当前位置:文档之家› Fisher d101606x012 (2)

Fisher d101606x012 (2)

Fisher  d101606x012 (2)
Fisher  d101606x012 (2)

https://www.doczj.com/doc/1e12773157.html,

D 100054X 012

Design V500 Rotary Control Valve

The Design V500 eccentric plug rotary control valve controls erosive, coking, and other hard-to-handle fluids, providing either throttling or on-off operation.The flanged (figure 1) and flangeless valves feature streamlined flow passages, rugged metal trim

components, and a patented, self-centering seat ring (figures 2 and 3). With these components, the Design V500 rotary control valve combines globe valve ruggedness with the efficiency of a rotary valve. Matched with a Fisher r power or manual actuator, the Design V500 rotary control valve dependably controls fluids in many process industries.

Unless otherwise noted, all NACE references are to NACE MR0175-2002.

Note

Neither Emerson, Emerson Process Management, nor any of their affiliated entities assumes responsibility for the selection, use and maintenance of any product. Responsibility for the

selection, use, and maintenance of any product remains with the purchaser

and end-user.

W8380

Figure 1. Design V500 Flanged Rotary Control Valve with Type 1061 Actuator and DVC6020 Digital Valve Controller

(continued) 2

3

assembly is specifically designed to combat the process of erosion. Streamlined flow passages,rugged components, and a wide choice of

erosion-resistant trim materials all promote long,dependable service life in erosive applications.D Long Seat Life—Path of eccentric plug (figure 5)minimizes contact with seat ring when opening,

reducing seat wear and friction. When the valve plug rotates into the seat ring, a self-lapping action occurs,improving the fit between shut-off surfaces. Full-port,316 SST, Alloy 6, or ceramic seat ring has two shutoff surfaces and can be easily reversed, reducing downtime.

D Operational Versatility—Patented

self-centering seat ring and rugged plug allow forward or reverse flow with tight shutoff in either flow direction. Reverse flow direction helps move downstream turbulence away from shutoff surfaces.Full 90-degree rotation removes valve plug from flowstream, helping to reduce plug wear. Seat ring and retainer are available in full and restricted port constructions, and can easily be changed if capacity requirements change.

D Easy Installation—Integral valve body flanges mate with many different classes of pipeline flanges,satisfying a variety of piping requirements. Flanges help to eliminate exposed line flange bolting, shorten alignment and installation time, and promote secure valve installations and piping integrity. Flangeless valves are automatically self-centering on line bolting for easy installation.

when tightening the retainer, promoting accurate alignment and easy assembly.

D Improved Environmental Capabilities—The optional ENVIRO-SEAL packing systems are

designed with very smooth shaft surfaces and live loading to provide improved sealing. The seal of the ENVIRO-SEAL system can restrict emissions to less than the EPA (Environmental Protection Agency)limit of 100 ppm (parts per million).

D Sour Service Capability—Trim and bolting materials are available for applications handling sour service. These materials comply with the requirements of NAC

E MR0175-2002.

D Rugged Construction—Durable, solid metal or ceramic seat ring and valve plug shut off tightly without deforming plug arms or employing thin ball seals. Oversized shaft diameters and rugged trim parts allow high pressure drops.

D Reliable Performance—Patented seat ring design (figure 3) self-centers, self-laps, and

dynamically aligns with plug, giving excellent cycle life. Sealed metal bearings help prevent particle buildup and valve shaft seizure in erosive applications.

D Choice of Construction Materials—Plug,seat ring, and retainer are available in four levels of hardness for selection of erosion resistance.

4

Table 2. Valve Size, EN Pressure Ratings, and Flange Capability (X indicates availability)

Flanged

Flangeless VALVE SIZE, DN

PN 10

PN 16

PN 25

PN 40

PN 63

PN 100

PN 10

PN 16

PN 25

PN 40

PN 63

PN 100

25405080100150200X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X X X –––––––––X X X X –––––––––X X X X –––––––––X X X X –––––––––X X X X –––––––––X ––––––––––––––––––––––––––––––

FACE SEALS

BEARING

SEAT RING

PACKING

VALVE SHAFT

O–RINGS

BEARING STOP

TAPER AND

EXPANSION PINS

DETAIL OF SEALED BEARINGS

1

W4172–2 / IL

W4170–3 / IL

11

NOTE: END-TAPPED VALVE BODY AND PIPE PLUG STANDARD ON ALL NPS 3 THROUGH 8 VALVES; STANDARD ON ALL NPS 1 THROUGH 2VALVES WITH SEALED BEARINGS; OPTIONAL ON NPS 1 THROUGH 2 VALVES WITH STANDARD BEARINGS

Figure 2. Sectional of Design V500 Control Valve

5

49A3685–C A3288–2 / IL

REVERSE FLOW SHUTOFF

(STANDARD)

FORWARD FLOW SHUTOFF

FACE SEAL

SECTION

FLOW

DIRECTION

FLOW

Figure 3. Detail of Seat Ring Design

VALVE BODY

ANTI–

EXTRUSION RINGS

PACKING BOX RING

PTFE PACKING V–RINGS SHOWN

PACKING FLANGE

PACKING BOX RING

GRAPHITE PACKING SET

PACKING FOLLOWER

SINGLE PTFE PACKING GRAPHITE PACKING

W6125–1 / IL

W5806–1 / IL

Figure 4. Typical ENVIRO-SEAL r Packing Arrangements for Rotary Valves

6

7

8

9

10

11

12

13

Installation

The Design V500 control valve may be installed in any position. However, for best shutoff

performance, a position with the shaft horizontal is recommended.

The control valve may be installed in forward or reverse flow direction. Forward flow (through the seat ring and past the plug) tends to open the valve;reverse flow (past the plug and through the seat ring) tends to close the valve. The reverse flow direction is recommended for erosive applications.Specific operating conditions may require a specific combination of push-down-to-close or -open actuator motion and open valve plug position above or below the shaft. To satisfy specific operating requirements,the complete control valve package (valve and

actuator) can be assembled and installed in different ways, providing eight options for actuator motion and open plug position.

Table 10 and the appropriate actuator bulletin

describe possible assembly and installation options.For assistance in selecting the appropriate combination of actuator action and open valve position, consult your Emerson Process Management sales office.Dimensions are shown in figure 6.Valve Information

To determine the required valve ordering

information, refer to the Specifications table. Review the information under each specification and in the referenced tables.

B1879–1 / IL

VALVE BODY CENTERLINE VALVE SHAFT CENTERLINE

VALVE BODY CENTERLINE VALVE SHAFT CENTERLINE

VALVE BODY CENTERLINE VALVE SHAFT CENTERLINE

Figure 5. Eccentric Rotation

The Size 20 Type 1052 actuator is not available for use with Design V500 rotary control valves because the sizing of this combination is marginal.

14

NOTE:

FOR DIMENSIONS OF VALVES WITH DIN (OR OTHER) END CONNECTIONS,CONSULT YOUR EMERSON PROCESS MANAGEMENT SALES OFFICE.

CL150, CL300, OR CL600

FLANGELESS OR WITH RF OR RTJ FLANGES

NPS 1, 1?1/2 AND 2

BODY MOUNTING NPS 3 AND 4 BODY MOUNTING

NPS 6 AND 8 BODY MOUNTING

A3289–1 / IL

Figure 6. Design V500 Rotary Control Flanged and Flangeless Valve Dimensions (refer to table 11)

15

16

17

18

19

20

Fisher判别分析原理详解

Fisher判别分析原理详解 说起Fisher判别分析,不得不提到一个大神级人物! Ronald Aylmer Fisher (1890~1962) 英国统计学家和遗传学家 主要著作有:《根据孟德尔遗传方式的亲属间的相关》、《研究者用的统计方法》、《自然选择的遗传理论》、《试验设计》、《近交的理论》及《统计方法和科学推理》等。他一生在统计生物学中的功绩是十分突出的。 ?生平 1890年2月17日生于伦敦,1962年7月29日卒于澳大利亚阿德莱德。 1912年毕业于剑桥大学数学系,后随英国数理统计学家J.琼斯进修了一年统计力学。他担任过中学数学教师,1918年任罗坦斯泰德农业试验站统计试验室主任。 1933年,因为在生物统计和遗传学研究方面成绩卓著而被聘为伦敦大学优生学教授。 1943年任剑桥大学遗传学教授。

1957年退休。 1959年去澳大利亚,在联邦科学和工业研究组织的数学统计部作研究工作。 大神解决的问题 ?Fisher 线性判别函数的提出: 在用统计方法进行模式识别时,许多问题涉及到维数,在低维空间可行的方法,在高维空间变得不可行。因此,降低维数就成为解决实际问题的关键。Fisher 的方法,就是解决维数压缩问题。 对xn的分量做线性组合可得标量 yn=wTxn,n=1,2,…,Ni 得到N个一维样本yn组成的集合。从而将多维转换到了一维。 考虑把d维空间中的数据点投影到一条直线上去的问题,需要解决的两个问题: (1)怎样找到最好的投影直线方向;(2)怎样向这个方向实现投影,这个投影变 换就是要寻求的解向量w*。这两个问题就是Fisher方法要解决的基本问题。?判别分析的一些基本公式 Fisher判别分析用于两类或两类以上间的判别,但常用于两类间判别。 Fisher判别函数表达式(多元线性函数式): 判别函数的系数是按照组内差异最小和组间差异最大同时兼顾的原则来确定判别函数的。 Fisher判别准则: 判别临界点: Fisher判别分析思想: 1. 类间差异大,类内变异小, 最大 2. 方差分析的思想:以下值最大 ?Fisher判别的原理 分析w1方向之所以比w2方向优越,可以归纳出这样一个准则,即向量w的方向选择应能使两类样本投影的均值之差尽可能大些,而使类内样本的离散程度尽可能小。这就是Fisher准则函数的基本思路。如下图:

Fisher判别分析

对案例中小企业的破产模型做Fisher判别分析 江义114113001059 一问题:对企业的运行状态利用Fisher判别进行分类 选取四个经济指标用于判断企业处于破产状态还是正常运行状态,具体数据如下,其中类别1表示破产状态,类别2表示正常运行状态 X1总负债率X2收益率指 标 X3短期 支付能 力 X4生产 效率指 标 类别 -0.45 -0.41 1.09 0.45 1 -0.56 -0.31 1.51 0.16 1 0.06 0.02 1.01 0.4 1 -0.07 -0.09 1.45 0.26 1 0.38 0.11 3.27 0.55 2 0.19 0.05 2.25 0.33 2 0.32 0.07 4.24 0.63 2 0.04 0.01 1.5 0.71 2 -0.06 -0.06 1.37 0.4 1 0.07 -0.01 1.37 0.34 2 -0.13 -0.14 1.42 0.44 1 0.15 0.06 2.23 0.56 2 0.16 0.05 2.31 0.2 2 0.29 0.06 1.84 0.38 带测定 0.54 0.11 2.33 0.48 带测定 二、程序如下:(R语言) > data=read.table("E:/bac/qiye.txt",header=T) > data1=c(rep(1,6),rep(2,7)) > data2=as.factor(data1) > data$class=data2 > attach(data) > names(data) [1] "X1" "X2" "X3" "X4" "class" > library(MASS) > data.lda=lda(class~X1+X2+X3+X4) > data.lda Call: lda(class ~ X1 + X2 + X3 + X4) Prior probabilities of groups: 1 2 0.4615385 0.5384615 Group means:

Fisher判别函数

Fisher 判别函数的使用具体步骤 Fisher 多类判别模型 假定事物由p 个变量描述, 即: x=(p x x x ,...,,21)T 该种事物有G 个类型, 从每个类型中顺次抽取p n n n ,...,,21个样品, 共计n= ∑=G i i 1 n 个样品。 即从第g 类取了g n 个样品, g=1,2,?, G, 第g 类的第i 个样品, 用向量: gi x =(pgi gi gi x x ,...,,x 21)T (1) ( 1) 式中, 第一个下标是变量号, 第二个下标是类型号,第三个下标是样品号。设判别函数为: T x p p v x v x v x v =+++=...y 2211 (2) 其中: V=(p v v v ,...,21)T 按照组内差异最小, 组间差异最大同时兼顾的原则, 来确定判别函数系数。(中间推导过程不在这里介绍了) 最终就有个判别函数:,y x V T j j =1,...,2,1s j = 一般只取前M=min(G- 1,p)个, 即: M j x v x v x v y p pj j j j ,...,2,1,...2211=+++= (3) 根据上述M 个判别函数, 可对每一个待判样品做出判别。 ),...,,(x 020100p x x x= 其过程如下: 1、把x0 代入式(3) 中每一个判别函数, 得到M 个数 ,,...,2,1,...y 202101j 0M j x v x v x v p pj j j =+++= 记:T M y y y y ),...,,(020100= 2、把每一类的均值代入式(3)得 G g y y y y G g M j x v x v x v y M g g g g pg pg g g g g j g ,...,2,1),,...,,(,...2,1,,...,2,1,...212211====+++= 3、计算:∑=-=M j j j g g y y D 1 2 02 )(,从这G 个值中选出最小值:)(min 212g G g h D D ≤≤=。这样就把0 x 判为h 类。

费希尔判别法理论

费希尔判别 费希尔判别(或称典型判别)的基本思想是投影(或降维):用p维向量 x (X i,X2, X p)的少数几个线性组合(称为费希尔判别函数或典型变量) y i a i x, y2 a?x, y x (—般r明显小于p )来代替原始的p个变量 X i,X2, X p,以达到降维的目的,并根据这r个判别函数y i,y2, *对样品的归属做出判别或将各组分离。成功的降维将使样品的归类或组的分离更为方便和有效,并且可以对前三个判别函数作图,从直观的几何图像上区别各组。 在降维的过程中难免会有部分有用信息的损失,但只要使用的方法得当,我们可以最大限度地减少这种损失,从而保留尽可能多的有用信息,即关于能够反 点画于直角坐标系上,一组的样品点用“肿表示,另一组的样品点用“c”表示。 假定我们希望将二维空间的点投影到某个一维空间,即一条直线上,然后再对两组进行判别,则投影到不同的直线上,判别的效果一般是不同的。从图中可见,

如果两组的点都投影到直线 z 上则这两组的投影点在该直线上的分布几乎无任 何差异,他们完全混合在一起,我们无法将这两组的点区别开来, 这样的降维把 反应两组间差异的信息都给损失了, 显然是不可取的。事实上,最好的投影是投 影到直线y 上,因为它把两组的投影点很清楚地区分了开来, 这种降维把有关两 组差异的信息很好地保留了下来,几乎没有任何损失,如此就完全可以在一维的 直线上作判别分析。 我们现考虑在R p 中将k 组的p 维数据向量投影到某个具有最佳方向的 a 上, 即投影到a 上的点能最大限度地显现出各组之间的差异。 设来自组i 的p 维观测值为X j ,j=1,2, ,n i ,i=l,2, ,k ,将它们共同投影 到某一 p 维常数向量a 上,得到的投影点可分别对应线性组合 y j =a x 0, j=1,2, ,n i ,i=1,2, ,k 。这样,所有的p 维观测值就简化为一维观测值。下面 我们用%表示组i 中y j 的均值,y 表示所有组k 组的y 0的总均值,即 对于任一用来投影的a ,我们需要给出一个能反映组之间分离程度的度量 比较图 中的上、下半图,上半图三组均值之间的差异程度与下半图是相同的, 而前者组之间的分离程度却明显高于后者, 原因就在于前者的组内变差要远小于 后者,后者组之间有较多重叠。因此,可以考虑将组之间的分离程度度量为相对 其组内变差的组间变差。在以下的讨论中,我们需假定各组的协方差矩阵相同,n i j i y j a X i 式中n X i 1 ni x ij , n j 1 a X i 1 k - n i X i o n i 1 n i n

fisher判别式

Fisher 线性判别式 前面讲过的感知器准则、最小平方和准则属于用神经网络的方法解决分类问题。下面介绍一种新的判决函数分类方法。 由于线性判别函数易于分析,关于这方面的研究工作特别多。历史上,这一工作是从R.A.Fisher 的经典论文(1936年)开始的。我们知道,在用统计方法进行模式识别时,许多问题涉及到维数,在低维空间行得通的方法,在高维空间往往行不通。因此,降低维数就成为解决实际问题的关键。Fisher 的方法,实际上涉及维数压缩。 如果要把模式样本在高(d )维的特征向量空间里投影到一条直线上,实际上就是把特征空间压缩到一维,这在数学上容易办到。另外,即使样本在高维空间里聚集成容易分开的群类,把它们投影到一条任意的直线上,也可能把不同的样本混杂在一起而变得无法区分。也就是说,直线的方向选择很重要。 在一般情况下,总可以找到某个最好的方向,使样本投影到这个方向的直线上是最容易分得开的。如何找到最好的直线方向,如何实现向最好方向投影的变换,是Fisher 法要解决的基本问题。这个投影变换就是我们寻求的解向量* w 。 1.线性投影与Fisher 准则函数 在21/w w 两类问题中,假定有n 个训练样本),....,2,1(n k x k =其中1n 个样本来自i w 类型,2n 个样本来自j w 类型,21n n n +=。两个类型的训练样本分别构成训练样本的子集1X 和2X 。 令:k T k x w y =,n k ,...,2,1= (4.5-1) k y 是向量k x 通过变换w 得到的标量,它是一维的。实际上,对于给定的w ,k y 就是判决函数的值。 由子集1X 和2X 的样本映射后的两个子集为1Y 和2Y 。因为我们关心的是w 的方向,可以令1||||=w ,那么k y 就是k x 在w 方向上的投影。使1Y 和2Y 最容易区分开的w 方向正是区分超平面的法线方向。如下图: 图中画出了直线的两种选择,图(a)中,1Y 和2Y 还无法分开,而图(b)的选择可以使1Y 和2Y 区分开来。所以图(b)的方向是一个好的选择。 下面讨论怎样得到最佳w 方向的解析式。 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1,2,1=i (4.5-2) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (4.5-3) 映射后,各类样本“类内离散度”定义为: 2 2 () k i i k i y Y S y m ∈= -∑ ,2,1=i (4.5-4) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离散度越小越好。因此,定义Fisher

Fisher线性判别分析实验(模式识别与人工智能原理实验1)

实验1 Fisher 线性判别分析实验 一、摘要 Fisher 线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。 Fisher 线性判别分析,就是通过给定的训练数据,确定投影方向W 和阈值y0,即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。 二、算法的基本原理及流程图 1 基本原理 (1)W 的确定 各类样本均值向量mi 样本类内离散度矩阵i S 和总类内离散度矩阵w S 12w S S S =+ 样本类间离散度矩阵b S 在投影后的一维空间中,各类样本均值T i i m '= W m 。样本类内离散度和总类内离散度 T T i i w w S ' = W S W S ' = W S W 。样本类间离散度T b b S ' = W S W 。 Fisher 准则函数满足两个性质: ·投影后,各类样本内部尽可能密集,即总类内离散度越小越好。 ·投影后,各类样本尽可能离得远,即样本类间离散度越大越好。 根据这个性质确定准则函数,根据使准则函数取得最大值,可求出W : -1w 12W = S (m - m ) 。 (2)阈值的确定 实验中采取的方法:012y = (m ' + m ') / 2。 (3)Fisher 线性判别的决策规则 对于某一个未知类别的样本向量x ,如果y=W T ·x>y0,则x ∈w1;否则x ∈w2。 x 1 m x, 1,2 i i X i i N ∈= =∑T x S (x m )(x m ), 1,2 i i i i X i ∈= --=∑T 1212S (m m )(m m )b =--

判别分析中Fisher判别法的应用

1 绪论 1.1课题背景 随着社会经济不断发展,科学技术的不断进步,人们已经进入了信息时代,要在大量的信息中获得有科学价值的结果,从而统计方法越来越成为人们必不可少的工具和手段。多元统计分析是近年来发展迅速的统计分析方法之一,应用于自然科学和社会各个领域,成为探索多元世界强有力的工具。 判别分析是统计分析中的典型代表,判别分析的主要目的是识别一个个体所属类别的情况下有着广泛的应用。潜在的应用包括预测一个公司是否成功;决定一个学生是否录取;在医疗诊断中,根据病人的多种检查指标判断此病人是否有某种疾病等等。它是在已知观测对象的分类结果和若干表明观测对象特征的变量值的情况下,建立一定的判别准则,使得利用判别准则对新的观测对象的类别进行判断时,出错的概率很小。而Fisher判别方法是多元统计分析中判别分析方法的常用方法之一,能在各领域得到应用。通常用来判别某观测量是属于哪种类型。在方法的具体实现上,采用国广泛使用的统计软件SPSS (Statistical Product and Service Solutions),它也是美国SPSS公司在20世纪80年代初开发的国际上最流行的视窗统计软件包之一 1.2 Fisher判别法的概述 根据判别标准不同,可以分为距离判别、Fisher判别、Bayes判别法等。Fisher 判别法是判别分析中的一种,其思想是投影,Fisher判别的基本思路就是投影,针对P维空间中的某点x=(x1,x2,x3,…,xp)寻找一个能使它降为一维数值的线性函数y(x):()j j x C y = x∑

然后应用这个线性函数把P 维空间中的已知类别总体以及求知类别归属的样本都变换为一维数据,再根据其间的亲疏程度把未知归属的样本点判定其归属。这个线性函数应该能够在把P 维空间中的所有点转化为一维数值之后,既能最大限度地缩小同类中各个样本点之间的差异,又能最大限度地扩大不同类别中各个样本点之间的差异,这样才可能获得较高的判别效率。在这里借用了一元方差分析的思想,即依据组间均方差与组均方差之比最大的原则来进行判别。 1.3 算法优缺点分析 优点:(1)一般对于线性可分的样本,总能找到一个投影方向,使得降维后样本仍然线性可分,而且可分性更好即不同类别的样本之间的距离尽可能远,同一类别的样本尽可能集中分布。 (2)Fisher 方法可直接求解权向量*w ; (3)Fisher 的线性判别式不仅适用于确定性模式分类器的训练,而且对于随机模式也是适用的,Fisher 还可以进一步推广到多类问题中去 缺点: (1)如果21M M =,0*=w ,则样本线性不可分; 21M M ≠,未必线性可分; w S 不可逆,未必不可分。 (2)对线性不可分的情况,Fisher 方法无法确定分类 2 实验原理 2.1 线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量:

改进的Fisher判别法

文章编号:1000-2243(2006)04-0473-05 改进的Fisher判别方法 黄利文1,2,梁飞豹1 (1.福州大学数学与计算机科学学院,福建 福州 350002;2.泉州师范学院理工学院,福建 泉州 362000)摘要:对Fisher判别方法进行了改进,其主要思想是改变Fisher判别中以临界值为准则的判别方法,而以各总体的投影值所确定的正态分布的密度函数作为样品归类准则,并形成多次判别.例子表明,该方法优于Fisher判别方法. 关键词:Fisher判别;临界值;判别分析 中图分类号:O212 文献标识码:A Improvement Fisher discriminant analysis method HUANG Li - wen1,2, LIANG Fei - bao1 (1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350002, China; 2. School of Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China) Abstract: Has improved the Fisher discriminant method, its main thought is to change the method of Fisher discriminant taking critical value as criterion, but the normal distribution function which deter- mined by various ensembles projection value took the sample classification criterion, and forms the multi- variate discriminate method. The example indicates this method is superior to Fisher discriminant. Keywords : Fisher discriminant; critical value; discriminant analysis

Fisher判别和Mahalanobis距离判别比较研究

龙源期刊网 https://www.doczj.com/doc/1e12773157.html, Fisher判别和Mahalanobis距离判别比较研究 作者:吴江 来源:《宁波职业技术学院学报》2017年第05期 摘要:将Fisher判别与Mahalanobis距离判别作比较,研究二者的关系,得出结论并给出解释与证明。基于二者的比较给出一种简单的Fisher判别程序(基于MATLAB),并做数值实验加以论证。 关键词:数据;样本; Fisher判别; Mahalanobis距离 中图分类号: O 213.9 文献标志码: A 文章编号: 1671-2153(2017)05-0091-04 0 引言 判别方法是根据所研究个体的观测值构建一个综合标准来推断个体属于已知种类中的哪一类的方法[1]。判别方法有很多,Mahalanobis距离判别是最典型的判别方法,Fisher判别是最 常用的判别方法之一[2]。目前对于Mahalanobis距离判别和Fisher判别的比较研究比较缺乏。本文简要阐述了Mahalanobis距离判别和Fisher判别的内容,然后对其进行比较研究,得出一些结论并给出一种简单的Fisher判别程序。 由于Fisher判别不需要对样本进行检验,而且有一定的正确率,因此它在实际中得到了广泛的应用[3]。 Mahalanobis距离判别简称马氏距离判别,从统计学角度考虑,采用Mahalanobis距离来衡量总体之间的距离比采用欧式距离来衡量总体之间的距更为科学。 1 Fisher判别与Mahalanobis距离判别的关系 2 基于MATLAB的Fisher判别程序 在MATLAB中,Mahalanobis距离判别的程序可以调用函数 classify(sample,training,group,'mahalanobis') 来实现,其中“sample”表示待测样本,“training”表示训练样本,“group”表示分组,“mahalanobis”表示使用的距离是Mahalanobis距离。从定理1知道Fisher判别是一种将数据经过一个线性映射处理后的Mahalanobis距离判别,所以先编写一个映射程序再结合classify函数

第4章 判别分析实验讲义

实验项目四判别分析的计算机实现 一、实验内容、目标及要求 (一)实验内容 选取140家上市公司作为样本,其中70家为由于“财务状况异常”而被交易所对其股票实行特别处理(Special Treatment,简称ST)的公司,另外70家为财务正常的公司。为了研究上市公司发生财务困境的可能性,以“是否被ST”为分组变量,选择资产负债率、总资产周转率和总资产利润率几个财务指标作为判别分析变量,这三个指标分别从上市公司的偿债能力、资产管理能力和获利能力三个不同的角度反映了企业的财务状况。(数据略) (二)实验目标 贝叶斯判别、费希尔判别法的计算机操作及结果分析。 (三)实验要求 要求学生能熟练应用计算机软件进行判别分析并对结果进行分析,培养实际应用能力。 二、实验准备 (一)运行环境说明 电脑操作系统为Windows XP及以上版本,所需软件为SPSS 16.0。 (二)基础数据设置说明 将数据正确导入SPSS,设置相应的变量值。 三、实验基本操作流程及说明 (一)系统界面及说明 同实验一。

(二)操作步骤 1. 选择菜单项Analyze→Classify→Discriminate,打开Discriminate Analysis对话框,如图4-1。将分组变量st移入Grouping V ariable列表框中,将自变量x1-x3选入Independents 列表框中。 选择Enter independents together单选按钮,即使用所有自变量进行判别分析。若选择了Use stepwise method单选按钮,则可以根据不同自变量对判别贡献的大小进行变量筛选,此时,对话框下方的Method按钮被激活,可以通过点击该按钮设置变量筛选的方法及变量筛选的标准。 图4-1 Discriminate Analysis对话框 2. 单击Define Range按钮,在打开的Define Range子对话框中定义分组变量的取值范围。本例中分类变量的取值范围为0到1,所以在Minimum和Maximum输入框中分别输入0和1。单击Continue按钮,返回主对话框。 3. 如果不想使用全部的样本进行分析,单击Select按钮,则Discriminate Analysis对话框下方会跳出一个Selection Variable列表框,将一个选择变量移入Selection Variable列表框,并单击Rule按钮,设置选择条件。这样,只有满足选择条件的观测才能参与判别分析。 4. 单击Statistics按钮,在跳出的Statistics子对话框中指定输出的描述统计量和判别函数系数。该对话框中各选项的含义如下: Descriptives选项栏:输出原始数据的描述性统计量 ◆Means:输出各类中所有自变量的均值、组内标准差以及总样本的均值和标准差; ◆Univariate ANOV A:进行单因素方差分析,检验的原假设为不同类别中自变量的均 值不存在显著差异; ◆Box’s M:对各类的协方差矩阵是否相等进行检验。 Matrices选项栏:输出各种不同的协差阵和相关系数矩阵 ◆Within-groups correlation matrix:平均组内相关系数矩阵,它是由平均组内协差阵 计算得到的; ◆Within-groups covariance matrix:平均组内协差阵,它是由各组的协差阵平均后得 到的; ◆Separate-groups covariance matrix:分别输出各个类的协差阵; ◆Total covariance matrix:总体协差阵。 Function Coefficients选项栏:输出不同的判别函数系数 ◆Fisher’s:给出Bayes线性判别函数的系数。(注意:这个选项不是要给出Fisher判 别函数的系数。这个复选框的名字之所以为Fisher’s,是因为按判别函数值最大进

贝叶斯判别、费希尔判别法的计算机操作及结果分析

贝叶斯判别、费希尔判别法的计算机 操作及结果分析 一、实验内容、目标及要求 (一)实验内容 选取140家上市公司作为样本,其中70家为由于“财务状况异常”而被交易所对其股票实行特别处理(Special Treatment,简称ST)的公司,另外70家为财务正常的公司。为了研究上市公司发生财务困境的可能性,以“是否被ST”为分组变量,选择资产负债率、总资产周转率和总资产利润率几个财务指标作为判别分析变量,这三个指标分别从上市公司的偿债能力、资产管理能力和获利能力三个不同的角度反映了企业的财务状况。 (二)实验目标 贝叶斯判别、费希尔判别法的计算机操作及结果分析。 (三)实验要求 要求学生能熟练应用计算机软件进行判别分析并对结果进行分析,培养实际应用能力。 二、实验准备 (一)运行环境说明 电脑操作系统为Windows XP及以上版本,所需软件为SPSS 16.0。 (二)基础数据设置说明 将数据正确导入SPSS,设置相应的变量值。

三、实验基本操作流程及说明 (一)系统界面及说明 同实验一。 (二)操作步骤 1. 选择菜单项Analyze→Classify→Discriminate,打开Discriminate Analysis对话框,如图4-1。将分组变量st移入Grouping V ariable列表框中,将自变量x1-x3选入Independents 列表框中。 选择Enter independents together单选按钮,即使用所有自变量进行判别分析。若选择了Use stepwise method单选按钮,则可以根据不同自变量对判别贡献的大小进行变量筛选,此时,对话框下方的Method按钮被激活,可以通过点击该按钮设置变量筛选的方法及变量筛选的标准。 图4-1 Discriminate Analysis对话框 2. 单击Define Range按钮,在打开的Define Range子对话框中定义分组变量的取值范围。本例中分类变量的取值范围为0到1,所以在Minimum和Maximum输入框中分别输入0和1。单击Continue按钮,返回主对话框。 3. 如果不想使用全部的样本进行分析,单击Select按钮,则Discriminate Analysis对话框下方会跳出一个Selection Variable列表框,将一个选择变量移入Selection Variable列表框,并单击Rule按钮,设置选择条件。这样,只有满足选择条件的观测才能参与判别分析。 4. 单击Statistics按钮,在跳出的Statistics子对话框中指定输出的描述统计量和判别函数系数。该对话框中各选项的含义如下: Descriptives选项栏:输出原始数据的描述性统计量 ◆Means:输出各类中所有自变量的均值、组内标准差以及总样本的均值和标准差; ◆Univariate ANOV A:进行单因素方差分析,检验的原假设为不同类别中自变量的均 值不存在显著差异; ◆Box’s M:对各类的协方差矩阵是否相等进行检验。 Matrices选项栏:输出各种不同的协差阵和相关系数矩阵 ◆Within-groups correlation matrix:平均组内相关系数矩阵,它是由平均组内协差阵

fisher判别

fisher判别

实验名称:fisher判别一、实验目的和要求 通过上机操作,完成spss软件的fisher判别二、实验内容和步骤 依次点击,选择discriminant 如下图所示进行操作

点击ststistics,进行以下操作

点击classification,进行以下操作 点击save,进行以下操作

Analysis Case Processing Summary Unweighted Cases N Percent Valid 15 100.0 Excluded Missing or out-of-range group codes 0 .0 At least one missing discriminating variable 0 .0 Both missing or out-of-range group codes and at least one missing discriminating variable 0 .0 Total 0 .0 Total 15 100.0 该表为分析案例处理摘要表,反映的是有效样本与缺失值的情况,可以看出本案例中有效值有15个,缺失值为15个 Group Statistics 类别Mean Std. Deviation Valid N (listwise) Unweighted Weighted 1.00 X1 188.6000 57.13843 5 5.000 X2 150.4000 16.50152 5 5.000 X3 13.8000 5.93296 5 5.000 X4 20.0000 13.32291 5 5.000 2.00 X1 157.0000 41.17038 5 5.000 X2 115.0000 14.81553 5 5.000

FISHER线性判别MATLAB实现

Fisher 线性判别上机实验报告 班级: 学号: 姓名: 一.算法描述 Fisher 线性判别分析的基本思想:选择一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,同时变换后的一维数据满足每一类内部的样本尽可能聚集在一起,不同类的样本相隔尽可能地远。 Fisher 线性判别分析,就就是通过给定的训练数据,确定投影方向W 与阈值w0, 即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。 线性判别函数的一般形式可表示成0)(w X W X g T += 其中 ????? ??=d x x X Λ1 ?????? ? ??=d w w w W Λ21 Fisher 选择投影方向W 的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求。 如下为具体步骤: (1)W 的确定

样本类间离散度矩阵b S 在投影后的一维空间中,各类样本均值T i i m '= W m 样本类内离散度与总类内离散度 T T i i w w S ' = W S W S ' = W S W 样本类间离散度T b b S ' = W S W Fisher 准则函数为 max 22 212 21 ~~)~~()(S S m m W J F +-= (2)阈值的确定 w 0 就是个常数,称为阈值权,对于两类问题的线性分类器可以采用下属决策规 则: 令) ()()(2 1 x x x g g g -=则: 如果g(x)>0,则决策w x 1∈;如果g(x)<0,则决策w x 2∈;如果g(x)=0,则可将x 任意分到某一类,或拒绝。 (3)Fisher 线性判别的决策规则 Fisher 准则函数满足两个性质: 1、投影后,各类样本内部尽可能密集,即总类内离散度越小越好。 2、投影后,各类样本尽可能离得远,即样本类间离散度越大越好。 根据这个性质确定准则函数,根据使准则函数取得最大值,可求出 W :-1 w 12W = S (m - m ) 。 这就就是Fisher 判别准则下的最优投影方向。 最后得到决策规则 T 1212S (m m )(m m ) b =--

条件概率、全概率公式与贝叶斯公式

条件概率、全概率公式与贝叶斯公式 一、背景 一个随机事件的概率,确切地说,是指在某些给定的条件下,事件 发生的可能性大小的度量.但如果给定的条件发生变化之后,该事件的概率一般也随之变化.于是,人们自然提出:如果增加某个条件之后,事件的概率会怎样变化的?它与原来的概率之间有什么关系?显然这类现象是常有的. [例1] 设有一群共人,其中个女性,个是色盲患者. 个色盲患者中女性占个. 如果={从中任选一个是色盲}, ={从中任选一个是女性},此时, .如果对选取规则附加条件:只在女性中任选一位,换一句话说,发生之后,发生的概率(暂且记为) 自然是. [例2] 将一枚硬币抛掷,观察其出现正反面的情况.设事件为“两次掷出同一面”,事件为“至少有一次为正面H”.现在来求已知事件已经发生的条件下事件发生的概率. 这里,样本空间.易知此属于古典概型问题.已知事件已发生,有了这一信息,知道不可能发生,即知试验所有可能结果所成的集合就是.中共有3个元素,其中只有属于.于是,在发生的条件下,发生的概率为

对于例1,已知 容易验证在发生的条件下,发生的概率 对于例2,已知 容易验证发生的条件下,发生的概率 对一般古典概型, 容易验证:只要,则在发生的条件下, 发生的概率, 总是成立的. 在几何概率场合,如果向平面上单位正方形内等可能任投一点,则当发生的条件下, 这时发生的概率为

由此可知对上述的两个等可能性的概率模型,总有成立. 其实,还可以验证, 这个关系式对频率也是成立的.于是,从这些共性中得到启发,引入下面的一般定义. 二、条件概率 若是一个概率空间,,若,则对于任意的,称 为已知事件发生的条件下, 事件发生的条件概率. [例3] 一盒子中装有4只产品,其中有3只是一等品,1只是二等品.从中取产品两次,每次任取一只,作不放回抽样,设事件为“第二次取到的是一等品”,事件为“第一次取到的是一等品”,试求条件概率 解:易知此属古典概型问题.将产品编号:1,2,3号为一等品,4号为二等品.以表示第一次、第二次分别取到第号、第号产品.试验E (取产品两次,记录其号码)的样本空间为 ={(1,2),(1,3),(1,4), (2,1),(2,3),(2,4), (3,1),(3,2),(3,4), (4,1),(4,2),(4,3)} ={(1,2),(1,3),(1,4), (2,1),(2,3),(2,4), (3,1),(3,2),(3,4)} ={(1,2),(1,3), (2,1),(2,3), (3,1),(3,2)} 由条件概率公式得,

fisher判别法

实验1 Fisher 线性判别实验 一、实验目的 应用统计方法解决模式识别问题的困难之一是维数问题,在低维空间行得通的方法,在高维空间往往行不通。因此,降低维数就成为解决实际问题的关键。Fisher 的方法,实际上涉及维数压缩。 如果要把模式样本在高维的特征向量空间里投影到一条直线上,实际上就是把特征空间压缩到一维,这在数学上容易办到。问题的关键是投影之后原来线性可分的样本可能变得混杂在一起而无法区分。在一般情况下,总可以找到某个最好的方向,使样本投影到这个方向的直线上是最容易分得开的。如何找到最好的直线方向,如何实现向最好方向投影的变换,是Fisher 法要解决的基本问题。这个投影变换就是我们寻求的解向量* w 本实验通过编制程序体会Fisher 线性判别的基本思路,理解线性判别的基本思想,掌握Fisher 线性判别问题的实质。 二、实验原理 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (4.5-2) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (4.5-3) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (4.5-4) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离散度越小越好。因此,定义Fisher 准则函数: 2 122 2 12 ||()F m m J w s s -=+ (4.5-5) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式。

条件概率及全概率公式练习题

二、计算题 1.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 解.设事件A表示“甲取到的数比乙大”, 设事件B表示“甲取到的数是5 的倍数”. 则显然所要求的概率为P(A|B). 根据公式 而P(B)=3/15=1/5 , , ∴P(A|B)=9/14. 2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”, 设事件B表示“掷出的三个点数都不一样”. 则显然所要求的概率为 P(A|B). 根据公 式 , , ∴

P(A|B)=1/2. 3.袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 1解.设事件A i表示“第i次取到白球”. (i=1,2,…,N) 则根据题意P(A1)=1/2 , P(A2|A1)=2/3, 由乘法公式可知: P(A1A2)=P(A2|A1)P(A1)=1/3. 而P(A3|A1A2)=3/4 , P(A1A2A3)=P(A3|A1A2)P(A1A2)=1/ 4 . 由数学归纳法可以知道 P(A1A2…A N)=1/(N+1). 4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”, 事件B表示“最后取到的是白球”. 根据题意: P(B|A)=5/12 , , P(A)=1/2. ∴ . 5.有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放解.设事件A i表示“从甲袋取的2个球中有i 个白球”,其中i=0,1,2 .

模式识别fisher线性判别作业

实验容使用FISHER线性判别来对树叶进行分类指导老师_王旭初_____ 一.实验目的 利用FISHER线性判别函数来对桃树叶子和芒果树叶子进行分类,将这两者若干片树叶进行一定特点分类,做出函数图,使得我们容易分析这两者之间的异同。 二.数据获取方式 实验过程中将会使用到FISHER线性判别函数法,MATLAB实验仿真程序。通过实验MATLAB程序来设计一个FISHER线性判别分类器,将实验前收集到的两种树叶的若干片叶子的数据输入分类器,运行后得出一个分类仿真图形,从而可以得出其叶子间的异同点。 三.实验原理 Fisher线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。 Fisher线性判别分析,就是通过给定的训练数据,确定投影方向W和阈值y0,即确定

线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。 线性判别函数的一般形式可表示成 0)(w X W X g T += 其中 ????? ??=d x x X Λ1 ?????? ? ??=d w w w W Λ21 根据Fisher 选择投影方向W 的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类样本投影尽可能密集的要求,用以评价投影方向W 的函数为: 2 2 2122 1~~)~~()(S S m m W J F +-= )(211 *m m S W W -=- 上面的公式是使用Fisher 准则求最佳法线向量的解,该式比较重要。另外, 该式这种形式的运算,我们称为线性变换,其中21m m -式一个向量,1 -W S 是W S 的逆矩阵,如21m m -是d 维,W S 和1-W S 都是d ×d 维,得到的*W 也是一个d 维的向量。 向量*W 就是使Fisher 准则函数)(W J F 达极大值的解,也就是按Fisher 准则将d 维X 空间投影到一维Y 空间的最佳投影方向,该向量*W 的各分量值是对原d 维特征向量求加权和的权值。

Fisher判别

Fisher判别 理论,编程步骤和优缺点 1.理论 判别分析是用于判别个体所属群体的一种统计方法,判别分析的特点是根据已掌握的、历史上每个类别的若干样本的数据信息,总结出客观事物分类的规律性,建立判别公式和判别准则。然后,当遇到新的样本点时,只要根据总结出来的判别公式和判别准则,就能判别该样本点所属的类别。判别分析是一种应用性很强的统计数据分析方法。 Fisher判别 (1)借助方差分析的思想构造一个线性判别函数: (2)确定判别函数系数时要求使得总体之间区别最大,而使每个总体内部的离差最小。 (3)从几何的角度看,判别函数就是p维向量X在某种方向上的投影。使得变换后的数据同类别的点“尽可能聚在一起”,不同类别的点“尽可能分离”,以此达到分类的目的。 两类Fisher判别示意图

(1)如果有多个类别, Fisher 判别可能需要两个或者更多的判别函数才能完成分类。 (2)一般来说判别函数的个数等于分类的个数减一。 (3)得到判别函数后,计算待判样品的判别函数值,根据判别函数的值计算待判样品到各类的重心的距离,从而完成分类。 2.编程步骤 ① 把来自两类 21/w w 的训练样本集X 分成1w 和2w 两个子集1X 和2X 。 G1 G2 X

② 由∑∈=i k X x k i i x n M 1,2,1=i ,计算i M 。 ③ 由T i X x k i k i M x M x S i k ))((--= ∑=计算各类的类内离散度矩阵i S ,2,1=i 。 ④ 计算类内总离散度矩阵21S S S w +=。 ⑤ 计算 w S 的逆矩阵1 -w S 。 ⑥ 由)(211*M M S w w -=-求解*w 。 3.优点 (1)一般对于线性可分的样本,总能找到一个投影方向,使得降维后的样本仍然线性可分,而且可分性更好即不同类别的样本之间的距离竟可能的远,同一类别的尽可能的集中分布。 (2)Fisher 方法可以直接求解法向量。 (3)Fisher 的线性判别不仅适用于确定性的模式分类器的训练,而且对于随机的模机也是适用的,Fisher 还可以推广到多类问题中去。 缺点 (1)如果M1=M2,W=0.则这样的样本线性不可分;M1!=M2,未必线性可分;SW 不可逆,未必不可分。

相关主题
文本预览
相关文档 最新文档