当前位置:文档之家› 第六章 数字几何模型1

第六章 数字几何模型1

第六章  数字几何模型1
第六章  数字几何模型1

第六章数字几何模型

正走向数字化、集成化、全球化的测绘技术,要实现测绘生产的数字化、自动化和智能化,其模式是建立3S(GIS,GPS,RS)技术集成和4D(DEM(Digital Elevation Model)—数字高程模型,DOM(Digital Orthophoto Map)—数字正射图,DRG(Digital Rastar Graphic)—数字栅格地图,DLG(Digital Line Graphic)—数字线划图)产品的一体化,其特点就是必须要形成从数据采集、加工、建库到产品营销服务一体化的产业体系。

随着我国公路计算机辅助设计(CAD)技术应用的普及与深化,公路勘测设计一体化和数据管理的科学化、规范化是迫切需要解决的问题。交通部制订了《公路交通科技发展“九五”计划到2010年长期规划》,其中,“卫星定位GPS技术、航测遥感技术在公路勘测中的应用”,“新一代数字地面模型与CAD系统的开发”,“工程数据库的开发与应用”等课题是亟待完成的重要内容。显然,前者是公路工程不同阶段的集成,后者是CAD系统数据管理的集成,两者相辅相成,是CAD技术发展的方向我国从“六五”起直到现在,对数字地面模型DTM在公路勘测设计中的应用研究一直没有间断,以交通部第二公路勘察设计院、长沙交通学院为代表的单位取得了多项科研成果,并产生了巨大的经济效益和社会效益。但随着计算机硬软件的飞速发展,数字地面模型应用的质量也应得到提高。

6-1 数字几何模型原理

一、模型表达问题的提出

模型:用数学表达式及运算方法来描述一个实际工程问题。

若干个折点坐标描述连续

变化的实际地面线,建立

起简单实用数字模型

1.从模型的发展看,模型表达问题始终与设计手段密切相关

2.从已有模型的局限性看,必须建立系统的核心模型

3.从软件工程角度看,CAD系统开发需要建立核心模型

二、系统核心模型的内容及总体结构

公路CAD模型

从研究对象看:包括设计对象模型和自然地表面模型。

从计算机建模看:包括内部模型、外部模型和功能模型。

三、设计对象模型和地表面模型的表现形态和特点

1.表现形态

骨架模型(如平纵横模型)——适宜带状区域

三维模型(如三角网模型)——适宜面状区域

模型的表现形态

曲面模型(如Coons曲面模型)——适宜面状区域

2.模型特点

(1)设计对象模型

二维骨架模型——特点是以中线或轴线表达设计对象,适宜带状区域三维模型——特点是以边界曲线来描述设计面,适宜带状区域及面状区域,

但建模较为困难

(2)地表面模型

三角网模型——特点是联网、内插、计算时均考虑地形特征,精度较高

格网模型——特点是地形特征线不好处理,适用性不广,

要求有规则的实测网格数据或有航测图片

6-2 数字地表面模型

数字地面摸型的概念

数字地面模型DTM(Digital Terrain Model)是利用一个任意坐标场中大量选择的已知x,y,Z的坐标点对连续地面的一个简单统计表示,或者说,DTM就是地形表面简单的数学表示。

DTM更通用的定义是描述地球表面形态多种信息空间分布的有序数值阵列:Vi i=l,2,…,n其向量Vi=(V i1,Vim i2,…,Vim)的分量为地形、资源、环境、土地利用、人口分布等多种信息的定量或定性描述。

DTM是一个地理信息数据库的基本内核,如果只考虑DTM的地形分量,我们称其为数字高程模型DEM(Digital Elevation Model)或DHM(Digital Height Model)。

数字高程模型DEM是表示区域D上的三维向量有限序列,用函数的形式描述为:

Vi=(Xi,Yi,Zi)

其中,Xi,Yi是平面坐标,Zi为Xi,Yi对应的高程,i=1,2,…,n。

在实际生产和应用中,DTM和DEM经常不作区分地使用。

在地图数字化产品中,数字地面模型是一种典型的数字化产品,具有广泛的实际应用价值,如剖面图的自动生成、场地平整、土方量的计算等。DTM作为一个地理空间数据库,描述了地形表面的空间位置特征和形态特征,成为建立不同层次的地理信息系统(GlS)不可缺少的组成部分。

数字地面模型的发展过程

DTM最初是由美国麻省理工学院Miller为了高速公路的自动设计于1956年提出来的。此后,对它的研究经历了四个时期:50年代末是其概念形成时期;60一70年代对DTM内插问题进行了大量的研究,如Schut提出的移动曲面拟合法,Arthur 和Hardy提出的多面函数内插法,Kraus和Mikhail提出的最小二乘内插法及Ebner 等提出的有限元内插法。70年代中、后期对采样方法进行了研究,其代表为Makarovic 提出的渐近采样(Progressive Sampling)、混合采样(Composite Sampling)。80年代以来,对DTM研究已经涉及到DTM系统的各个环节,其中包括用DTM表示地形的精度、地形分类数据采集、DTM的粗差探测、质量控制、DTM数据压缩、DTM应用以及不规则三角网DTM的建立与应用等等。

一、数模的有关概念、插值方法及表现形式

1.地形特征

地形特征分四类:地形单点、边界线、构造线和断裂线

地形点为两类:散点和串状地性线

散点包括地形特征单点(地形曲率变化点和坡度变化

点)和其他地形单点;

串状地性线包括边界线、构造线和断裂线

散点 ——即单点,如山顶、马鞍点、地形碎部点(电杆)

边界线——即标出禁止内插区域的封闭串线,如河流、池塘;河岸线、海岸线

构造线——即地形的骨架线,如山脊线、山谷线

断裂线——即断层的边缘线,如田埂、悬崖线;陡坎线、斜坡边缘线、沟堤边缘线2.数模的精度

影响因素:点的分布、密度和采点精度

DEM的实际精度主要是由原始数据的采集误差和高程内插误差两方面决定的。

数据的采集误差包括原始资料误差、仪器设备误差、人为误差和坐标转换误差等。于摄影测量方法生产DEM来说,原始资料的误差主要表观为航片本身的各种误差,控制数据的误差;仪器设备误差包括浏图仪的误差,计算公式的近似误差和计算机的有效位数等;人为误差指的是作业员的测量误差(数字相关时的影像相关误差);坐标转换误差包括定向误差。对于利用地形图等高线和高程点方法生成DEM来说,误差还包括原始地形图的精度、采点误差、控制转换误差等。

高程内插误差指的是,内插点计算高程和实际量测高程之间存在的误差。它一方面和选用的数学方法(内插算法)有关,另一方面和采点的方式有关。

3.内插方法

DEM内插就是根据已知点上的高程求出其他待定点上的高程。由于所采集的原始数据一般是不规则的,为了得到规则格网的DEM,内插是必不可少的。所以DEM 内插是DEM生产中的一个核心问题。按内插点的分布范围,可将内插分为三类:分块内插,逐点内插和整体内插。而按二元函数附近数学面和参考点的关系,内插又可分为纯二维内插和曲面拟合内插两种。常用的内插方法见图3。

4.数模的表现形式

DEM有多种表现形式,但主要分为规则矩形格网GRID与不规则三角网TIN。

(1) 三角形数模——不规则三角格网模型

T1N(Triangulated Irregular Network)

TIN 通过全站仪直接从野外采集的随机分布的离散地形点集,按照一定的算法生成,多为矢量形式。

TIN 如图2,能较好地表示地形特征,能精确地表示复杂地形表面,在地形表面相对单一时,需要量测的点数据最少。但总体讲,TIN 数据量大,数据结构十分复杂,使用和管理相对困难和复杂。

(2) 网格数模——规则格网模型RSG(Regular Square Grids)

GRlD 数据多来源于地形原因、航片和卫片等,多为栅格形式

GRID 如图1,是目前运用最广泛的一种形式。其优点是结构简单,数据存贮量小,非常使于使用和管理,分析和计算也十分有效;缺点是有时不能准确地表示地形的结构和细节,因此,为了克服其缺点,必须采用附加地形特征数据,如特征点、山脊线、山谷线、断裂线等,从而构成完整的DEM 。

二、带状数模的建立

1.模型的选择:TIN 和GRID

2.模型的建立

数据采集和输入

三角形联网

插值计算

三、区域性数模的建立

6-3 道路中线的几何模型

常见的是公路平纵横二维骨架模型:

一、平面线形子模型

? S-K 平面线形模型:

该模型形式统一,曲线上任意一点的坐标可以由P51页公式求解得到。 假设k 是曲线的曲率,s 为弧长,则k=as+b 。

a 、

b 为常量:

a、b=0 直线

a=0,b≠0 圆曲线

a≠0,b≠0 缓和曲线

? 线元设计模型:线元之间必须首尾相接,光滑连续。

以直线、圆曲线、回旋线为基本线元,以此来构造

基本型、S型、C型等平面线形。此法适合于立交各匝道线形设计和复杂地形的全曲线设计(约束点较多时)

等(变)距曲线模型:

运用等距曲线的概念,建立公路平面线形与各设计线的通用模型,提出用道路中线表示边线的数学模型。

具有几何意义明确,计算简便,数学表达式统一等特点。

Xt=X-[B+E(l)]*sin(β)

Yt=Y+[B+E(l)]*cos(β)

X Y 是道路中线坐标;B—路面宽度;

E(l)—加宽值;β—为切线方位角。

二、纵断面线形子模型

纵断面线形子模型以桩号(S)为横坐标,高程(h)为纵坐标,按变坡点将纵断面线形分成不同的弧段。

求任意一点的中桩高程时,先判定该点所在的弧段,然后取相应的弧段参数内插计算中桩点的高程。

三、横断面线形子模型

主要功能是计算除中桩点以外的横断面各点的设计高程。计算时先在两典型横断面之间内插待求点所在的横断面,建立横向支距(b)和高程(h)的坐标系,然后判定点在中桩的作册还是右侧以决定相应参数内插点的高程。

6-4 数字设计面模型

设计面模型是系统内部模型中的数字描述模型,是对设计对象进行描述的计算机算法。

一、设计面线框模型

三角网模型:用一个个小三角形面来描述设计面

格网模型:用一个个二次曲面(格网状)来描述设计面

二、设计面曲面模型

用一个个曲面小片来描述设计面的方法。主要有COON(孔斯)曲面模型,仅作了解要求。

初中数学常用几何模型及构造方法大全

初中数学常用几何模型及构造方法大全几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间… 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 对称全等模型 角分线模型 往角两边作垂线 往角两边截取等线段 过角分线某点作垂线 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。

对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段 自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型 构造方法: 遇60度旋60度,造等边三角形 遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等 遇中点旋180度,造中心对称 共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。

模型变换 说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

用旋转法………作辅助线证明平面几何题

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC中 B=AC;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 E C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴BP=BD AP=CD=5, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60? PD=PB=4所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

初中数学几何经典模型

初中数学几何模型 中点模型 【模型1】倍长 1、倍长中线;2、倍长类中线;3、中点遇平行延长相交 E D A B C F D A B C E 【模型2】遇多个中点,构造中位线 1、直接连接中点;2、连对角线取中点再相连 【例1】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE. (1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长; (2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的关系,写出你的猜想;并给予证明; (3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗写出你的猜想,并给予证明. 图3 图2 图1 G F D C G F D C G F D C A B E E B A E B A 【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF 于H.求证:∠BGE=∠CHE. H G E F A B D C

E A B C O D E A B C O D B O A C 角平分线模型 【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形 【例4】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为. H G F E A D B C 手拉手模型 【条件】OA OB OC OD AOB COD ==∠=∠ ,, 【结论】OAC OBD ?;AEB OAB COD ∠=∠=∠(即都是旋转角);OE AED ∠ 平分; - 【例5】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为. 【例6】如图,ABC中,90 BAC? ∠=,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE,AG⊥BE 于F,交BC于点G,求DFG ∠ G F D C B A E

初中:数学几何模型大全

全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转 对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题

旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 自旋转模型构造方法: 遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称

共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。

模型变形 说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转: 说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析(完美版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中几何常见九大模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②; ③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③

?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导? 模型四:角含半角模型90° (1)角含半角模型90°-1 ?条件:①正方形;②; ?结论:①;②的周长为正方形周长的一半; 也可以这样: ?条件:①正方形;② ?结论:

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

初中数学九大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2 O A B C D E O A B C D E 图 1 图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- O B C O A C D E O B C D E O A C D A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

几何辅助线之手拉手模型初

手拉手模型教学目标: 1:理解手拉手模型的概念,并掌握其特点 2:掌握手拉手模型的应用 知识梳理: 1、等边三角形 条件:△OAB,△OCD均为等边三角形 结论:;; 导角核心: 2、等腰直角三角形 条件:△OAB,△OCD均为等腰直角三角形 结论:;; 导角核心: 3、任意等腰三角形 条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;;

核心图形: 核心条件:;; 典型例题: 例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC; (3)AE与DC的夹角为60°;(4)△AGB≌△DFB; (5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC 例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?

例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE? 例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD. 问(1)△ABE≌△DBC是否成立? (2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度? (4)HB是否平分∠AHC? 例7:如图,分别以△ABC 的边AB、AC 同时向外作等腰直角三角形,其中 AB =AE , AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。探 索GF 与GH 的位置及数量关系并说明理由。 例8:如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD任意一点(P与A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD 于点E. (1)如图1,猜想∠QEP=_______°; (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明; (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.

(完整版)初中数学常用几何模型及构造方法大全

g a t a t i m e a n d A l l t h i n g s i n t h e i r b e i n g a r e g o o d f o r s o 初中数学常用几何模型及构造方法大全, 掌握它轻松搞定压轴题! 几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握哦~全等变换 平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。旋转全等模型 半角:有一个角含1/2角及相邻线段 自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题

g a t a t i m e a n d A l l t h i n g s i n t h e i r b e i n g a r e g o o d f o r s o 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。自旋转模型构造方法: 遇60度旋60度,造等边三角形; 遇90度旋90度,造等腰直角;遇等腰旋顶点,造旋转全等; 遇中点旋180度,造中心对称. 共旋转模型

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?】 ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?` ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③; ④; ' ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②;③ ?证明提示: ①作垂直,如图,证明; - ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?<

?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等 边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?' ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导 ? 模型四:角含半角模型90°

几何模型:一线三等角模型知识讲解

几何模型:一线三等 角模型

一线三等角模型 一.一线三等角概念 “一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。 二.一线三等角的分类 全等篇 同侧 锐角直角钝角 P 异侧 相似篇 A 同侧锐角直角钝角 异侧

三、“一线三等角”的性质 1.一般情况下,如图 3-1,由∠1=∠2=∠3,易得△AEC ∽△BDE. 2.当等角所对的边相等时,则两个三角形全等.如图 3-1,若 CE=ED ,则△AEC ≌△BDE. 3.中点型“一线三等角” 如图 3-2,当∠1=∠2=∠3,且 D 是 BC 中点时,△BDE∽△CFD∽△DFE. 4.“中点型一线三等角“的变式(了解) 如图 3-3,当∠1=∠2 且1 902 BOC BAC ∠=?+∠时,点 O 是△ABC 的内心.可以考虑构造“一线三等角”. 如图 3-4“中点型一线三等角”通常与三角形的内心或旁心相关, 1 902 BOC BAC ∠=?+∠这是内心的性质,反之未必是内心. 在图 3-4(右图)中,如果延长 BE 与 CF ,交于点 P ,则点 D 是△PEF 的旁心. 5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明 ) 图 3-5 其实这个第 4 图,延长 DC 反而好理解.相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用

初中数学经典几何模型

初中数学几何模型 【模型1】倍长 1、 倍长中线; 2、倍长类中线; 3、中点遇平行延长相交 E D A B C F D A B C E ---------------------------------------------------------------------------------------------------------------------- 【模型2】遇多个中点,构造中位线 1、 直接连接中点; 2、连对角线取中点再相连 【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长; (2)如图2,当点F 在AB 的延长线上时,线段GC 、GE 有怎样的数量和位置关系,写出你的猜想;并给予证明; (3)如图3,当点F 在CB 的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明. 图3 图2图1G F D C G F D C G F D C A B E E B A E B A 中点模型

【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF于H.求证:∠BGE=∠CHE. H G E F A B D C 【模型1】构造轴对称 【模型2】角平分线遇平行构造等腰三角形 ---------------------------------------------------------------------------------------------------------------------- 角平分线模型

用旋转法--作辅助线证明平面几何题《总结》

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等 邻边的公共端点,旋转另一位置的引辅助线的方法。 1、 旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、 旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、 旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 已知,在Rt ABC 中;∠BAC=90?; D 为BC 边上任意一点,求证:2AD 2=BD 2+CD 2.证明:把 ABD 绕点A 逆时钍方向旋转90 ?,得?ACE ,则 ABD ??ACE ,∴BD=CE , ∠B=∠ACE ; ∠BAD=∠CAE , AD=AE 。又 ∠BAC=90?;∴∠DAE=90?所以: D E 2=AD 2+AE 2=2AD 2。因为: ∠B+∠ACB=90?所以: ∠DCE=90? CD 2+CE 2=DE 2=2AD 2即: 2AD 2=BD 2+CD 2。注:也可以把ADC 顺时针方向旋转90?来证明。注 E C D

例2

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60 ?所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

几何辅助线之手拉手模型初三

手拉手模型 教学目标: 1:理解手拉手模型的概念,并掌握其特点 2 :掌握手拉手模型的应用 知识梳理: 导角核心: 2 、等腰直角三角形 1、等边三角形 条件:△ OAB ,△ OCD 均为等边三角形 结论:|①心 C 迪ORD ;② = 6(^;③OE 平分ZAED

结论:I ①;② 厶阳二刈;③QE 半分"ED 3、任意等腰三角形 条件:△ OAB , △ OCD 均为等腰三角形,且/ AOB = / COD 结论:\ s=m ; 〔 _.口; _n ;,窓八矗/禺7 核心图形: ZAOB = ZCOD 条件:△ OAB , △ OCD 均为等腰直角三角形

典型例题: 例1在直线ABC 的同一侧作两个等边三角形△ ABD 和厶BCE ,连接AE 与CD ,证明:(1) △ ABE ◎△ DBC ; (2) AE=DC ; (3) AE 与 DC 的夹角为 60°; (4)A AGB ◎△ DFB ; (5)△ EGB CFB ; ( 6) BH 平分/ AHC ; GF // AC 例3:如果两个等边三角形△ ABD 和厶BCE ,连接AE 与CD ,证明 : 例2:如果两个等边三角形△ (1 )△ ABE ◎△ DBC ; (2) ABD 和厶BCE ,连接 AE 与CD ,证明: AE=DC ; (3) AE 与 DC 的夹角为 60°; H,BH 平分/ AHC D B

(1 )△ ABE S' DBC ; (2) AE=DC ; (3) AE 与DC 的夹角为60°; (4) AE与DC的交点设为H,BH平分/ AHC 例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(ADG ◎△ CDE是否成立?(2)AG是否与CE 相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分/ AHE ? 例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)' ADG S' CDE是否成立?

初中数学几何模型大全+经典题型

初中数学几何模型大全+ 经典题型(含答案) 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。 垂直也可以做为轴进行对称全等。 说明:上图依次是45°、30°、°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

半角:有一个角含1/2 角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全 构造方法:遇60 度旋60 度,造等边三角形 遇90 度旋90 度,造等腰直角 遇等腰旋顶点,造旋转全等遇中点旋180 度,造中心对称

说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“ 8”字模型可以证明。 说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。 说明:两个正方形、两个等腰直角三角形或者一个正方形一个等 腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和

几何五大模型汇总

小学平面几何五大模型 一、共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =??△△ 证明:由三角形面积公式S=1/2*a*b*sinC 可推导出 若△ABC 和△ADE 中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则ADE ABC S S ??=AE AD AC AB ?? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图12::S S a b = ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .

④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2 a b +. 四、相似模型

数学人教版九年级上册初中几何辅助线技巧之旋转变换

数学,人教,版,九年级,上册,初中,几何,辅助线,初中几何辅助线技巧之旋转变换——构造旋转图形 设计老师:广州市番禺区沙湾镇象达中学练兴宏 一、教学内容分析 运用基本图形去解决几何难题,当直接或间接的条件在现有图形结构下显得相对分散,并且不能解决问题时,可以考虑添加辅助线构成新图形,形成新关系,使分散的条件集中起来,从而建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 再者,运用旋转命题常见于全国各地的中考压轴题,在分析解决这类题目时,学生们比较困惑的就是:“什么时候需要构造旋转图形、怎么构造旋转图形”,本节课的重点是根据题目所提供的现有图形及已知条件,总结、提炼构造旋转图形的常用技巧: 遇等腰(如右图:),转顶角(旋转中心所在位置)。 特别地, 2、遇(度),转(度),构造等边,关注:等边三角形、全等三角形; 3、遇中点,转(度),构造对称(中心对称),关注:全等三角形。 二、教学目标分析 1. 以构造旋转图形的常用技巧为载体,加深学生对旋转作图、旋转图形性质的理解; 2. 通过引导学生根据现有几何图形特征,构造恰当的旋转图形,渗透化归思想,学会把相对分散的信息转化为相对集中的信息,把未知的几何模型转化为熟知的几何模型。 3. 通过三个例题的探究、总结、提炼和运用,培养学生的归纳总结能力。 三、学生学情分析 1. 化归思想不仅是一种重要的解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式。站在化归思想的高度,“未知”与“已知”、“陌生”与“熟悉”、“难”与“易”、“繁”与“简”、“抽象”与“直观”、“分散”与“集中”等等,就是矛盾的统一体。初三的学生,对化归思想已有较多的接触与认识,但仍需在平常的教与学中不断得到渗透与深化。 2. 笔者所在学校属于非中心区的镇属学校,学生的整体学习基础与学习水平不高,而此专题课对学生的学习又提出了比较高的要求,所以,这里选取初中几何辅助线技巧之旋转变换——构造旋转图形为复习专题,既是矛盾的,又是必须的。计划此节复习专题课设置在初三学生中考复习的第一轮复习之后,基于学生已掌握旋转的基本性质之后学习,并且在设计上选取

初中数学几何辅助线集合 第五章 旋转专题(无答案)

第五章 旋转专题 实战演练 类型一 旋60°,造等边 1.如图6-1,P 是等边ABC ?内部一点,3,45PC PA PB ===,,求ABC ?的边长. 图6-1 2.如图6-2,P 是等边ABC ?外一点,若345PA PB PC ===,,,求APB ∠的度数。 图6-2 3.(兰州中考)如图6-3,四边形ABCD 中,AB BD AD ==,30BCD ∠=?.求证:222DC BC AC +=. 图6-3 类型二 旋90°,造垂直 4.如图6-4,四边形ABCD 被对角线BD 分为等腰直角三角形ABD 和直角三角形CBD ,其中A ∠和C ∠都是直角,另一条对角线AC 的长度为2.求四边形ABCD 的面积. 图6-4 5.如图6-5,PAB ?中,45APB ∠=?,2PA 4PB =,以AB 为一边作正方形ABCD .求PD

的长. 图6-5 6.(深圳中考)如图6-6,ABC ∠=?,D为AB的中点,若E是直 ACB =,90 ?中,AC BC 线AC上任意一点,DF DE ⊥,交直线BC于F点.G为EF的中点,延长CG交AB于点H. (1)证明:DE DF =; (2)证明:CG GH =. 图6-6 7.如图6-7,E是正方形ABCD的边CD上任意一点,F是边AD上的点,且FB平分ABE ∠.求证:BE AF CE =+. 图6-7 8.如图6-8,已知ABC ?绕点A顺时针旋转90°,得到AED ∠=?,将ABC ACB ?中,135 ?,连接CD,CE. (1)求证:ACD ?为等腰直角三角形; (2)若1 AC=,求四边形ACED的面积. BC=,2 图6-8 类型三旋180°,造中心对称

初中几何辅助线大全 很详细哦

初中几何辅助线—克胜秘籍 等腰三角形 1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法; 2. 作一腰上的高; 3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。 梯形 1. 垂直于平行边 2. 垂直于下底,延长上底作一腰的平行线 3. 平行于两条斜边 4. 作两条垂直于下底的垂线 5. 延长两条斜边做成一个三角形 菱形 1. 连接两对角 2. 做高 平行四边形 1. 垂直于平行边 2. 作对角线——把一个平行四边形分成两个三角形 3. 做高——形内形外都要注意 矩形 1. 对角线 2. 作垂线 很简单。无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。还有一些关于平方的考虑勾股,A 字形等。 三角形 图中有角平分线,可向两边作垂线(垂线段相等)。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 解几何题时如何画辅助线? ①见中点引中位线,见中线延长一倍 在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。 ②在比例线段证明中,常作平行线。 作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。 ③对于梯形问题,常用的添加辅助线的方法有 1、过上底的两端点向下底作垂线 2、过上底的一个端点作一腰的平行线 3、过上底的一个端点作一对角线的平行线 4、过一腰的中点作另一腰的平行线 5、过上底一端点和一腰中点的直线与下底的延长线相交 6、作梯形的中位线 7、延长两腰使之相交 四边形 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线 初中数学辅助线的添加浅谈 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

几何五大模型之精讲精练

五大模型 一、 等积变换模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; b a S 2S 1 D C B A 如左图12::S S a b = ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④正方形的面积等于对角线长度平方的一半; ⑤三角形面积等于与它等底等高的平行四边形面积的一半; 二、 鸟头定理(共角定理)模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =??△△ E D C B A E D C B A 图⑴ 图⑵ 推理过程连接BE ,再利用等积变换模型即可 三、 蝴蝶定理模型 任意四边形中的比例关系(“蝴蝶定理”):

S 4 S 3 S 2 S 1O D C B A ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝴蝶定理”): A B C D O b a S 3 S 2S 1S 4 ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2 a b +. 四、 相似模型 相似三角形性质: G F E A B C D (金字塔模型) A B C D E F G (沙漏模型) ① AD AE DE AF AB AC BC AG === ; ②22:ADE ABC S S AF AG =△△:. 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样

相关主题
文本预览
相关文档 最新文档