bd,则四边形bfde是什么特殊四边形?请证明你的结论. fc aeb 2、如图,四边形abcd中,ab∥cd,ac平分?bad,ce∥ad交ab 于e. (1)求证:四边形aecd是菱形; (2)若点e是ab的中点,试判断△abc的形状,并说明理由. 3.如图,△abc中,ac的垂直平分线mn交ab于点d,交ac于点o,ce∥ab交mn于e,连结ae、cd. (1)求证:ad=ce; (2)填空:四边形adce的形状是. a dmn

4.如图,在△abc中,ab=ac,d是bc的中点,连结ad,在ad的延长线上取一点e,连结be, (1)求证: (2)当ae与ad满足什么数量关系时,四边形abec是菱形?并说明理由 5.如图,在△abc和△dcb中,ab=dc,ac=db,ac与db交于点m. (1)求证:△abc≌△dcb; (2)过点c作cn∥bd,过点b作bn∥ac,cn与bn交于点n,试判断线段bn与cn的数量关系,并证明你的结论. 6、如图,矩形abcd中,o是ac与bd的交点,过o点的直线ef 与ab,cd的延长线分别交于e,f. (1)求证:△boe≌△dof; (2)当ef与ac满足什么关系时,以a,e,c,f为顶点的四边形是菱形?证明你的结论. f a b e

7. 600,它的两底分别是16cm、30cm。求它的腰长。 (两种添线方法) c 8.如图(七),在梯形abcd中,ad∥bc,ab?ad?dc,ac?ab,将cb延长至点f,使bf?cd. (1)求?abc的度数; (2)求证:△caf为等腰三角形. c b图七f 第二篇:平行四边形证明题 由条件可知,这是通过三角形的中位线定理来判断fg平行da,同理he平行da,ge平行cb,fh平行cb!~ 我这一化解,楼主应该明白了吧!~ 希望楼主采纳,谢谢~!不懂再问!!! 此题关键就是对于三角形的中位线定理熟不!~!~· 已知:f,g是△cda的中点,所以fg是△cda的中位线,所以fg 平行da 同理he是△bad的中位线,所以he平行da,所以fg平行he

2014年中考数学四边形专题复习:四边形的证明与计算 (2)

第一讲:矩形、菱形训练学习(1)—2014年中考数学四边形专题 一、矩形的学习 例题1(2013浙江省绍兴,15,5分)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE 折叠,使点B落在AC上的点B`处,又将△CEF沿EF折叠, 使点C落在直线EB`与AD的交点C`处.则BC∶AB的值为. 例题2.(2013安徽,14,5分)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论: ①S1+S2=S3+S4②S2+S4= S1+ S3 ③若S3=2 S1,则S4=2 S2④若S1= S2,则P点在矩形的对角线上 其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上). 相应练习一 1.(2013年吉林省,第22题、7分.)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC. (1)求证:△ADC △ECD; (2)若BD=CD,求证四边形ADCE是矩形.

2.(2013贵州六盘水,22,12分)如图11,已知E 是ABCD 中BC 边的中点,连接AE 并延长AE 交DC 的延长线于点F . (1)求证:△ABE ≌△FCE . (2)连接AC 、BF ,若∠AEC =2∠ABC ,求证:四边形ABFC 为矩形. 3.(2013湖南湘潭,19,6分)如图,矩形ABCD 是供一辆机动车停放的车位示意图,已知m BC 2=, m CD 4.5=,?=∠30DCF ,请你计算车位所占的宽度EF 约为多少米? 二、菱 形 的 学 习 例题3(2013深圳市 20 ,8分)如图7,将矩形ABCD 沿直线EF 折叠,使点C 与点A 重合,折痕交AD 于点E ,交BC 于点F ,连接AF 、CE , (1)求证:四边形AFCE 为菱形; (2)设,,,AE a ED b DC c ===请写出一个a 、b 、c 三者之间的数量关系式 'A

四边形与证明(经典难题)

第八部分图形与证明 知识点的把握 新的课程标准对图形与证明提出了如下要求: 1.了解证明的含义. (1)理解证明的必要性;(2)通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论;(3)结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立;(4)通过具体的例子理解反例的作用,知道利用反例可以证明一个命题是错误的;(5)通过实例,体会反证法的含义;(6)掌握用综合法证明的格式,体会证明的过程要步步有据. 2.掌握以下基本事实,作为证明的依据.(1)一条直线截两条平行直线所得的同位角相等;(2)两条直线被第三条直线所截,若同位角相等,那么这两条直线平行; (3)若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等;(4)全等三角形的对应边、对应角分别相等. 3.利用2中的基本事实证明下列命题. (1)平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行);(2)三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角);(3)直角三角形全等的判定定理;(4)角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心);(5)垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交于一点(外心);(6)三角形中位线定理;(7)等腰三角形、等边三角形、直角三角形的性质和判定定理;(8)平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理. 4.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值. 命题方向 经过对近几年各地的中考试题来看,直接考查本章知识的试题约占10%,普遍由圆结合其他的知识点进行考查.在主客观题中均有出现,往往是综合运用方程、函数、三角形、相似形等知识解决与圆有关的中考压轴题.除了考查几何图形的性质和应用外,还常常与应用问题、实际问题结合,对学生的探究能力和创新思维能力进行综合考查. 纵观近三年的中考命题,可以预见:用几何图形的性质、判定考查学生的逻辑推理的能力、分析和解决问题的能力、以及创新意识和实际能力.因此,考查分类讨论思想、数形结合思想以及运用观察、想象、综合、比较、演绎、归纳、抽象、概括、类比等数学方法. 考试重点 一、几何图形的性质定理、判定定理的应用 本考点为基本图形的性质定理和判定定理的应用,我们要明确的基础知识有:平行线的性质定理和判定定理、三角形的内角和定理及推论、直角三角形全等的判定定理、角平分线性质定理及逆定理、垂直平分线性质定理及逆定理、三角形中位线定理、等腰三角形、等边三角形、直角三角形的性质和判定定理、平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理. 中考过程中,几何证明是必考的范围.其中是以基本图形的性质和判定定理为主.结合各方面的知识点,考虑辅助线的做法,运用综合分析法来找出条件和结论之间的关系,提高学生的解题能力、分析能力、研究探索能力.对于几何证明的题目应首先从基本知识入手,关注辅助线的做法,总结方法,积累经验,在看图和识图方面不断创新,不断提高. 【例1】已知:如图8-1,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.

平行四边形经典证明题例题讲解

1 / 1 经纬教育 平行四边形证明题 经典例题(附带详细答案) 1.如图,E F 、是平行四边形 ABCD 对角线AC 上两点,BE DF ∥, 求证:AF CE =. 【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥, BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF = 2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D , , 求四边形ABCD 的周长. 【答案】20、 解法一: ∵ ∴ 又∵ ∴ ∴∥即得是平行四边形 ∴ ∴四边形的周长 解法二: 3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=D C A B E F A D C B

连接 ∵ ∴ 又∵ ∴≌ ∴ ∴四边形的周长解法三: 连接 ∵ ∴ 又∵ ∴ ∴∥即是平行四边形 ∴ ∴四边形的周长 3.(在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C 的大小. 【关键词】多边形的内角和 【答案】设x A= ∠(度),则20 + = ∠x B,x C2 = ∠. 根据四边形内角和定理得,360 60 2 ) 20 (= + + + +x x x. 解得,70 = x. ∴? = ∠70 A,? = ∠90 B,? = ∠140 C. 4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE == ,,∥. AC AB CD ∥ DCA BAC∠ = ∠ B D A C CA ∠=∠= , ABC △CDA △ 36 AB CD BC AD ==== , ABCD18 3 2 6 2= ? + ? = BD AB CD ∥ CDB ABD∠ = ∠ ABC CDA ∠=∠ ADB CBD∠ = ∠ AD BC ABCD 36 AB CD BC AD ==== , ABCD18 3 2 6 2= ? + ? = A D C B A D C B 1 / 1

平行四边形综合性质及经典例题

一对一个性化辅导教案

平行四边形的性质与判定 平行四边形及其性质(一) 一、 教学目标: 1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3. 培养学生发现问题、解决问题的能力及逻辑推理能力. 二、 重点、难点 1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 三、 课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗 你能总结出平行四边形的定义吗 (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“ ”来表示. 如图,在四边形ABCD 中,AB∥DC,AD∥BC,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB ?50?360?360?180行 四边形的面积计算 六、随堂练习 1.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长 ② 已知AB=2BC ,求各边的长 ③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长 2.如图,ABCD 中,AE⊥BD,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .

3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm . 七、课后练习 1.判断对错 (1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 2.在 ABCD 中,AC =6、BD =4,则AB 的范围是_ ____ __. 3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 . 4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积. (一) 平行四边形的判定 一、教学目标: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二、重点、难点 重点:平行四边形的判定方法及应用. 难点:平行四边形的判定定理与性质定理的灵活应用. 四、课堂引入 1.欣赏图片、提出问题. 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形你是怎样判断的 2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗

2019年中考数学四边形有关的计算与证明专题卷(含答案)

2019年中考数学四边形有关的计算与证明专题卷(含答案) 一、解答题(共12题) 1.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解. 如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE. (1)求证:四边形EFGH为平行四边形; (2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长. 2.(已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF. 3.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.求证:∠ABF=∠CBE. 4.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据该图完成这个推论的证明过程. 证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(________+________).

易知,S△ADC=S△ABC,________=________,________=________. 可得S矩形NFGD=S矩形EBMF. 5.如图,在?ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF 的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(Ⅰ)根据以上尺规作图的过程,求证:四边形ABEF是菱形; (Ⅱ)若菱形ABEF的周长为16,AE=4 ,求∠C的大小. 6.如图,菱形ABCD中,DE⊥AB于E,DF⊥BC于F. (1)求证:△ADE≌△CDF; (2)若∠EDF=50°,求∠BEF的度数. 7.如图,E是?ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的 长. 8.如图,四边形ABCD是正方形,E、F分别是了AB、AD上的一点,且BF⊥CE,垂足为G,求证: AF=BE.

人教版八年级下册特殊四边形的证明与计算专题(无答案)

特殊四边形的证明与计算 一. 一组对边平行+一组对角相等=平行四边形 1. 四边形ABCD 中,AB//CD,D B ∠=∠,BC=6,AB=3,求四边形ABCD 的周长。 二. 平行四边形的性质与判定的贡献 2.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE=∠BAD ,AE∠AC (1)求证:四边形ABDE 是平行四边形; (2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长。 3.已知:如图,D,E,F 分别是∠ABC 各边上的点,且DE∠AC,DF∠AB.延长FD 至点G ,使DG=FD ,连接AG. 求证:ED 和AG 互相平分。

三.菱形四边相等为全等提供了可能 4.如图1,菱形ABCD中,点E.F分别为AB、AD的中点,连接CE、CF. (1)求证:CE=CF; (2)如图2,若H为AB上一点,连接CH,使∠CHB=2∠ECB,求证:CH=AH+AB.

四. 含60?的菱形与等边三角形结合在一起 5.(1)如图,菱形ABCD 中,? =∠60C ,O 为BD 的中点,点E 在AD 上,点F 在AB 的延长线上,且?=∠120EOF ,求证:AB BF AE 21=+. (2)如图,菱形ABCD 中,? =∠60C ,O 为BD 的中点,E ,F 分别在DA ,AB 的延长线上,?=∠120EOF ,试探究AE ,BF ,AB 之间的数量关系. 五. 从对称的角度考虑菱形问题。 6. 如图,在菱形ABCD 中,对角线AC=6,BD=8,点E. F 分别是边AB 、BC 的中点,点P 在AC 上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是 。

关于平行四边形的证明题例析

关于平行四边形的证明题例析 平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的证明与研究上有着广泛的应用.例1如图所示.在ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:EF与MN互相平分. 分析只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手. 证明因为ABCD是平行四边形,所以 AD BC,AB CD,∠B=∠D. 又AE⊥BC,CF⊥AD,所以AECF是矩形,从而 AE=CF. 所以 Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以 △BEM≌△DFN(SAS), ME=NF.① 又因为AF=CE,AM=CN,∠MAF=∠NCE,所以 △MAF≌△NCE(SAS), 所以MF=NF.② 由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分. 例2如图所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF. 分析AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解. 证明作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而 △ABG≌△HBG(AAS), 所以AB=HB.① 在△ABE及△HBE中, ∠ABE=∠CBE,BE=BE,

平行四边形常见证明题(经典)

1.下列条件中,能判定四边形是平行四边形的条件是( ) A.一组对边平行,另一组对边相等 B.一组对边平行,一组对角相等 C.一组对边平行,一组邻角互补 D.一组对边相等,一组邻角相等 2.如图,EF过□ABCD的对角线的交点O,交AD于E,交BC于F,若AB=4,BC=5,OE=,那么四边形EFCD 的周长是( ) 3.两直角边不等的两个全等的直角三角形能 拼成平行四边形的个数( ) 4.过不在同一直线上的三点,可作平行四边形的个数是( ) 个个个个 5.如图,已知□ABCD的对角线交点是O,直线EF过O点,且平行于BC,直线GH过且平行于AB,则图中共有( )个平行四边形. 6.以下结论正确的是( ) A.对角线相等,且一组对角也相等的四边形是平行四边形 B.一边长为5cm,两条对角线分别是4cm和6cm的四边形是平行四边形 C.一组对边平行,且一组对角相等的四边形是平行四边形 D.对角线相等的四边形是平行四边形 7.能够判定四边形ABCD是平行四边形的题设是(). A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD 8.具备下列条件的四边形中,不能确定是平行四边形的为(). A.相邻的角互补 B.两组对角分别相等 C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点 9.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是(). A.若AO=OC,则ABCD是平行四边形; B.若AC=BD,则ABCD是平行四边形; C.若AO=BO,CO=DO,则ABCD是平行四边形;D.若AO=OC,BO=OD,则ABCD是平行四边形 10.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.() (2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.() (3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.() (4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.() (5)因为AB=CD,AD=BC,所以ABCD是平行四边形.() (6)因为AD=CD,AB=AC,所以ABCD是平行四边形.() 1.在□ABCD中,E、F是对角线AC上两点,且AE=CF,四边形DEBF是平行四边形吗请说明理由.

题型五三角形四边形的证明与计算

二、解答题重难点突破三角形、四边形的证明与计算题型四 有等腰三角形,通常作底边上的高、中线或顶角的平分线类型一 针对演练C,A交AC于点E,得△ABC,AB,BC=2,∠ABC=120°将△ABC绕点B顺时针旋转角α(0<α<120°)中,1. 在△ABCAB=11111. F两点于D、分别交AC、BC 图②图① 第1题图DA的形状,并说明理由;)如图②,当α=30°时,试判断四边形BC((1)证明:EA=FC;211. ED的长(3)在(2)的情况下,求 2的正方22的正方形ABCD与边长为连云港)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2. (2015形AEFG按图①位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上. (1)小明发现DG⊥BE,请你帮他说明理由; (2)如图②,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你

帮他求出此时BE的长. 图①图②第2题图

3. 如图①,在△ABC中,D是AB边的中点,AE⊥BC于点E,BF⊥AC于点F,AE,BF相交于点M,连接DE,DF. 1 图①图②图③ 第3题图 (1)DE,DF的数量关系; (2)如图②,在△ABC中,CB=CA,点D是AB边的中点,点M在△ABC的内部,且∠MBC=∠MAC.过点M作ME⊥BC于点E,MF⊥AC于点F,连接DE,DF.求证:DE=DF; (3)如图③,若将上面(2)中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.

【答案】 针对演练 1.(1)证明:∵AB=BC, ∴∠A=∠C, ∵△ABC绕点B顺时针旋转角α得△ABC, 11∴∠ABE=∠CBF,∠C=∠C ,AB=BC=AB=BC, 1111∴∠A=∠C, 1在△ABE和△CBF中,12 C??A??1?BC?AB,?1?BFC?ABE???1(ASA), BF∴△ABE≌△C1, BF∴BE=, BF=BC-∴AB-BE1. FC即EA=1是菱形,理由如下::四边形BCDA(2)解1,,∠ABC=120°旋转角α=30°,+30°=150°=∠ABC+α=120°∴∠ABC1, BC,AB=∵∠ABC=120°11=30°=,(180°-120°)∴∠A=∠C2=180°,ABC+∠C=150°+30°∴∠11, =150°+30°=180°∠ABC+∠A1, AD∥BCAB∥CD, ∴11 BCDA是平行四边形,∴四边形1, AB=BC又∵1.

2019年中考数学专题4:四边形证明及计算压轴题

2019年中考数学专题4:四边形证明及计算压轴题 1.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合(E 、F 两点均 在BD 上),折痕分别为BH 、DG 。 (1)求证:△BHE ≌△DGF ; (2)若AB =6cm ,BC =8cm ,求线段FG 的长。 2.以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH . (1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当 四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明); (2)如图3,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°), ① 试用含α的代数式表示∠HAE ; ② 求证:HE =HG ; ③ 四边形EFGH 是什么四边形?并说明理由. A B C D H E F G (第23题图2) E B F G D H A C (第23题图3) (第23题图1) A B C D H E F G

3.如图7,在一方形ABCD 中.E 为对角线AC 上一点,连接EB 、ED , (1)求证:△BEC ≌△DEC : (2)延长BE 交AD 于点F ,若∠DEB=140°.求∠AFE 的度数. 4.直角梯形ABCD 中,AD ∥BC ,∠A=90°,6AB AD ==,DE DC ⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . (1)证明:EF CF =; (2)当tan ADE ∠= 3 1 时,求EF 的长. 5.两个大小相同且含 30角的三角板ABC 和DEC 如图①摆放,使直角顶点重合. 将图①中△DEC 绕点C 逆时针旋转 30得到图②,点F 、G 分别是CD 、DE 与AB 的交点,点H 是DE 与AC 的交点. (1)不添加辅助线,写出图②中所有与△BCF 全等的三角形; (2)将图②中的△DEC 绕点C 逆时针旋转 45得△D 1E 1C ,点F 、G 、H 的对应点分别为 F 1、 G 1、 H 1 ,如图③.探究线段D 1F 1与AH 1之间的数量关系,并写出推理过程; (3)在(2)的条件下,若D 1E 1与CE 交于点I ,求证:G 1I =CI. D B C A E 图① D A 图② D A D 1 B C E F G H B C E F G 1 H 图③ H 1 E 1 I G F 1

初二数学平行四边形压轴:几何证明题

1 / 1 初二数学平行四边形压轴:几何证明题 1.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,顺次连接EF 、FG 、GH 、HE . (1)请判断四边形EFGH 的形状,并给予证明; (2)试探究当满足什么条件时,使四边形EFGH 是菱形,并说明理由。 2.如图,在直角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1. (1)线段A 1C 1的长度是 ,∠CBA 1的度数是 . (2)连接CC 1,求证:四边形CBA 1C 1是平行四边形. 3. 如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:OP=OQ ; (2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形. 4.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC. ⑴求证:BE =DG ; ⑵若∠B =60?,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论. 5. 如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ; (2)AB =BC +AD . 6.如图,在△ABC 中,AB=AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE. (1)求证:△ABE ≌△ACE (2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由. B F C G D H B A 1 C 1A C A D G C B F E A Q C D P B O A B E D A D E F C B

平行四边形的证明题类型汇总

平行四边形的证明题类型汇总 平行四边形的证明题类型很多,是期末考试的重点,也是中考的热点,为了降低学生学习这方面的难度,特把这章的证明问题总结如下,一共写了28道题目,当然还有没有总结到的,还希望学生多多思考和总结,把没有写上的证明题目也要学会 1.平行四边形ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形 2.分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE,已知∠BAC=30°,EF⊥AB于F,连接DF, (1)试说明AC=EF; (2)求证四边形ADEF是平行四边形

3.如图,在平行四边形ABCD中,∠DAB=60°,点E,F分别在CD,AB 的延长线上,且AE=AD,CF=CB. (1)求证:四边形AFCE是平行四边形; (2)若去掉已知条件中的“∠DAB=60°,”上述结论还成立吗?若成立请写出证明过程;若不成立,请说明 理由. 4如图以平行四边形ABCD的对角线AC为斜边作Rt△AMC,且∠BMD 为直角.求证:四边形ABCD是矩形.

5.如图,在等边△ABC中,点D是BC的中点,点F是AB边的中点,以AD为边作等边△ADE,连接CE,CF,求证四边形AFCE是矩形. F E C 6.如图,平行四边形ABCD的对角线AC的垂直平分线与对角线AC 交于点O,与边AD,BC分别交于点E,F四边形AFCE 是不是菱形?为什么? 7.如图,在平行四边形ABCD中, AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得到△GFC.若∠B=60°,当AB与BC满足 什么数量关系时,四边形ABFC是菱形?证 明你的结论.

中考数学专题测试-四边形的证明与计算(答案解析)

【考点分析】 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。12.两圆的内(外)公切线的长相等。 二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。 9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等 三、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。 四、证明两直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。8.利用勾股定理的逆定理。9.利用菱形的对角线互相垂直。10.在圆中平分弦(或弧)的直径垂直于弦。11.利用半圆上的圆周角是直角。 五、证明两线段不等 1.同一三角形中,大角对大边。 2.垂线段最短。 3.三角形两边之和大于第三边,两边之差小于第三边。 4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。 5.同圆或等圆中,弧大弦大,弦心距小。 6.全量大于它的任何一部分。 六、证明两角不等 1.同一三角形中,大边对大角。 2.三角形的外角大于和它不相邻的任一内角。 3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。 4.同圆或等圆中,弧大则圆周角、圆心角大。 5.全量大于它的任何一部分。 七、证明比例式或等积式 1.利用相似三角形对应线段成比例。 2.利用内外角平分线定理。 3.平行线截线段成比例。 4.直角三角形中的比例中项定理即射影定理。 5.与圆有关的比例定理--相交弦定理、切割线定理及其推论。 6.利用比利式或等积式化得。 以上七项是中考几何证明题中最常出现的内容,只要掌握了对应的方法,再根据题目中的条件进行合理选择,攻克难题不再是梦想!

相关主题
文本预览
相关文档 最新文档