当前位置:文档之家› 人教版八下数学第17章-勾股定理试卷(含解析)

人教版八下数学第17章-勾股定理试卷(含解析)

人教版八下数学第17章-勾股定理试卷(含解析)
人教版八下数学第17章-勾股定理试卷(含解析)

一.选择题

1.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5B.a=4,b=5,c=6

C.a=6,b=8,c=10D.a=5,b=12,c=13

2.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()

(2

题)(3

题)(4题)

A.1B.2C.2D.4

3.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()

A.5 m B.12 m C.13 m D.18 m

4.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()

A

.B.

2C

.D.

2

5.已知一个直角三角形的两边长分别为3和4,则第三边长为()

A.5B.7C

.D

.或5

6.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;

当AC=3,BC=4时,计算阴影部分的面积为()

(7题)

A.6B.6πC.10πD.12

7.如图,正方形ABCD的边长为1cm,以对角线AC为边长再作一个正方形,则正方形ACEF的面积是()A.3cm2B.4cm2C.5cm2D.2cm2

8.如图,以直角三角形三边分别作正方形,其中两个正方形的面积分别为225,289,则正方形A的边长为()

(8题)

(9

题)(10题)

A.4B.8C.16D.64

9.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC 中AC边上的高是()

A

.B

.C

.D

10.如图,在Rt△ABC中,∠ACB=90°,AD是△ABC的BC边的中线.若AB

=,BC=2AC,则AD的长是()

A.1B.2C

.D.4

11.如图,四边形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4,AD=5,则DC的长()A.7B

.C

.D.

2

12.勾股定理在平面几何中有着不可替代的重要地位,在我国古算书《周牌算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长均为1的小正方形和Rt△ABC构成的,可以用其面积关系验证勾股定理.将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为()

(11题)(12题)(14)

A.120B.110C.100D.90

二.填空题

13.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.

14.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.

15.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN的长是.16.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.

17.如图,在△ABC中,AB=AC,AE为BC边的中线,BC=10,AE=12,AB=13.若BD平分∠ABC,则△ABD的面积为.

(15

题)(17

题)(18题)

18.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=1,分别以AB、BC、AC为边作正方ABED、BCFK、ACGH,再作Rt△PQR,使∠R=90°,点H在边QR上,点D、E在边PR上,点G、F在边PQ上,则PQ 的长为.

三.解答题

19.如图,在Rt△ABC中,∠C=90°,AC=4.

(1)若BC=2,求AB的长;

(2)若BC=a,AB=c,求代数式(c﹣2)2﹣(a+4)2+4(c+2a+3)的值.

20.如图,一个长为10米的梯子AB斜靠在墙上,梯子的顶端A距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么它的底端B也滑动1米吗?试说明理由.

21.在甲村至乙村间有一条公路,在C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示,为了安全起见,爆破点C周围半径250米范围内不得进入,问:在进行爆破时,公路AB段是否有危险?是否需要暂时封锁?请用你学过的知识加以解答.

22.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).

(1)若点P在AC上,且满足P A=PB时,求出此时t的值;

(2)若点P恰好在∠BAC的角平分线上,求t的值.

23.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:

(1)试说明a2+b2=c2;

(2)如果大正方形的面积是10,小正方形的面积是2,求(a+b)2的值.

参考答案

一.选择题

1.解:A.∵32+42=52,∴△ABC是直角三角形;

B.∵52+42≠62,∴△ABC不是直角三角形;

C.∵62+82=102,∴△ABC是直角三角形;

D.∵122+42=132,∴△ABC是直角三角形;

故选:B.

2.解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S

△ABE

=102﹣4×24=4,∴正方形EFGH的边长=2,

故选:C.

3.解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.

根据勾股定理,AB

==13m,

所以旗杆折断之前高度为BC+AB=13m+5m=18m.故选:D.

4.解:在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,

在Rt△CDB中,∠B=30°,CD=1,

则BD

=,

故AB=AD+BD

=+1.

故选:C.

5.解:当4是直角边时

,斜边==5,

当4

是斜边时,另一条直角边=

=,

故选:D.

6.解:在Rt△ACB中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB

==5,

所以阴影部分的面积S

=×π

×()2

+

×()2

+

﹣×π

×()2=6,

故选:A.7.解:根据勾股定理AC

=,

∴正方形ACEF

的面积=()2=2,

故选:D.

8.解:因为以两个边长的正方形面积为225,289,

则边长为

和,

所以直角边的平方=,

正方形A的边长=8,

故选:B.

9.解:作BD⊥AC于D,如图所示:

∵小正方形的边长为1,

∴AC

=,

∵S

△ABC

=2×2

﹣×1×1

﹣×2×1﹣×2×1=1.5,

∴S

△ABC

=×AC×BD

××CD=1.5,解得:CD

=.

故选:D.

10.解:

∵在Rt△ABC中,∠ACB=90°,

∴AB2=AC2+BC2,

∵AB

=,BC=2AC,

∴5=4AC2+AC2,

∴AC=1,

∴BC=2,

∵AD是△ABC的BC边的中线,

∴CD

=BC=1,

∴AD

=,

故选:C.

11.解:如图作DH⊥BA交BA的延长线于H.

∵AC⊥BD,

∴∠BEC=∠ABC=∠H=90°,

∵∠BDH+∠HBD=90°,∠CAB+∠ABD=90°,∴∠CAB=∠HDB,

∵AC=BD,

∴△ABC≌△DHB,

∴AB=DH=4,

在Rt△BDH中,∵DH=4,AD=5,

∴AH

==3,

∴AC=BD

==,BC

==7,

∴BE

=,DE

=,EC

=,

在Rt△EDC中,DC

=,

故选:B.

12.解:延长AB交KF于点O,延长AC交GM于点P,如图所示:则四边形OALP是矩形.

∵∠CBF=90°,

∴∠ABC+∠OBF=90°,

又∵Rt△ABC中,∠ABC+∠ACB=90°,

∴∠OBF=∠ACB,

在△OBF和△ACB中,

∴△OBF≌△ACB(AAS),

∴AC=OB,

同理:△ACB≌△PGC,

∴PC=AB,

∴OA=AP,

∴矩形AOLP是正方形,边长AO=AB+AC=3+4=7,∴KL=3+7=10,LM=4+7=11,

∴长方形KLMJ的面积为10×11=110.

故选:B.

二.填空题(共6小题)

13.解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,

解得:x=3或﹣3(舍去),∴BC=3x=9.

故答案为:9.

14.解:易证△AFD′≌△CFB,

∴D′F=BF,

设D′F=x,则AF=8﹣x,

在Rt△AFD′中,(8﹣x)2=x2+42,

解之得:x=3,

∴AF=AB﹣FB=8﹣3=5,

∴S

△AFC

=?AF?BC=10.

故答案为:10.

15.解:连接AM,

∵AB=AC,点M为BC中点,

∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,

∴BM=CM=3,

在Rt△ABM中,AB=5,BM=3,

∴根据勾股定理得:AM

==4,

又S

△AMC

=MN?AC

=AM?MC,

∴MN

=.

16.解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,

∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.17.解:∵在△ABC中,AB=AC,AE为BC边的中线,

∴AE⊥BC,且BE=CE.

又∵BC=10,

∴BE=5,

∵AE=12,

∴S

△ABE

=BE?AE

=×5×12=30.

如图,作DF⊥AB于F,∵BD平分∠ABC,

∴DE=DF,

=.

又S

△ABE

=30,

∴S

△ABD

=×30

=.

故答案是:.

18.解:延长BA交QR于点M,连接AR,AP.

在△ABC和△GFC中

∴△ABC≌△GFC(SAS),

∴∠CGF=∠BAC=30°,

∴∠HGQ=60°,

∵∠HAC=∠BAD=90°,

∴∠BAC+∠DAH=180°,

又∵AD∥QR,

∴∠RHA+∠DAH=180°,

∴∠RHA=∠BAC=30°,

∴∠QHG=60°,

∴∠Q=∠QHG=∠QGH=60°,

∴△QHG是等边三角形.

AC=BC?tan60

°=,

则QH=HA=HG=AC

=,

在直角△HMA中,HM=AH?sin60

°=

×

=,AM=HA?cos60

°=,

在直角△AMR中,MR=AD=AB=2.

∴QR

++2

+,

∴QP=2QR=

2+7.

故答案为:

2+7.

三.解答题(共5小题)

19.解:(1)在Rt △ABC 中,∠C =90°,AC =4. ∴AB

=2

(2)Rt △ABC 中,∠C =90°,BC =a ,AB =c ,AC =4, ∴c 2

﹣a 2

=16,

∴(c ﹣2)2﹣(a +4)2+4(c +2a +3), =c 2﹣4c +4﹣(a 2+8a +16)+4c +8a +12, =c 2﹣4c +4﹣a 2﹣8a ﹣16+4c +8a +12, =c 2﹣a 2, =16.

20.解:底端B 滑动距离不是1米. 理由:

在RT △ACB 中,∠C =90°,AB =10米,AC =8米, 由勾股定理得CB =6米,

RT △A ′CB ′中,∠C =90°,A ′B ′=10米,CA ′=7米, 由勾股定理得CB

′=米, ∴BB ′=CB ′﹣CB

=(

﹣6)米,

答:它的底端B

滑动距离为(﹣6)米.

21.解:公路AB 需要暂时封锁.

理由如下:如图,过C 作CD ⊥AB 于D . 因为BC =400米,AC =300米,∠ACB =90°, 所以根据勾股定理有AB =500米. 因为S △ABC =AB ?CD

=BC ?AC 所以CD

=240(米).

由于240米<250米,故有危险,

因此AB 段公路需要暂时封锁.

22.解:(1)设存在点P ,使得P A =PB , 此时P A =PB =2t ,PC =4﹣2t , 在Rt △PCB 中,PC 2+CB 2=PB 2, 即:(4﹣2t )2+32=(2t )2, 解得:t

=,

∴当t

时,P A =PB ;

(2)当点P 在∠BAC 的平分线上时,如图1,过点P 作PE ⊥AB 于点E ,CP =2t , 此时BP =7﹣2t ,PE =PC =2t ﹣4,BE =5﹣4=1, 在Rt △BEP 中,PE 2+BE 2=BP 2, 即:(2t ﹣4)2+12=(7﹣2t )2, 解得:t

=,

∴当t

=时,P 在△ABC 的角平分线上.

23.解:(1)∵大正方形面积为c 2

,直角三角形面积为ab ,小正方形面积为(b ﹣a )2, ∴c 2=4

×ab +(a ﹣b )2=2ab +a 2﹣2ab +b 2即c 2=a 2+b 2.; (2)由图可知,(b ﹣a )2=2,4

×ab =10﹣2=8, ∴2ab =8,

∴(a +b )2=(b ﹣a )2+4ab =2+2×8=18.

人教版八年级下册第17章勾股定理考点和答案

勾股定理考点及答案 1701 勾股定理 一.选择题(共4 小题) 〖案例分析〗如图,在Rt△ABC 中,∠BAC=90°.ED 是BC 的垂直平分线,BD 平分∠ABC,AD=〖课后巩固〗则CD 的长为() A.6 B.5 C.4 D.3 〖课堂练习〗如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,若AC=2,BC=,则CD 为() A.B.2 C.D.3 〖课后巩固〗如图,在Rt△ABC 中,∠ACB=90°,AE 为△ABC 的角平分线,且ED⊥AB,若AC=6,BC=8,则BD 的长() A.2 B.3 C.4 D.5 〖考前再练〗在Rt△ABC 中,∠B=90°,AB=5,BC=4,则AC 的长是()A.3 B.4 C.3 或D.

一.解答题(共 4 小题) 1702 勾股定理的证明 〖案例分析〗如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC 中,∠ACB =90°,BC =a ,AC =b ,AB =c ,正方形 IECF 中,IE =EC =CF =FI = x (1) 小明发明了求正方形边长的方法: 由题意可得 BD =BE =a ﹣x ,AD =AF =b ﹣x 因为 AB =BD +AD ,所以 a ﹣x +b ﹣x =c ,解得 x = (2) 小亮也发现了另一种求正方形边长的方法: 利用 S △ABC =S △AIB +S △AIC +S △BIC 可以得到 x 与 a 、b 、c 的关系,请根据小亮的思路完成他的求解过程: (3) 请结合小明和小亮得到的结论验证勾股定理. 〖课堂练习〗阅读理解: 【问题情境】 教材中小明用 4 张全等的直角三角形纸片拼成图 1,利用此图,可以验证勾股定理吗? 【探索新知】 从面积的角度思考,不难发现: 大正方形的面积=小正方形的面积+4 个直角三角形的面积 从而得数学等式: ;(用含字母 a 、b 、c 的式子表示) 化简证得勾股定理:a 2+b 2=c 2 【初步运用】 (1) 如图 1,若 b =2a ,则小正方形面积:大正方形面积= ;

(完整版)八年级数学勾股定理的应用练习题

13.11勾股定理的应用练习(1) 第1题. 如图,△ABC 中,∠ACB =90o,CD 为AB 边上的高,若∠A =30o,AB =16,则BC =______,BD =______,CD =______. 答案:8,4 , 第2题. 如图是一种“牛头形”图案,其作法是:从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别 向外作正方形2,以此类推,若正方形1的边长为64cm ,则正方形7的边长为_________cm . 答案:8. 第3题. 甲、乙两人从同一地点出发,甲往东走了4km ,乙往南走了3km ,这时,甲、乙两人相距______. 答案:5km 第4题. 如果梯子底端离建筑物9m ,那么15m 长的梯子可达到建筑物的高度是______. 答案:12m 第5题. 如图,一扇宽为4米,高为3米的栅栏门,需要一根长______米的木条像图中那样固定. 答案:5 第6题. 一块土地的形状如图所示,90,20,15,7,B D AB BC CD ∠=∠=?===米米米求这块土地的面积? 答案:234平方米 第7题. 某菜农修建一个塑料大棚(如图),若棚宽a =4m ,高b =3m ,长d =35m ,求覆盖在顶上的塑料薄膜的面积. A B C D 4 4 3 3 2 2 1 3 A B C D a b c d

答案:175m 2 第8题. 一游泳池长48cm ,小方和小朱进行游泳比赛,从同一处出发,小方平均速度为3m/秒,小朱为3.1m/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14m .按各人的平均速度计算,谁先到达终点,为什么? 答案:小朱用16.13秒,小方用16秒,小方先到达终点 第9题. 如图,正方形ACDE 的面积为25cm ,测量出AB =12cm ,BC =13cm ,问E 、A 、B 三点在一条直线上吗?为什么? 答案:在一条直线上,理由略 第10题. 从A 到B 有两种路线,一种走直线由A 到B ,另一种走折线,先从A 直线到C ,再由C 直线到B ,其中ACB ∠成直角,已知A 到C 为600m ,C 到B 为800m ,问从A 到B 走直线比走折线少走多少米? 答案:400米 第11题. 如图,△ABC 中,90C ∠=o ,量出AC 、BC 的长,计算出AB (保留两个有效数字) 答案:略 第12题. 已知一个三角形的三边长分别是12cm ,16cm ,20cm ,你能计算出这个三角形的面积吗? 答案:96平方厘米 第13题. 某住宅小区的形状是如图所示的直角三角形,直角边AC ,BC 的长分别为600米、800米,DE 为小区的大门,大门宽5米,小区的周围用冬青围成了绿化带,问绿化带有多长? 答案:2395米 B A B C A D B E

中考数学勾股定理知识点总结及答案

中考数学勾股定理知识点总结及答案 一、选择题 1.如图,等腰直角△ABC中,∠C=90°,点F是AB边的中点,点D、E分别在AC、BC边上运动,且∠DFE=90°,连接DE、DF、EF,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC的面积是四边形CDFE面积的2倍;③CD+CE=2FA; ④AD2+BE2=DE2.其中错误结论的个数有() A.1个B.2个C.3个D.4个 2.如图,在△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,连接BE,EC.下列判 断:①△ABE≌△DCE;②BE=EC;③BE⊥EC;④EC=3DE.其中正确的有( ) A.1个B.2个C.3个D.4个 3.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm,在容器内壁离容器底部4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm,则该圆柱底面周长为()cm. A.9 B.10 C.18 D.20 4.如图钢架中,∠A=15°,现焊上与AP1等长的钢条P1P2,P2P3…来加固钢架,若最后一根钢条与射线AB的焊接点P到A点的距离为4+23,则所有钢条的总长为() A.16 B.15 C.12 D.10 5.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为

( ) A .5cm B .10cm C .14cm D .20cm 6.下列四组数中不能构成直角三角形的一组是( ) A .1,2,6 B .3,5,4 C .5,12,13 D .3,2,13 7.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 的中点 B .BC 的中点 C .AC 的中点 D .C ∠的平分线与AB 的交点 8.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .42 C .8 D .10 9.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于 PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( ) A .5 B .51- C .51+ D .51-+ 10.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )

【人教版】八年级下数学《勾股定理》单元训练(含答案)

勾股定理专项训练 专训1.巧用勾股定理求最短路径的长 名师点金: 求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离).用计算法求平面中最短问题 1.如图,学校有一块长方形花圃,有极少数人从A走到B,为了避免拐角C走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草. (第1题) 2.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80 km,BC=20 km,∠ABC=120°.请你帮助小明解决以下问题: (1)求A,C之间的距离.(参考数据21≈4.6) (2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间) (第2题) 用平移法求平面中最短问题 3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30c m,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬( ) A.13 cm B.40 cmC.130 cm D.169 cm

八年级数学下册第十七章勾股定理17.1勾股定理教案(新版)新人教版

勾股定理(1) 知识与技能:掌握勾股定理和他的简单的应用,理解定理的一般探究方法。 过程与方法:在方格纸上通过计算面积的方法探索勾股定理的活动,让同学们经历观察、归纳、猜想和验证的数学发现过程,发展数与形结合的数学思 想。 情感态度与价值观:在数学活动中发现探索意识和合作交流的良好学习习惯。 教学重点:经历探索和验证勾股定理的过程,会利用两边求直角三角形的另一边的长。 教学难点:拼图法验证勾股定理,会利用两边求直角形另一边的长。 教具准备:方格纸、4个全等的三角形,小黑板等。 教与学互动设计: 一、创设情境导入新课 引导学生观察课本第64页的地面图形,说说你发现了什么? 提问:①图中有些什么形状? ②三个正方形之间有什么关系? ③通过②的结论你能有什么猜想?说说看。 二、实验操作探求新知 1.数格子 (1)要求学生在准备好的方格纸中作一个任意的等腰直角三角形,分别以三角形的边为边向三角形的外部作正方形。观察三个正方形的面积之间有什么关系。 (2)要求学生在方格纸中作一个任意的直角三角形,分别以三角形的边为边向三角形的外部作正方形。观察三个正方形的面积之间有什么关系。 (3)要求学生在方格纸中作一个任意的非直角三角形,分别以三角形的边为边向三角形的外部作正方形。观察三个正方形的面积之间有什么关系。 讨论、得出结论:在一个直角三角形中,两直角边的平方和等于斜边的平方。 2.证明猜想。 要求用四个全等到的直角三角形拼成一个以斜边为边长的正方形,推理得出 a2+b2=c2

10c 20cm 3.得出结论 定理:经过证明被确认的命题叫做定理。 勾股定理:在一个直角三角形中,两直角边的平方和等于斜边的平方。 三、应用迁移 例1.求下图中的字母A ,B 所代表的正方形的面积。 例2.一个文具盒的尺如 图,一根长30cm 的细 木棒能否放进这个文具 盒,为什么? 练习:填空 (1)在Rt ?ABC 中,∠C=90°,a=5,b=12,则c = (2) 在Rt ?ABC 中,∠B=90°,a=3,b=4, 则c = (3) 在等腰Rt ?ABC 中,AC=BC ,∠C=90°,AC :BC :AB= (4)在Rt ?ABC 中,∠C=90°,∠A=30°,BC :AC :AB= 探究2.

初中数学勾股定理的实际应用

图4 D C B A 生活中的勾股定理 数学源于实际,数学的发展主要依赖于生产实践,从数学应用的角度来处理数学,阐释数学,呈现数学,使学生了解到数学是有用的,数学就在我们身边.利用勾股定理可以解决实际生活中的许多问题.下面举例分析如下: 一.地基挖的合格吗? 例1 如图2,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,ADF=BC=6Mac=9M ,请你帮他看一下挖的是否合格? 分析:本题是数学问题在生活中的实际应用,所以我们要把实际问 题转化成数学问题来解决,运用直角三角形的判别条件,来验证它是否为直角三角形. ∵,819,10086222222===+=+AC DC AD ∴222AC DC AD ≠+,所以△ADC 不是直角三角形, ∴,900≠∠ADC 而标准为长方形,所以四个角应为直角. 所以该农民挖的不合格. 评注:勾股定理的逆定理,在解决实际问题中、有着广泛的应用,可以用它来判定直角,家里建房时,常需要在现场画出直角,在没有测量角的一起的情况下,工人是如常利用勾股定理的逆定理得到直角. 二. 木棒能放进木箱吗? 例1 有一根70cm 长的木棒,要放在长、宽、高分别是50cm ,30cm ,40cm 的木箱中,能放进去吗? 分析:由于木棒长为70cm ,远大于各面的边长,而且比每个面的对角线还要长,故按各面的大小都放不进去,但要注意木箱的形状是立体图形,可以利用空间的最大长度. 解:能放进去. 如图4,连接111,AC C A , 在Rt △111C B A 中,340030502 22 112 112 11=+=+=C B B A C A . 在Rt △11C AA 中,50003400402 2 112 12 1=+=+=C A AA AC , ∵5000>2 70,∴701 AC (cm) 图2 B A

初中数学勾股定理知识点总结及答案

初中数学勾股定理知识点总结及答案 一、选择题 1.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接B ,D 和B ,E .下列四个结论: ①BD =CE , ②BD ⊥CE , ③∠ACE +∠DBC=30°, ④( )2 22 2BE AD AB =+. 其中,正确的个数是( ) A .1 B .2 C .3 D .4 2.在ABC ?中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =, 则BC 的长为( ) A .4或14 B .10或14 C .14 D .10 3.如图,在Rt ABC ?中,90, 5 ,3ACB AB cm AC cm ? ∠=== ,动点P 从点B 出发,沿射线BC 以1 /cm s 的速度移动,设运动的时间为t 秒,当?ABP 为等腰三角形时,t 的值不可能为( ) A .5 B .8 C . 254 D . 258 4.如图,等边ABC ?的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ?沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ?外部,则阴影部分图形的周长为( )

A .1cm B .1.5cm C .2cm D .3cm 5.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为( ) A .10 B .410 C .13 D .213 6.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( ) A .①④⑤ B .③④⑤ C .①③④ D .①②③ 7.在ΔABC 中,211 a b c =+,则∠A( ) A .一定是锐角 B .一定是直角 C .一定是钝角 D .非上述答案 8.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( ) A .49 B .25 C .12 D .10 9.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( ) A .36 B .9 C .6 D .18

第十七章勾股定理复习教案

第十七章 勾股定理 教学目标: 1.会用勾股定理解决简单问题。 2.会用勾股定理的逆定理判定直角三角形。 3.会用勾股定理解决综合问题和实际问题。 教学重点:回顾并思考勾股定理及逆定理 教学难点:勾股定理及逆定理在生活中的广泛应用。 教学过程: 一、出示目标 1.会用勾股定理解决简单问题。 2.会用勾股定理的逆定理判定直角三角形。 3.会用勾股定理解决综合问题和实际问题。 二、知识结构图 三、知识点回顾 1.勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 (4)勾股定理的直接作用是知道直角三角形任意两边的长度,求第三边的长.这里一定要注意找准斜边、直角边;二要熟悉公式的变形: 22222222,,b a c a c b b c a +=-=-=,2222,a c b b c a -=-=.

勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理. 2.如何判定一个三角形是直角三角形 (1) 先确定最大边(如c ) (2) 验证2c 与22b a +是否具有相等关系 (3) 若2c =22b a +,则△ABC 是以∠C 为直角的直角三角形;若 2c ≠22b a +, 则△ABC 不是直角三角形。 3、三角形的三边分别为a 、b 、c ,其中c 为最大边,若2 22c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2 <+c b a 22,则三 角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边 4、勾股数 满足22b a +=2c 的三个正整数,称为勾股数 如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41 四、典型例题分析 例1:如果一个直角三角形的两条边长分别是6cm 和8cm ,那么这个三角形的周长和面积分别是多少? 分析: 这里知道了直角三角形的两条边的长度,应用勾股定理可求出第三条边的长度,再求周长.但题中未指明已知的两条边是_________还是_______,因此要分两种情况讨论. 例2: 如图19—11是一只圆柱形的封闭易拉罐,它的底面半径为4cm ,高为15cm ,问易拉罐内可放的搅拌棒(直线型)最长可以是多长?

人教版七年级数学下册第十七章 勾股定理练习题

第十七章勾股定理 一、单选题 1.有一个直角三角形的两边长分别为3和4,则第三边的长为() A.5B.7C.5D.5或7 2.下列各组数为勾股数的是() A.7,12,13B.3,4,7C.3,4,6D.8,15,17 3.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为() A.4B.8C.16D.64 4.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是() A.-2B.﹣1+2C.﹣1-2D.1-2 5.已知△ABC的三边长分别是6cm、8cm、10cm△ ,则ABC的面积是() A.24cm2B.30cm2C.40cm2D.48cm2 6.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是()

A .5m B .12m C .13m D .18m 7.如图,圆柱底面半径为 4 cm ,高为 18cm ,点 A 、B 分别是圆柱两底面圆周上的点,且 A 、 B 在同一母线上,用一根棉线从 A 点顺着圆柱侧面绕 3 圈到 B 点,则这根棉线的长度最 短为( ) A .24cm B .30cm C .2 21 cm D .4 97 cm 8△.若 ABC 的三边长分别为 a 、b 、c 且满足(a+b )(a 2+b 2﹣c 2)=0△,则 ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角 三角形 9.一架 25 分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端 7 分米.如果梯子的 顶端沿墙下滑 4 分米,那么梯足将滑动( )

(完整版)2018中考数学勾股定理

2018中考数学勾股定理 一.选择题(共7小题) 1.(2018?滨州)在直角三角形中,若勾为3,股为4,则弦为() A.5 B.6 C.7 D.8 【分析】直接根据勾股定理求解即可. 【解答】解:∵在直角三角形中,勾为3,股为4, ∴弦为=5. 故选:A. 2.(2018?枣庄)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为() A.B.C.D. 【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案. 【解答】解:过点F作FG⊥AB于点G, ∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°, ∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°, ∵AF平分∠CAB, ∴∠CAF=∠FAD, ∴∠CFA=∠AED=∠CEF, ∴CE=CF, ∵AF平分∠CAB,∠ACF=∠AGF=90°, ∴FC=FG,

∵∠B=∠B,∠FGB=∠ACB=90°, ∴△BFG∽△BAC, ∴=, ∵AC=3,AB=5,∠ACB=90°, ∴BC=4, ∴=, ∵FC=FG, ∴=, 解得:FC=, 即CE的长为. 故选:A. 3.(2018?泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为() A.9 B.6 C.4 D.3 【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【解答】解:由题意可知:中间小正方形的边长为:a﹣b, ∵每一个直角三角形的面积为: ab=×8=4,

第十七章-勾股定理第一节《勾股定理(3)》教学设计

17.1 勾股定理(3) 一、教学目标 知识与技能 1.利用勾股定理,能在数轴上找到表示无理数的点. 2.进一步学习将实际问题转化为直角三角形的数学模型,?并能用勾股定理解决简单的实际问题. 过程与方法 1.经历在数轴上寻找表示地理数的总的过程,?发展学生灵活勾股定理解决问题的能力. 2.在用勾股定理解决实际问题的过程中,体验解决问题的策略,?发展学生的动手操作能力和创新精神. 3.在解决实际问题的过程中,学会与人合作,?并能与他人交流思维过程和结果,形成反思的意识. 情感、态度与价值观 1.在用勾股定理寻找数轴上表示无理数点的过程中,?体验勾股定理的重要作用,并从中获得成功的体验,锻炼克服困难的意志,建立自信心.2.在解决实际问题的过程中,?形成实事求是的态度以及进行质疑和独立思考的习惯. 二、教学重、难点 重点:……这样的表示无理数的点. 难点利用勾股定理寻找直角三角形中长度为无理数的线段. 三、教学准备 多媒体课件 四、教学方法 分组讨论,讲练结合 五、教学过程 (一)复习回顾,引入新课 复习勾股定理的内容。本节课探究勾股定理的综合应用。

思考:在八年级上册中我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗? 先画出图形,再写出已知、求证. 探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在 设计意图: 上一节,我们利用勾股定理可以解决生活中的不少问题.在初一时我们 ……这样的无理 ……可以当直角三 用. 师生行为: 学生小组交流讨论 ……这样的包含在直角三角形中的线段. 此活动,教师应重点关注: ②学生是否有克服困难的勇气和坚强的意志; ③学生能否积极主动地交流合作. 师:所以只需画出长 1的直角三角形的斜边. 生:设两直角边为a,b,根据勾股定理a2+b2=c2即a2+b2=13.若

勾股定理及其应用总结归纳

精心整理第五次课勾股定理及其应用 本章知识要点 A. 勾股定理及其逆定理。 B. 验证、证明勾股定理及其依据(面积法)。

重点知识勾股定理的验证

重点知识确定几何体上的最短路线 例1 B A

图 AC=c ,请利用四边形D C BC ''的面积验证勾股定理222c b a =+. (2)如图1-1-9(2),台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部 8m 处,已知旗杆原长16 m ,你能求出旗杆在离底部多少米的位置断裂吗? 例7 如图1-2-6,A 、B 两个小镇在河流CD 同侧,到河的距离分别为AC =10千米,BD =30千米, 图 图1-2-9

且CD=30千米,现在要在河岸上修建一个自来水厂,分别向A、B两镇供水.铺设水管的费用为每千米3万元,请你在河岸上选择自来水厂的位置,使铺设水管的总费用最低,并求出最低总费用. 例8 如图1-2-7,一架长2.5m的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m,如果 家庭作业 =,CH=,5.△ABC中,AB=25,BC=20,CA=15,CM和CH分别是中线和高。那么S △ABC MH= 图 6.已知直角三角形两边的长为3和4,则此三角形的周长为__________.

7.△ABC 中,AB=AC=17cm ,BC=16cm ,AD ⊥BC 于D ,则AD= . 8.如图1-1-2,D 为△ABC 的边BC 上的一点,已知AB=13,AD=12, AC=15,BD=5,则BC 的长为 9.如图1-1-5,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米, 且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万 元,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少? 10.如图1-1-6,一架梯子的长度为25米,如图斜靠在墙上,梯子顶端离墙底端为7米。 这个梯子顶端离地面有多高? 如果梯子的顶端下滑了4 11.如图1-2-11,长方体的长为15cm ,宽为10果要沿着长方体的表面从点A 爬到点B 图1-1-2 B 图

201X版七年级数学上册 第三章 勾股定理单元练习五 鲁教版五四制

2019版七年级数学上册第三章勾股定理单元练习五鲁教版五四制1.在Rt△ABC中,∠C=90°,AC=9,AB=15,则点C到AB的距离是() A.B.12 C.9 D. 2.如图,在△ABC中,∠ABC=90°,分别以BC,AB,AC为边向外作正方形,面积分别记为S1、S2、S3,若S2=4,S3=6,则S1=() A.2 B.4 C.6 D.10 3.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是() A.20cm B.10cm C.14cm D.无法确定 4.如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D点,M,N是AC,BC上的动点,且∠MDN=90°,下列结论: ①AM=CN;②四边形MDNC的面积为定值;③AM2+BN2=MN2;④MN平分∠CND. 其中正确的是() A.①②③B.①②④C.①③④D.①②③④ 5.如图,四边形ABCD中,∠B=∠D=0 45,AB=3,CD=1,则BC的长为() 90,∠A=0

A . 3 B .2 C . 21+ D .23- 6.以a 、b 、c 为边长的三角形是直角三角形的是( ) A .a=3,b=5,c=7 B .a=2,b=2,c= C .a= ,b=,c= D .a=,b=,c= 7.如图,Rt△ABC 中,BC=2,AC=2 ,则AB 长为( ) A .2 B .2 C .4 D .4 8.如图,一架长为10m 的梯子斜靠在一面墙上,梯子底端离墙6m ,如果梯子的顶端下滑了2m ,那么梯子底部在水平方向滑动了( ) A .2m B .2.5m C .3m D .3.5m 9.以下列各组数为边的三角形不是直角三角形的是( ) A .24,10,26 B .5,3,4 C .60,11,61 D .5,6,9 10.下列命题: ①如果a ,b ,c 为一组勾股数,那么a 4,b 4,c 4仍是勾股数; ②如果直角三角形的两边是5、12,那么斜边必是13; ③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;

202年九年级中考复习 数学考点专项训练——专题十八:勾股定理

2021中考复习数学考点专项训练——专题十八:勾股定理 一、填空题 1.直角三角形的两边长为3,5,且第三边是整数,则第三边的长度为______. 2. 一艘轮船以海里∕小时的速度从港口出发向东北方向航行,同时另一轮船以海里∕小时从港口出发向东南方向航行,离开港口小时后,则两船相距________. 3. 若三角形的边长分别为、、,则它的最长边上的高为________. 4. 像、、这样的正整数符合,又如、、符合,这样的数组我们叫做勾股数. (1)有一组数是勾股数,两个较小的数为和,则第三个数为________. (2)下列数组中勾股数有________. ①,,;②,,;③,,;④,, 组组组组. 5. 一个圆桶儿,底面直径为,高为,有一只小虫从底部点处爬到上底处,则小虫所爬的最短路径长是取________. 6. 如图,一架米长的梯子斜靠在竖直的墙上,这时梯足到墙底端的距离为米,如果梯子顶端沿着墙下滑米,那么梯足也向外平移________米. 7. 在一个长为米,宽为米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽平行

且,木块的正视图是边长为 米的正方形,一只蚂蚁从点处,到达处需要走的最短路程是________ 米.(精确到 米) 8.如上图,在 中, ,将 折叠,使点B 与点A 重合,折痕为DE ,若AC=6,BC=8, 则线段CD 的长为______. 9.如图,在 中,点、、分别在、、上,且,,, , ,则 ______度. 10.如图,一圆柱高 8 cm ,底面半径 2 cm ,一只蚂蚁从点 A 爬到点 B 处吃食,要爬行的最短路程(π取 3)是 . 二、选择题 1. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( ) A. ab=h 2 B. a 2+b 2=2h 2 C. a 1+ b 1=h 1 D. 21a +2 1b = 2 1h

第十七章《勾股定理》教材分析及教学建议

第十七章《勾股定理》教材分析及教学建议 本章主要内容是勾股定理及其逆定理。首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。 本章教学时间约需8课时,具体安排如下: 18.1 勾股定理 4 课时 18.2 勾股定理的逆定理 3课时 数学活动 小结 1课时一、教科书内容和课程学习目标 本章知识结构框图: 直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半。本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质。

勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。它不仅在数学中,而且在其他自然科学中也被广泛地应用。 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。据说我国著名数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种“语言”的。这个事实可以说明勾股定理的重大意义,发现勾股定理,尤其在2000多年前,是非常了不起的成就。 在第一节中,教科书让学生通过观察计算一些直角三角形两直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理。 勾股定理的证明方法很多,教科书正文中介绍的是一种面积证法。其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。在教科书中,图-3(1)中的图形经过割补拼接后得到图-3(3)中的图形。由此就证明了勾股定理。通过推理证实命题1的正确性后,教科书顺势指出什么是定理。 由勾股定理可知,已知两条直角边的长a,b,就可以求出斜边c的长。由勾股定理可得或,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长。也就是说,在直角三角形中,已知两条边的长,就可以求出第三条边的长。教科书相应安排了三个探究栏目,让学生运用勾股定理解决问题。 在第二节中,教科书让学生画出一些两边的平方和等于第三边的平方的三角形,可以发现画出的三角形是直角三角形。从而猜想如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形是直角三角形。这个猜想可以利用全等三角形证明,得到勾股定理的逆定理。 勾股定理的逆定理给出了判定一个三角形是直角三角形的方法。教科书安排了两个例题,让学生学会运用这种方法。这种方法与前面学过的一些判定方法不同,它通过代数运算“算”出来。实际上利用计算证明几何问题学生已经见过,计算在几何里也是很重要的。从

勾股定理的分类应用

勾股定理常考分类习题 方程思想的应用: 1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°, ,求、、的值。 2.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长. 3.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长. 4. 如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长 5. 如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积 D C B A F E

典型几何题 1.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,求BC 的长. 2.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长. 3.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积. 4.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长. 5、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6,AC=8, 求AB 、CD 的长 6.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE = CB 4 1 ,求证:AF ⊥FE . D C B A

人教版九年级下册数学专题23 直角三角形与勾股定理

直角三角形与勾股定理 一.选择题 1. (2015辽宁大连,8,3分)如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD =5,则BC 的长为( ) A .3-1 B .3+1 C .5-1 D .5+1 【答案】D 【解析】解:在△ADC 中,∠C =90°,AC =2,所以CD = ()12 52 2 22=-= -AC AD , 因为∠ADC =2∠B ,∠ADC =∠B +∠BAD ,所以∠B =∠BAD ,所以BD =AD =5,所以 BC =5+1,故选D . 2.(2015?四川南充,第9题3分)如图,菱形ABCD 的周长为8cm ,高AE 长为cm ,则对 角线AC 长和BD 长之比为( ) (A )1:2 (B )1:3 (C )1: (D )1: 【答案】D 【解析】 试题分析:设AC 与BD 的交点为O ,根据周长可得AB =BC =2,根据AE =可得BE =1,则△ABC 为等边三角形,则AC =2,BO =,即BD =2 ,即AC :BD =1: . 考点:菱形的性质、直角三角形.

3.(2015?四川资阳,第9题3分)如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是 A.13cm B.261cm C.61cm D.234cm 考点:平面展开-最短路径问题.. 分析:将容器侧面展开,建立A关于EF 的对称点A ′,根据两点之间线段最短可知A′B的长 度即为所求. 解答:解:如图: ∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm 的点B处有一饭粒, 此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处, ∴A′D=5cm,BD=12﹣3+AE=12cm, ∴将容器侧面展开,作A关于EF的对称点A ′, 连接A′B,则A′B即为最短距离, A′B= = =13(Cm). 故选:A. 点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定 理进行计算是解题的关键.同时也考查了同学们的创造性思维能力. 4. (2015?浙江滨州,第10题3分)如图,在直角的内部有一滑动杆.当端点沿直 线向下滑动时,端点会随之自动地沿直线向左滑动.如果滑动杆从图中处滑动 到处,那么滑动杆的中点所经过的路径是( ) A.直线的一部分 B.圆的一部分 C.双曲线的一部分 D.抛物线的一部分 图5

新人教版八年级下册数学第十七章 勾股定理教案

八年级下册数学第十七章勾股定理集体备课(教案) 17.1 勾股定理(一) 一、教学目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 二、教学重点、难点 1.重点:勾股定理的内容及证明。 2.难点:勾股定理的证明。 三、课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗 命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c , 那么 。 四、合作探究: 方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。 ⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 A B

高中数学必备知识点 勾股定理的应用

2013高中数学必备知识点勾股定理的应用 勾股定理在高中有一个口诀叫“勾三股四弦五”。什么意思呢?也就是说勾股定理的学习按着3:4:5这个比例计算的。勾指的是直角三角形直角边中短的那条,股市直角边稍微长的那条,弦就不说了,那就是斜边了。这个定义具体该怎么用呢? 一、经典证明方法细讲 方法一: 作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGE F ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°, BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则

, ∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2 方法二 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c, ∠CJB = ∠CFD = 90°, ∴RtΔCJB ≌ RtΔCFD , 同理,RtΔABG ≌ RtΔADE, ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE ∴∠ABG = ∠BCJ, ∵∠BCJ +∠CBJ= 90°, ∴∠ABG +∠CBJ= 90°, ∵∠ABC= 90°, ∴G,B,I,J在同一直线上, 所以a^2+b^2=c^2 二、勾股数的相关介绍 ①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起就没有间断过。计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式。 ②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明。 ③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦。]在一个三角形中,两条边的平方和等于另一条边的平方,那么这个三角形就是直角三角形。

相关主题
相关文档 最新文档