当前位置:文档之家› 官洲河水质监测实验报告

官洲河水质监测实验报告

官洲河水质监测实验报告
官洲河水质监测实验报告

官洲河水质监测实验报告

一.明确监测目的:

熟悉水质监测方案的制定及实施,掌握监测项目的测定方法

了解官洲河水质的现状,提高环保的意识

复习相关的知识,以便对专业有更深的认识

培养发现问题,解决问题的能力,提高团队合作能力

二、水污染状况调查

1、基础资料的收集

官洲河的地理气候、水文、地质和地貌资料

气候:官洲水道位于珠江三角洲的广州片网河区,受上游径流及下游南海潮汐动力的共同作用。河流走向为西南-东北,其上游为南河道,下游是广州出海水道即珠江正干至伶仃洋的组成部分,处于北纬 22°26′~23°05、东经113°14′~113°42′之间。属于南亚热带季风性海洋气候,温暖、多雨、湿润,夏长冬短,年平均雨量1646.9毫米,4-9月为雨季,10-3月为干季。

水文:官洲水道的径流来源主要由两部分组成:一部分来自于北江和西江的径流,经三水水文站由平洲水道的沙洛围、大石河、花地涌进入广州片网河,这是主要的径流来源;另一部分来自流溪河、白坭河以及洪水期北江芦苞水闸和西南水闸的分洪流量,这一部分流量经老鸦岗从西航道汇入广州片网河。由于本水道下连伶仃洋喇叭型湾顶,潮汐作用强,多年平均涨潮量2288亿m3,多年平均山潮比为0.26,在珠江八大口门中潮汐作用最强,属潮流作用为主的河口。

据三水水文站(1951~1997 年)统计表明,多年最大平均流量为8030m3/s,多年平均流量为1373m3/s,历年最大流量为16200m3/s(1994.6.20),多年平均迳流量为433.10 亿m3。马口水文站(1951~1997 年)统计结果为多年最大平均流量为27967m3/s,多年平均流量为7405m3/s,多年平均迳流量为2338.56亿m3。流溪河的多年平均迳流量为27.66

亿m3,多年平均流量为87.7m3/s白坭河的多年平均迳流量为14.40亿m3,多年平均流量为45.8m3/s。

珠江河口的潮汐为不规则半日潮,在一个太阴日内两涨两落,且两次高低潮位和潮差各不相同,涨落潮历时亦不相等。纳潮量的大小反映潮汐动力的强弱,因纳潮量大小主要由潮差和纳潮面积组成的潮棱体体积决定,珠江干流出海航道的潮流动力自口门往上游逐渐减少。根据2004年3月和7月官洲水道和仑头水道的水文泥沙测量成果,无论是在枯水期还是洪水期,官洲水道的流速均较仑头水道的流速大。官洲水道分流比在涨憩和落憩附近变幅较大,其余时段涨落潮的分流比约为45%。经相关推算,官洲水道下游附近年纳潮总量254 亿m3,其山潮比为0.96仍略小于1,反映潮流整体强于径流。因径流主要集中于汛期4~9 月,约占全年76%,故汛期水流动力以径流为主,中枯季以潮流为主,且中水期以落潮流为主,枯季因涨潮最大历时比落潮历时短,这种差异大于枯季径流引起的涨落潮量差异,故涨潮流速和流量均略大于落潮相应值。官洲水道下游黄埔以下口门段涨潮历时基本为5.5h,落潮历时为7.0h,黄埔以上则涨潮历时递减、落潮历时递增的速度明显加快。

泥沙特性:珠江流域的泥沙特点是含沙量少,输沙量大。官洲水道的泥沙主要来自于流溪河和北江,尚有少量来源于冲刷深槽的老河床和三角洲沉积层。因珠江流域来沙集中于汛期,5~10月输沙占全年95%左右,而汛期落潮流强于涨潮流,甚至在大洪水时变为单向流,加上落潮历时较长,潮流动力强劲,故天然情况下只有少量泥沙沉积于河道内,上游大部分来沙可及时输向下游,河道处于相对稳定状态。

官洲水道泥沙主要来源于西江、北江,洪季大潮平均含沙量0.1~0.16kg/m3之间,根据2003年3月27日枯水小潮和4月3日枯水大潮实测资料统计,涨潮平均含沙量在0.02~0.04kg/m3之间,落潮平均含沙量在0.04~0.08kg/m3之间。含沙量变化的一般规律是洪季大于枯季、大潮大于小潮、底层大于上层。此外,水流流速越大,含沙量亦越大,反之亦然。

根据罗宪林等的分析,近10多来珠江三角洲河道的挖沙量达7×108~10×108 m3,它相当于珠江三角洲河道70~125年左右自然淤积量。由于采沙,珠江网河河床已由普遍缓慢淤积转为普遍快速冲刷,这也正是官洲水道河床普遍冲刷下切的原因。而且挖沙主要在深水河槽中进行,采沙船多在深泓线附近作业,引起河床过水断面向窄深发展和变形。

水体沿岸城市分布、工业布局、污染源及其排污情况、城市给排水情况

官洲河沿岸城市分布

由上图可知,官洲河的左岸是官洲岛,想在正在建设生物岛;右岸是广州的大学城高校地区,正对着北亭村、华南师范大学、中山大学等;左前方是瀛洲生态公园。在河道的上游左岸有个化工厂,华师前面新建了一个污水处理厂,但还未运行,河的下游,中山大学前面有一个小型的采砂场。河面上经常有船只往来。

官洲河的主要污染源是生活排污水,生活垃圾,以及轮船的油污等。由于河道的左岸大部分是建筑工地,不允许进入,因此我们只实地考察了河道的右岸,发现主要有四个河涌向河道排放污水,下图(●)是河涌的具体位置,表格是详细情况。

表1 各河涌的详细情况

水体沿岸的资源现状和水资源的用途;水体流域土地功能及近期使用计划官洲河的水资源主要用于航运以及工业用水。近些年来,随着经济的发展,官洲沿岸工业建设的增加,使得官洲河的水资源利用随之增加,同时,水体污染也不可避免越来越严重。 历年的水质监测资料

由于官洲河道并未设置监测站点,无法获得历年的水质监测资料。因此我们参考了与官洲河较为接近的广州长洲自动监测站点上的资料。

为便于分析,我们将以上监测数据整理成以下曲线图

2、现场调查

深入现场了解以往水质监测时所设置的断面和采样点是否需要增减或调整。现场调查工作还要针对官洲河进行对周围居民的健康影响的公众调查,调查沿岸居民有无因一个用水、食用水生生物和食用所灌溉的作物而影响健康的情况,当目标水体作为当地的饮用水源时,应开展一定数量的公众调查。必要时还要进行流行病学调查,并进行历史数据和文献资料信息的综合分析。

三、监测断面和采样点的设置

查阅资料可知,官洲河水面平均宽度约330米,而对照断面,控制断面和削减断面的宽度约200米,故设置左中右三条采样垂线。官洲河深度大约为3-8米,故要设置上下两个采样点,即水面下0.5米处和河底以上0.5米处。

但是考虑到安全问题以及采样条件的限制,我们决定每个监测断面只设左垂线,每条垂线只设一个采样点,即水面下0.5米处。

四、采样时间和采样频率的确定

官洲河属于潮汐河流,为了保证水样对水质在时间和空间上变化规律的反映

由于课程时间的限制,我们无法做到“潮汐河流和河口全年按丰、平、枯三期进行采样”故计划在实验时间内,选择其中的大潮日和小潮日各采样一天,每天采样两次,每次采集当天涨、退潮水样各一份。

实验时间在3月份,属于官洲河的枯水期。因此,我们实验所测的值为官洲河枯水期的水质状况。考虑到实际的采样时间限制及采样的方便,我们组初步计划在3月4、5号这两

天进行采样。依据下图的官洲河潮汐信息可知,这两天分别为官洲河的小潮日、大潮日。具体的采样时间分别为9:00—10:00,14:30—15:30的时间段。

五、选定采样和保存方法

通过分析长洲历年的水质状况,结合官洲河的现状,根据相关标准,我们小组从中选取的测定项目以及采样方法如下表:

注:(1) *表示应尽量作现场测定;

**表示单独采样。

(2) G为硬质玻璃瓶;P为聚乙烯瓶(桶)。

(3)Ⅰ,Ⅱ,Ⅲ,Ⅳ表示四种洗涤方法,如下:

Ⅰ:洗涤剂洗一次,自来水三次,蒸馏水一次;

Ⅱ:洗涤剂洗一次,自来水洗二次,1+3 HNO3荡洗一次,自来水洗三次,蒸馏水一次;

Ⅲ:洗涤剂洗一次,自来水洗二次,1+3 HNO3荡洗一次,自来水洗三次,去离子水一次;

Ⅳ:铬酸洗液洗一次,自来水洗三次,蒸馏水洗一次。

如果采集污水样品可省去用蒸馏水、去离子水清洗的步骤。

在水质采样时应注意如下事项:

1)采样时不可搅动水底的沉积物。

2)采样时尽量保证采样点的位置准确。

3)认真填写“水质采样记录表”,用签字笔或硬质铅笔在现场记录,字迹应端正、清晰,

项目完整。

4)保证采样按时、准确、安全。

5)采样结束前,应核对采样计划、记录与水样,如有错误或遗漏,应立即补采或重采。

6)如采样现场水体很不均匀,无法采到有代表性的样品,则应详细记录不均匀的情况

和实际采样情况,供使用该数据者参考。

7)测定油类的水样,应在水面至300mm采集柱状水样,并单独采样,全部用于测定。

并且采样瓶(容器)不能用采集的水样冲洗。

8)测溶解氧、生化需氧量和有机污染物等项目时,水样必须注满容器,上部不留空间,

并有水封口。

9)如果水样中含沉降性固体(如泥沙等),则应分离除去。分离方法为:将所采水样摇

匀后倒入筒形玻璃容器(如1~2L量筒),静置30min,将不含沉降性固体但含有悬

浮性固体的水样移入盛样容器并加入保存剂。测定水温、pH、DO、总悬浮物和油

类的水样除外。

采样计划:

确定指标后,为采样制定计划。其中包括:确定的采样垂线和采样点位、测定项目和数量、采样质量保证措施,采样时间和路线、采样人员和分工、采样器材和交通工具以及需要进行的现场测定项目和安全保证等。

采样准备:材料:塑料瓶、玻璃瓶、竹竿、绳子、温度计、PH计、黑色塑料袋、冰块药品:碱性碘化钾—叠氮化钠溶液、硫酸锰溶液、盐酸、硫酸、氯化汞溶液采样方法:用细绳将采样容器固定在竹竿上,伸到确定的采样点处,待一定时间后取水完成。做好采样记录。对某些特定项目如溶解氧、生化需氧量等需要特别处理。

运输过程中的保存措施:采样后放在冰块中,以保持低温条件。在运输过程中,样品用黑色塑料袋或保密性较好的箱子装,从而避免光照。

人员分工:全组共七人,每次采样在每个断面安排2~3人负责整个采样工作。

采样量估计:单独采样项目

悬浮物:250mL(塑料瓶)溶解氧:500mL(玻璃瓶)

BOD5:1000mL(玻璃瓶)石油类:250mL(玻璃瓶)非单独采样项:色度、浊度、N-NH3、总磷、Cr(Ⅳ):共1000mL(塑料瓶)

COD、OC、TOC:共500mL

六、选定分析测定技术

根据长洲历年水质监测主要污染物的浓度范围,选择合适的分析测定技术,如下表所示:

实验过程如下

1、现场测定项目:水温、PH

2、悬浮物测定——重量法

2.1、滤膜准备

用扁咀无齿镊子夹取微孔滤膜放于事先恒重的称量瓶里,移入烘箱中于103~105℃烘干半小时后,取出置干燥器内冷却至室温,称其重量,反复烘干、冷却、称量,直至两次称量的重量差≤0.0002g。

将恒重的微孔滤膜正确的放在滤膜过滤器(4.1)的滤膜托盘上,加盖配套的漏斗,并用夹子固定好。以蒸馏水湿润滤膜,并不断吸滤。

2.2、测定

量取适量混合均匀的水样(是使悬浮物量在500~1000mg)抽吸过滤。使水分全部通过滤膜。再以每次10mL蒸馏水连续洗涤三次,继续吸滤以除去痕量水分。

停止吸滤后,仔细取出载有悬浮物的滤膜放在原恒重的称量瓶里,移入烘箱中于103~105℃下烘干一小时后移入干燥器中,使冷却到室温,称其重量。反复烘干、冷却、称量,直至两次称量的重量差≤0.4mg为止。

注:滤膜上截留过多的悬浮物可能夹带过多的水份,除延长干燥时间外,还可能造成过滤困难,遇此情况,可酌情少取试样。滤膜上悬浮物过少,则会增大称量误差,影响测定精度,必要时,可增大试样体积。一般以5~100mg悬浮物量做为量取试样体积的实用范围。

3、溶解氧——碘量法

3.1、溶解氧的固定(现场固定)

用吸量管插入溶解氧瓶的液面下往水样中加入1mLMnSO4溶液、2ml碘化钾—叠氮化钠溶液,盖紧瓶塞,将瓶颠倒振摇使之充分摇匀。此时,水样中的氧被固定生成锰酸锰(KMnO3)棕色沉淀。

3.2、酸化

往水样中加入1.0ml浓硫酸,盖上瓶塞,摇匀,直至沉淀物完全溶解为止(若没全溶解还可再加少量的浓酸)。此时,溶液中有碘产生,将瓶在阴暗处放5分钟,使碘全部析出来。

3.3、滴定

用50ml移液管从瓶中取水样于锥形瓶中,用标准Na2S2O3溶液滴定至浅黄色。向锥形瓶中加入淀粉溶液1ml,继续用Na2S2O3标准溶液滴定至蓝色变成无色为止。记下消耗Na2S2O3标准溶液体积。

按上述方法平行测定三次。

4、化学需氧量COD——重铬酸钾法

4.1、取20.00ml混合均匀的水样(或适量水样稀释至20.00ml)置于250ml磨口的回流锥形瓶中,准确加入10.00ml0.0250mL/moL重铬酸钾标准溶液及数粒小玻璃珠或沸石,连接磨口的回流冷凝管,从冷凝管上口慢慢地加入30ml硫酸-硫酸银溶液,轻轻摇动锥形瓶是溶液混匀,加热回流2h(自开始沸腾时计时)。

对于化学需氧量高的废水样,可先取上述操作所需体积1/10的废水样和试剂于15×150mm硬质玻璃试管中,摇匀,加热后观察是否成绿色。如溶液显绿色,在适当减少废

水取样量,直至溶液不变绿色为止,从而确定废水样分析时应取用的体积。稀释时,所取废水样量不得少于5ml,如果化学需氧量很高,则废水样应多次稀释。废水中氯离子含量超过30mg/L时,应先把0.4g硫酸汞加入回流锥形瓶中,再加20.00ml废水(或适量废水稀释至20.00ml),摇匀。

4.2、冷却后,用90ml水冲洗冷凝管壁,取下锥形瓶。溶液总体积不得少于140ml,否则因酸度太大,滴定终点不明显.

4.3、溶液再度冷却后,加3滴试亚铁灵指示液,用0.01moL/L硫酸亚铁铵标准溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点,记录硫酸亚铁铵标准溶液的用量。

4.4、测定水样的同时,取20.00ml重蒸馏水,按同样的操作步骤作空白试验。记录测定空白时硫酸亚铁铵标准溶液的用量。

5、高锰酸钾指数OC—酸性高锰酸钾法

5.1 吸取100.0mL经充分摇动、混合均匀的样品(或分取适量,用水稀释至100mL),置于250mL锥形瓶中,加入5±0.5mL硫酸(4.3),用滴定管加入10.00mL 高锰酸钾溶液(4.8),摇匀。将锥形瓶置于沸水浴内30±2min(水浴沸腾,开始计时)。

5.2 取出后用清定管加入10.00mL草酸钠溶液(4.6)至溶液变为无色。趁热用高锰酸钾溶液(4.8)滴定至刚出现粉红色,并保持30s不退。记录消耗的高锰酸钾溶液体积。

5.3 空白试验:用100mL水代替样品,按步骤7.1、7.2测定,记录下回滴的高锰酸钾溶液(4.8)体积。

5.4 向空白试验(7.3)滴定后的溶液中加入10.00mL草酸钠溶液(4.6)。如果需要,将溶液加热至80℃。用高锰酸钾溶液(4.8)继续滴定至刚出现粉红色,并保持30s不退。记录下消耗的高锰酸钾溶液(4.8)体积。

注:①沸水浴的水面要高于锥形瓶内的液面。

②样品量以加热氧化后残留的高锰酸钾(4.8)为其加入量的1/2~1/3为宜。加热时,如溶液红色退去,说明高锰酸钾量不够,须重新取样,经稀释后测定。

③滴定时温度如低于60℃,反应速度缓慢,因此应加热至80℃左右。

④沸水浴温度为98℃。如在高原地区,报出数据时,需注明水的沸点。

6、生化需氧量BOD5——稀释与接种法

6.1. 水样的预处理

(1)水样的pH值若超出6.5—7.5范围时,可用盐酸或氢氧化钠稀溶液调节pH近于7,但用量不要超过水样体积的0.5%。若水样的酸度或碱度很高,可改用高浓度的碱或酸进行中和。

(2)水样中含有铜、铅、锌、镉、铬、砷、氰等有毒物质时,可使用经驯化的微生物接种液的稀释水进行稀释,或提高稀释倍数以减少毒物的浓度。

(3)含有少量游离氯的水样,一般放置1—2h,游离氯即可消失。对于游离氯在短时间不能消散的水样,可加入亚硫酸钠溶液,以除去之。其加入量由下述方法决定。

取已中和好的水样100ml,加入1+1乙酸10ml,10%(m/V)碘化钾溶液1ml,混匀。以淀粉溶液为指示剂,用亚硫酸钠溶液滴定游离碘。由亚硫酸钠溶液消耗的体积,计算出水样中应加入亚硫酸钠溶液的量。

(4)从水温较低的水域或富营养化的湖泊中采集的水样,可遇到含有过饱和溶解氧,此时应将水样迅速升温至20℃左右,在不使满瓶的情况下,充分振摇,并时时开塞放气,以赶出过饱和的溶解氧。

从水温较高的水域或废水排放口取得的水样,则应迅速使其冷却至20℃左右,并充分振摇,使与空气中氧分压接近平衡。

6.2. 不经稀释水样的测定

溶解氧含量较高、有机物含量较少的地面水,可不经稀释,而直接以虹吸法,将约20℃的混匀水样转移入两个溶解氧瓶内,转移过程中应注意不使产生气泡。以同样的操作使两个溶解氧瓶充满水样后溢出少许,加塞。瓶内不应有气泡。

其中一瓶随即测定溶解氧,另一瓶的瓶口进行水封后,放入培养箱中,在20±1℃培养5d。在培养过程中注意添加封口水。

从开始放入培养箱算起,经过五昼夜后,弃去封口水,测定剩余的溶解氧。

6.3. 需经稀释水样的测定

(1)稀释倍数的确定:根据实践经验,提出下述计算方法,供稀释时参考。

地面水,由测得的高锰酸盐指数与一定的系数的乘积,即求得稀释倍数,见下表。

由高锰酸盐指数与一定系数的乘积求得的稀释倍数

高锰酸盐指数(mg/L)系数

<5---

5-100.2、0.3

10-200.4、0.6

>200.5、0.7、1.0

工业废水,由重铬酸钾法测得的COD值来确定。通常需做三个稀释比。使用稀释水时,由COD值分别乘以系数0.075、0.15、0.225,即获得三个稀释倍数。使用接种稀释水时,则分别乘以0.075、0.15和0.25三个系数。

注:CODcr值可在测定COD过程中,加热回流至60min时,用由校核试验的苯二甲酸氢钾溶液按COD测定相同操作步骤制备的标准色列进行估测。

(2) 稀释操作:

一般稀释法:按照选定的稀释比例,用虹吸法沿筒壁先引入部分稀释水(或接种稀释水)于1000ml量筒中,加入需要量的均匀水样,再引入稀释水(或接种稀释水)至800ml,用带胶版的玻棒小心上下搅匀。搅拌时勿使搅棒的胶版漏出水面,防止产生气泡。

按不经稀释水样的测定相同操作步骤,进行装瓶、测定当天溶解氧和培养5d后的溶解氧。

另取两个溶解氧瓶,用虹吸法装满稀释水(或接种稀释水)作为空白试验。测定5d前后的溶解氧。

直接稀释法:直接稀释法是在溶解氧瓶内直接稀释。在已知两个容积相同(其差<1ml)的溶解氧瓶内,用虹吸法加入部分稀释水(或接种稀释水),再加入根据瓶容积和稀释比例计算出的水样量,然后用稀释水(或接种稀释水)使刚好充满,加塞,勿留气泡于瓶内。其余操作与上述一般稀释法相同。

BOD5测定中,一般采用叠氮化钠改良法测定溶解氧。如遇干扰物质,应根据具体情况采用其他方法(详见溶解氧测定方法)。

7、氨氮N-NH3——纳氏试剂比色法

7.1 水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过 2.5mg),移入凯氏烧瓶中,家数滴溴百里酚蓝指示液,用氢氧化纳溶液或演算溶液调节至pH7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL.

采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液.

7.2 标准曲线的绘制:吸取0,0.50,1.00,3.00,7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,家 1.0mL酒石酸钾溶液,混匀.加 1.5mL纳氏试剂,混匀.放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度. 由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线.

7.3 水样的测定:

7.3.1分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,家0.1mL酒石酸钾纳溶液.以下同标准曲线的绘制.

7.3.2 分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol/L氢氧化纳溶液,以中和硼酸,稀释至标线.加1.5mL纳氏试剂,混匀.放置10min后,同标准曲线步骤测量吸光度.

7.4 空白实验:以无氨水代替水样,做全程序空白测定.

8、总有机碳TOC——非色散红外线吸收法

8.1、根据水样测得的COD值估计水样的TOC值范围,TOC=3/8COD。选择稀释倍数(使TOC的测定值小于50)

8.2、水样测定

直接测定法将已酸化的约25mL水样移入50mL烧杯中(加酸量为,每100mL水样中家0.04mL1:1硫酸,一算话的水样可不用再加),在磁力搅拌器上剧烈搅拌几分钟或向烧杯中通入无二氧化碳的氮气,以除去无机碳。用TOC-5000A总有机碳分析仪测定。重复进行2~3次,使测得相应的总碳(TC)和无机碳(IC)值相对偏差在10%以内

9、总磷——钼酸铵分光光度法

9.1、采样和样品

采取500mL水样后加入1mL硫酸调节样品的pH值,使之低于或等于1,或不加任何试剂于冷处保存。

注:含磷量较少的水样,不要用塑料瓶采样,因易磷酸盐吸附在塑料瓶壁上。

9.2.试样的制备:

取25mL样品于具塞刻度管中。取时应仔细摇匀,以得到溶解部分和悬浮部分均具有代表性的试样。如样品中含磷浓度较高,试样体积可以减少。

9.3样品测定

9.3.1 消解

9.3.1.1 过硫酸钾消解:向(11.2)试样中加4mL过硫酸钾,将具塞刻度管的盖塞紧后,用一小块布和线将玻璃塞扎紧(或用其他方法固定),放在大烧杯中置于高压蒸气消毒器中加热,待压力达1.1kg/cm2,相应温度为120℃时、保持30min后停止加热。待压力表读数降至零后,取出放冷。然后用水稀释至标线。

注:如用硫酸保存水样。当用过硫酸钾消解时,需先将试样调至中性。

9.3.1.2 硝酸-高氯酸消解:取25mL试样(11.1)于锥形瓶中,加数粒玻璃珠,加2mL 硝酸在电热板上加热浓缩至10mL。冷后加5mL硝酸,再加热浓缩至10mL,放冷。加3mL高氯酸,加热至高氯酸冒白烟,此时可在锥形瓶上加小漏斗或调节电热板温度,使消解液在锥形瓶内壁保持回流状态,直至剩下3~4mL,放冷。

加水10mL,加1滴酚酞指示剂。滴加氢氧化钠溶液至刚呈微红色,再滴加硫酸溶液使微红刚好退去,充分混匀。移至具塞刻度管中,用水稀释至标线。

注:①用硝酸-高氯酸消解需要在通风橱中进行。高氯酸和有机物的混合物经加热易发生危险,需将试样先用硝酸消解,然后再加入硝-酸高氯酸进行消解。

②绝不可把消解的试作蒸干。

③如消解后有残渣时,用滤纸过滤于具塞刻度管中,并用水充分清洗锥形瓶及滤纸,一并移到具塞刻度管中。

④水作中的有机物用过硫酸钾氧化不能完全破坏时,可用此法消解。

9.3.2 发色

分别向各份消解液中加入1mL抗坏血酸溶液)混匀,30s后加2mL钼酸盐溶液)充分混匀。

注:①如试样中含有浊度或色度时,需配制一个空白试样(消解后用水稀释至标线)然后向试料中加入3mL浊度——色度补偿液,但不加抗坏血酸溶液和钼酸盐溶液。然后从试料的吸光度中扣除空白试料的吸光度。

②砷大于2mg/L干扰测定,用硫代硫酸钠去除。硫化物大于2mg/L干扰测定,通氮气去除。铬大于50mg/L干扰测定,用亚硫酸钠去除。

9.3.3、分光光度测量

室温下放置15min后,使用光程为30mm比色皿,在700nm波长下,以水做参比,测定吸光度。扣除空白试验的吸光度后,从工作曲线上查得磷的含量。

注:如显色时室温低于13℃,可在20~30℃水花上显色15min即可。

9.3.4 工作曲线的绘制

取7支具塞刻度管(4.2)分别加入0.0,0.50,1.00,3.00,5.00,10.0,15.0mL磷酸盐标准溶液(3.14)。加水至25mL。然后按测定步骤(6.2)进行处理。以水做参比,测定吸光度。扣除空白试验的吸光度后,和对应的磷的含量绘制工作曲线。

9.4 空白试样

按(11.3)的规定进行空白试验,用水代替试样,并加入与测定时相同体积的试剂

9.5 结果的表示

总磷含量以C(mg/L)表示,按下式计算:

式中:m——试样测得含磷量,μg;

V——测定用试样体积,mL。

10、铬(Ⅳ)二苯碳酰二肼分光光度法

10.1 样品的预处理:

10.1.1 样品中不含悬浮物,是低色度的清洁地面水可直接测定。

10.1.2色度校正:如样品有色但不太深时,接3步骤另取一份试样,以2ml丙酮代替显色剂,其他步骤同3。试份测得的吸光度扣除此色度校正吸光度后,再行计算。

10.1.3 锌盐沉淀分离法:对混蚀、色度较深的样品可用此法前处理。

取适量样品(含六价铬少于100μg)于150ml烧杯中,加水至50ml。滴加氢氧化钠溶液,调节溶液PH值为7~8。在不断搅拌下,滴加氢氧化锌共沉淀剂至溶液PH值为8~9。将此溶液转移至100ml容量瓶中,用水稀释至标线。用慢速滤纸干过滤,弃去10~20ml初滤液,取其中50.0ml滤液供测定。

注:当样品经锌盐沉淀分离法前处理后仍含有机物干扰测定时,可用酸性高锰酸钾氧化法破坏有机物后再测定。即取50.0ml滤液于150ml锥形瓶中,加入几粒玻璃,加入0.5ml 硫酸溶液、0.5ml磷酸溶液,摇匀。加入2滴高锰酸钾溶液,如紫红色消褪,则应添加高锰酸钾溶液保持紫红色。加热煮沸至溶液体积约剩20ml。取下稍冷,用定量中速滤纸过滤,用水洗涤数次,合并滤液和洗液至50ml比色管中。加入1ml尿素溶液,摇匀。用滴管滴加

亚硝酸钠溶液,每加一滴充分摇匀,至高锰酸钾的紫红色刚好褪去。稍停片刻,待溶液内气泡逸尽,转移至50ml比色管中,用水稀释至标线,供测定用。

10.1.4 二价铁、亚硫酸盐、硫代硫酸盐等还原性物质的消除:取适量样品(含六价铬少于50μg)于50ml比色管中,用水稀释至标线,加入4ml显色剂,混匀,放置5min后,加入1ml硫酸溶液摇匀。5~10min后,在540nm波长处,用10或30mm光程的比色皿,以水做参比,测定吸光度。扣除空白试验测得的吸光度后,从校准曲线查得六价铬含量。用同法做校准曲线。

10.1.5 次氯酸盐等氧化性物质的消除:取适量样品(含六价铬少于50μg)于50ml比色管中,用水稀释至标线,加入0.5ml硫酸溶液、0.5ml磷酸溶液、1.0ml尿素溶液,摇匀。逐滴加入1ml亚硝酸钠溶液,边加边摇,以除去由过量的亚硝酸钠与尿素反应生成的气泡,待气泡除尽后,以下步骤同3(免去加硫酸液和磷酸溶液)。

10.2 空白试验

按同试样完全相同的处理步骤进行空白试验,仅用50ml水代替试样。

10.3 测定

取适量(含六价铬少于50μg)无色透明试份,置于50ml比色管中,用水稀释至标线。加入0.5ml硫酸溶液和0.5ml磷酸溶液,摇匀。加入2ml显色剂,摇匀。5~10min后,在540nm波长处,用10或30mm的比色皿,以水做参比,测定吸光度,扣除空白试验测得的吸光度后,从校准曲线上查得六价铬含量。

注:如经锌盐沉淀分离,高锰酸氧化法处理的样品,可直接加入显色剂测定。

10.4 校准

向一系列50ml比色管中分别加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.0ml铬标准溶液(如经锌盐沉淀分离法前处理,则应加倍吸取),用水稀释至标线。然后按照测定试样的步骤(1或3)进行处理。

从测得的吸光度减去空白试验的吸光度后,绘制以六价铬的量对吸光度的曲线。

七、结果表达、质量保证及实施计划

对监测中获得的众多数据,应进行科学地计算和处理,并按照要求的形式在监测报告中表达出来。质量保证概括了保证水质监测数据正确可靠的全部活动和措施。质量保证贯穿监测工作的全过程。实施进度计划是实施监测方案的具体安排,要切实可行,使各环节工作有序,协调地进行。

河流断面水质自动监测站方案(常规参数)20150707

水质自动监测站建设方案 编制单位:榆林兴源电子科技有限公司编制时间:2015年07月

目录 一、水质在线自动监测系统概述 (2) 二、水质在线自动监测系统设计依据 (3) 三、水质在线自动监测系统详述 (4) 3.1 采配水单元 (4) 3.2 预处理单元 (4) 3.3 清洗单元 (6) 3.4系统控制单元 (6) 3.5 数据采集、传输和远程监控 (9) 四、水质在线自动监测仪器 (10) 4.1 五参数分析仪(德国科泽 K100 W系列) (10) 4.2 高锰酸盐指数(德国科泽 K301 COD Mn A) (13) 4.3 氨氮分析仪 (德国科泽K301 NH4 A ) (16) 五、项目预算 (18)

一、水质在线自动监测系统概述 在线水质自动监测系统是以自动监测设备——在线水质分析仪为核心,结合现代的计算机(包括软件)技术、自控技术、网络通讯技术、流体取样术等先进技术手段高度集成的一套完整的自动分析系统。它可以有效地分析来水的各项水质参数,并对水样进行自动留样。同时可利用水质模型功能软件对水质变化趋势进行有效的预测预警,也可以根据实时水质参数之间的关联组合所表现的综合性质,为决策人员提供大量客观详实的有效数据和判断依据。 通常水质在线自动监测系统包括自动分析仪器、取样单元、配水单元、预处理单元、数据采集单元、通讯单元和控制单元;除此以外,还包括清洗除藻、纯水、供电、防雷等辅助单元。水样通过取样设备自动抽取到指定位置,由中控设备控制相应的管路和阀门对水样进行初步的预处理后再进行有针对性的分类处理,合理分配给相应的水质分析设备,分析设备采用符合国家统一颁布的标准方法对水样进行分析测量,并将测量得到的结果传输到数据采集设备,最后由数据采集设备统一发送到远程服务器。在现场,中控设备通常可以对各个系统进行简单的控制,并将测量结果实时显示在中控监视器上。在远程控制中心,一方面通过有功能强大的数据平台,可以把接收来自各站点的监控系统相关信息,汇总得到各种数据报表,并可对数据进行分析处理。先进的数据平台还能结合水质模型功能软件对水质数据进行分析评估以及预测、预警。 本项目监测以下7个常规参数:水温、PH、电导率、DO、浊度、高锰酸盐指数、氨氮。

污水水质检测实验报告

污水水质检测实验报告 班级: 姓名: 学号: 一、实验目的: (1)、学习和掌握测定水中溶解氧、pH、浊度、氟化物、铁、氨氮、六价铬、硫化物、钙、亚硝酸盐氮、有效氯(总氯)COD和

总磷的方法。 (2)校园内湖塘是校园生活污水和雨水的接纳水体。本实验旨在了解各湖塘接纳污水水质情况,掌握铬法测定污水COD的方法及原理,同时了解其他水质指标,如SS、NH3-N、PO43-。 二、实验原理: (1)重铬酸钾法测定污水COD 实验原理:化学需氧量是用化学氧化剂氧化水中有机物污染物时所消耗的氧化剂量,用氧量(mg/L)表示。化学需氧量愈高,也表示水中有机污染物愈多。常用的氧化剂主要是重铬酸钾和高锰酸钾。以高锰酸钾作氧化剂时,测得的值称CODMn。以重铬酸钾作氧化剂时,测得的值称CODCr,或简称COD。重铬酸钾法测COD的原理是在水样中加如一定量的重铬酸钾和催化剂硫酸银,在强酸性介质中加热回流一段时间,部分重铬酸钾被水样中可氧化物质还原,用硫酸亚铁铵滴定剩余的重铬酸钾,根据消耗重铬酸钾的量计算COD的值。 (2)、氨氮的测定 氨+碘化汞钾→黄色络合物 ↑ 氨与碘化汞钾在碱性溶液中(KOH)生成黄色络合物,其色度与氨氮含量成正比,在0~2.0 mg/L的氨氮范围内近于直线性。 (3)、亚硝酸盐的测定——重氮化比色法 亚硝酸盐+氨基苯磺酸(重氮作用)+ -萘胺→紫

红色染料 亚硝酸盐和对氨基苯磺酸起重氮化作用,再与 -萘胺起偶合反应,生成紫红色染料,与标准液进行比色。 三、实验装置: (1)、器材 GDYS-101M多参数水质分析仪

(2)、药品 去离子水或蒸馏水、各种相关试剂 (3)、样品 信息楼前池塘水 四、注意事项: (1)树叶、木棒、水草等杂质应从水样中除去。(2)废水粘度高时,可加2-4倍蒸馏水稀释,摇均匀待沉淀物下降后再过滤。五、实验步骤: 样品(ml)试剂(一)试剂(二)显色时间 (min) 氨氮10 0.2 1支10 10 0.2 1支— 蒸馏水(对 照) 亚硝酸盐10 0.2 1支20 蒸馏水(对 10 0.2 1支— 照)

流体力学实验报告

流体力学 实验指导书与报告 静力学实验 雷诺实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

河流与湖(库)监测有何异同

河流与湖(库)监测有何异同 1.采样点位的确定 河流监测断面上的采样垂线数见表1,各垂线上的采样点数见表2。湖(库)监测垂线上的采样点的布设见表3。

2.监测时间与频次 河流与湖(库)均每月监测一次,监测时间为每月1-10日。 3.监测项目 河流监测《地表水环境质量标准》(GB3838-2002)表1中除总氮外的23项基本项目(即:水温、pH、溶解氧、高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、粪大肠菌群),以及流量、电导率。 湖库增测透明度、总氮、叶绿素a和水位等指标。 4.水质评价指标及标准 根据《关于印发<地表水环境质量评价办法(试行)>的通知》(环办[2011]22号文)的要求,地表水水质评价指标为《地表水环境质量标准(GB3838-2002)》表1中除水温、总氮、粪大肠菌群以外的21项指标。即:pH值、溶解氧、高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂和硫化物。总氮、粪大肠菌群作为参考指标单独评价(河流总氮除外)。水温仅作为参考指标。 湖泊和水库营养状态评价指标为:叶绿素a、总磷、总氮、透明度和高锰酸盐指数共5项。 水质评价标准执行《地表水环境质量标准(GB3838-2002)》,按Ⅰ类~劣Ⅴ类六个类别进行评价。 5.水质评价方法 1、河流水质评价 (1)断面水质评价 河流断面水质类别评价采用单因子评价法,即根据评价时段内该断面参评的指标中类别最高的一项来确定。描述断面的水质类别时,使用“符合”或“劣于”等词语。断面水质类别与水质定性评价分级的对应关系见表4。

水质检测评价报告

水质检测评价报告 一、时间:2013年1月1日~2013年3月31日 二、地点:校内(半霞湖、润泽湖、河道、竞慧西) 三、采样点:河道中游(动力保障部段) 半霞湖文心剧场前 竞慧西图书馆北侧水塘 润泽湖竞秀北楼前 四、检测项目:水温、PH、DO、COD、BOD 五、检测频次: 六、检测方法:

七、检测数据记录 a) 河道检测记录 b) 半霞湖检测记录 c) 竞慧西检测记录 d) 润泽湖检测记录

注:1)—对BOD项目的检测因试剂原因,检测频次低。 2)—受天气影响,检测时间具有间断性(为使结果具有可比性,在阴雨天气三天后进行检测)。 八、数据分析(参照《中华人民共和国地表水环境质量标准》GB3838-2002)见附录 我学院适用于第Ⅲ类、Ⅳ类标准 (1) 由数据和分析图显示:四湖区PH值均达标,且在正常范围内。润泽湖因湖区面积较大,补给水缓冲作用不明显,PH值较为平均,河道水因其流动性强,PH值受降水影响较为平均。出现明显的幅度,可能是测量误差。

(2) 由数据和分析图显示:随着温度的上升,四湖区水中DO值普遍下降,均在达标值范围内。竞慧西及润泽湖水因流动性能差,水中DO值偏高,但起伏较为平缓,均在达标范围内。 (3) 由数据和分析图显示:四湖区COD值均在达标值范围内,较去年同期相比,四湖区COD值均有所降低。半霞湖湖区COD值较河道高,原因为水域面积较大和湖区较深,同时补给水减少,缓冲作用不明显,水中还原性物质和杂质较河道多。 由数据显示:四湖区的BOD值均达标,在正常范围内,其中河

道水流动性大,水质较好。四湖区BOD值相差较大,原因为半霞湖湖区及润泽湖湖水域面积较大和湖区较深,流动性能差,水体中的藻类及微生物生长旺盛,在补给水减少的情况下,缓冲作用较流动性能好的河道不明显,说明水体中有机物含量相对较多。 补充说明: 1、随着气温的升高,湖底底泥的上翻,四湖区水浊度、色度均较大,透明度降低,水体表色因补给水及流动性能的不同有明显差异。半霞湖水体表色以黄褐色为主;润泽湖水体表色以墨绿色为主;河道水以绿色为主。 2、1、2月雨水较多,为确保水质稳定,雨水后3天再测。 综上所述: 河道水因其为流动水,总体水质较半霞湖及润泽湖要好。四湖区水质变化平缓,较去年相比,整体水体环境较为稳定。 检测人:孙玉彤 报告制作人:孙玉彤 报告审核人:胡学军 2013-4-9

环境监测实验报告

分数 环境监测实验报告 姓名:陈志杰 班级:10级环工一班 院系:水建院 任课教师:杜丹 2012年12 月16 日

内蒙古农业大学西区宿舍楼生活饮用水水质检测分析报告一、西区宿舍楼生活饮用水水质监测目的 1掌握水质现状及其变化趋势。 2为开展水环境质量评价和预测、预报及进行环境科学研究 提供基础数据和技术手段。 3为国家政府部门制定水环境保护标准、法规和规划提供有关 数据和资料。 4对环境污染纠纷进行仲裁监测,为判断纠纷原因提供科学依据。 二、水质监测项目指标 物理指标:水温,臭和味,色度,浊度,透明度,固体物(总固体物,溶解固体物,悬浮物),矿化度,电导率,氧化还原电位。 金属化合物:铝,汞,镉,铅,铜,锌,铬,砷,其他金属化合物如镍、铁、锰、钙、镁、铀。 非金属无机化合物:酸度和碱度,pH,溶解氧(DO),氰化物(简单氰化物,络合氰化物,有机氰化物),氟化物,含氮化合物(氨氮,亚硝酸盐氮,硝酸盐氮,凯氏氮,总氮),硫化物,含磷化合物,其他非金属无机化合物,如氯化物、碘化物、硫酸盐、余氯、硼、二氧化硅。 有机污染物:综合指标和类别指标化学需氧量(COD),高锰酸盐指数,生化需氧量(BOD),总有机碳(TOC),挥发酚,油类。 特定有机污染物:挥发性卤代烃,挥发性有机物(VOCs),多

环芳烃(PAHs)。 底质和活性污泥(污泥沉降比,污泥浓度,污泥容积指数) 二、水质检测方法 实验一pH值的测定 pH值是水中氢离子活度的负对数。pH=-log10αH+。 pH值是环境监测中常用的和最重要的检验项目之一。饮用水标准的pH值的范围是6.5~8.5。由于pH值受水温影响而变化,测定时应在规定的温度下进行,或者校正温度。通常采用玻璃电极法和比色法测定pH值。比色法简便,但受色度、浊度、胶体物质、氧化剂、还原剂及盐度的干扰。玻璃电极法基本不受上述因素的干扰。然而,pH在10以上时,产生“钠差”,读数偏低,需选用特制的“低钠差”,玻璃电极,或使用与水样的pH值相近的标准缓冲溶液对仪器进行校正。 本实验采用玻璃电极法测定pH值。 (一)实验目的 掌握玻璃电极法测定pH的方法及原理 (二)实验原理 以玻璃电极为指示电极,与参比电极组成电池。在25℃理想条件下,氢离子活度变化10倍,使电动势偏移59.16mv,根据电动势的变化测量出pH值。两种电极结合在一起能组成复合电极。pH计测量出玻璃复合电极的电压,电压转换成pH值,其结果被显示出来。(三)实验仪器 pH计(PB-21) (四)实验试剂 1.pH=4.003缓冲液(邻苯二甲酸氢钾) 2.pH=6.864缓冲液(混合磷酸盐) 3.pH=9.182缓冲液(硼砂) (五)实验步骤 1.将电极浸入到缓冲溶液中,搅拌均匀,直至达到稳定。 2.按mode(转换)键,直至显示出所需要的pH值测量方式。

实验一 流体力学综合实验实验报告

实验一 流体力学综合实验 预习实验: 一、实验目的 1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳 2.测定直管摩擦系数λ与e R 关系曲线及局部阻力系数ζ 3、 了解离心泵的构造,熟悉其操作与调节方法 4、 测出单级离心泵在固定转速下的特定曲线 二、实验原理 流体在管路中的流动阻力分为直管阻力与局部阻力两种。直管阻力就是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算: g u d l g p H f 22 ??=?-=λρ (3-1) 局部阻力主要就是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下: g u g p H f 22 '' ?=?-=ζρ (3-2) 管路的能量损失 'f f f H H H +=∑ (3-3) 式中 f H ——直管阻力,m 水柱; λ——直管摩擦阻力系数; l ——管长,m; d ——直管内径,m; u ——管内平均流速,1s m -?; g ——重力加速度,9、812s m -? p ?——直管阻力引起的压强降,Pa; ρ——流体的密度,3m kg -?; ζ——局部阻力系数; 由式3-1可得

22lu d P ρλ??-= (3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ?即可计算出λ与R e ,然后在双对数坐标纸上标绘出Re λ-的曲线图。 离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。 实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。 离心泵的扬程可由进、出口间的能量衡算求得: g u u h H H H 22 1220-++-=入口压力表出口压力表 (3-5) 式中出口压力表H ——离心泵出口压力表读数,m 水柱; 入口压力表H ——离心泵入口压力表的读数,m 水柱; 0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计; 1u ——吸入管内流体的流速,1s m -?; 2u ——压出管内流体的流速,1s m -? 泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头与流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率 %100?=N N e η (3-6) 而泵的有效功率 g QH N e e ρ=/(3600×1000) (3-7) 式中:e N ——泵的有效功率,K w; N ——电机的输入功率,由功率表测出,K w ; Q ——泵的流量,-13h m ?; e H ——泵的扬程,m 水柱。 三、实验装置流程图

水质环境监测实验报告

水质环境监测实验报告 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

河道治理河长制水质监测系统方案

河道治理河长制水质监测 “水是生命之源、生产之要、生态之基。”江河湖泊具有重要的 资源功能、生态功能和经济功能,是最重要的水源,也是人类赖以 生存的基础。 为进一步加强河湖管理保护工作,落实属地责任,健全长效机制,12 月 11 日,经中央全面深化改革领导小组第 28 次会议审议通过,中共中央办公厅、国务院办公厅印发了《关于全面推行河长制的意见》。 《意见》要求建立由党政主要负责同志领导的省、市、县、乡“四 级河长体系”,确认了六方面的主要任务:加强水资源保护、加强 河湖水域岸线管理保护、加强水污染防治、加强水环境治理、加强 水生态修复和加强执法监管。 《意见》对河湖水质提出了更高的要求,在其指导下,北京、上海、江苏、福建、浙江等地纷纷推出了地方性“河长制”《实施细则》 和《实施办法》,打响了污染防治、河道治理、建立河道管理保护 长效机制的攻坚战。 1.2河道治理与长效监管

河道治理是“河长制”的重要工作内容,上海市《关于本市全面推 行河长制的实施方案》中,提出了 2017 年底,实现全市河湖河长 制全覆盖,全市中小河道基本消除黑臭,水域面积只增不减,水质 有效提升;到 2020 年,基本消除丧失使用功能(劣于Ⅴ类)水体,重要水功能区水质达标率提升到78%,河湖水面率达到 10.1% 的工 作目标。 与短期的河道治理相比,河道水质的长效管理持续时间更长,涉及 部门和行业更多,协调和管理难度更大,是河湖管理保护中的一个 难点。缺乏有效的河道水质长效监管解决方案,业已修复的河道也 容易被再次污染,黑臭反弹,产生不良的社会影响。 1.3地表水环境质量标准基本项目标准限值 《地表水环境质量标准 GB3838-2002》适用于全国领域内江河、湖泊、运河、渠道、水库等具有使用功能的地表水水域。

流体力学综合实验数据处理表

流体力学综合实验数据处理表 水在管道内流动的直管阻力损失 由附录查得水温t=20C 时,密度3 /2.998m kg 粘度1 001.0 s pa 由公式 p h f (1) 22u d l h f (2) u d Re (3)可分别算出f h , 和 Re 管内径管a=管b=管c d=0.02m 长度管a=管b=管c L=1m 以a 管第一组数据为例 p =10.323 10 pa 则2 .9981032.103 f h =10.34(J/k g ) 平均流速201.014.3360013.11 u =9.85m/s 则 =2 85.9134 .1002.02 =0.0043 Re = 001 .02 .99885.902.0 =196645 管b

管c 局部阻力系数 的计算 由公式22 u h f 得22u h f 不同开度下截止阀的局部阻力系数 管a 管b

离心泵的特性曲线 杨程H= f h g u g p g p 22 真表 0 f h 离心泵轴功率N=传电电 N 离心泵的效率 是理论功率与轴功率的比值,即 N N t 而理论功率t N 是离心泵对水所作的有效功,即)(102 kw QH N t 以第一组数据为例计算H= 10 201.014.3360002 .20102.99818000102.998125000215.21 m O H 2 N=95.075.01489 =1.601(kw) 2 .99821.1502.20 1.86 离心泵特性曲线

思考与讨论 1, 只管阻力产生的原因是什么?如何测定及计算? 答:原因是流涕在管道内流动时,由于内摩擦力的存在,必然有能量的损耗,此损耗能量为直观阻力损失。测定及计算方法为 p h f (1) 22 u d l h f (2) 2, 影响本实验测量准确度的原因有哪些?怎样侧准数据? 答:读数不精确,供水系统不稳定,电压不稳定,出口胶管排气未排完,如果要侧准数据,应该等仪器上显示的数据稳定后再读取。 3,根据实验测定数据,如何确定离心泵的工作点?水平或是垂直管中,对相同直径,相同条件下所测出的阻力损失是否相同? 答:根据极值数据来确定离心泵的工作点,水平或是垂直管中,对相同直径,相同条件下所测出的阻力损失不相同,

水质检测报告

公司Qianxinan Huaka Detection CO.,LTD 检测报告 报告编号: 项目名称: 项目地址: 委托单位: 报告日期:

声明 1、本报告只适用于检测目的范围。 2、本报告仅对来样或采样分析结果负责。 3、本报告涂改无效。 4、本报告无编写、复核、审核、签发人签字无效。 5、本报告无本公司检验检测专用章、骑缝章及章无效。 6、未经本公司书面批准,不得部分复制本报告。 7、本检测结果仅代表检测时委托方提供的工况条件下项目测值。

项目名称: 编写: 复核: 审核: 签发: 签发日期:2018年04月11日 本公司通讯资料: 联系地址: 邮政编码: 联系电话: 传真: 电子邮件(Email):

水质监测 检测报告 一、检测目的 二、检测内容 检测内容详见表2.1。 表2.1 检测内容

三、质量保证 1、执行《环境监测质量管理技术导则》(GB12348-2008),检测分析的质量保证和质量控制严格按国家有关规定及监测技术规范和环境监测质量控制手册进行。 2、检测分析仪器均采用经计量检定部门检定合格的仪器。 3、检测人员持证上岗。 4、检测采样记录及分析测试结果按监测技术规范有关要求进行数据处理和填报,进行三级审核,确保检测数据的有效性。 四、质控手段 1、样品检测均按照相关规定进行空白实验、加标回收率、质控样跟踪。 2、质控样品测定结果详见表 4.1。 表4.1 质控样品测定结果 五、检测结果 样品类型:地表水 5.1地表水的样品信息详见表5. 1。

表5.1地表水的样品信息 接样日期:2018年04月05日来样编号: 5.2地表水的检测结果详见表5.2。 ————报告结束————

环境检测实验报告

环境检测实验报告 号:班级编号:二○一一年二月《环境监测实验》成绩评定表类别实验内容(名称)应完成指标已完成指标完成学时成绩实验模块一三角湖水质监测必测DO、氨氮;至少选测一个指标实验模块二工业废水监测必测CO D、悬浮物;至少选测一个指标实验模块三校园环境空气质量监测合作完成SO2,NOX和TSP的采样与测定,计算API,评价校园环境空气质量实验模块四生物或土壤重金属污染监测 1、样品采集、制备与预处理 2、铅、铜、锌等金属离子的测定实验模块五环境环境噪声监测实验模块一三角湖水质监测同组者: 1、1碘量法测定溶解氧 一、实验目的和要求 1、了解溶解氧测定的意义和方法。 2、掌握溶解氧的采样技术。 3、掌握碘量法测定溶解氧的操作技术。 4、了解氧膜电极法测定溶解氧的方法原理。 二、实验原理在水样中加入硫酸锰和碱性碘化钾溶液,水中溶解氧能迅速将二价锰氧化成四价锰的氢氧化物沉淀。加浓硫酸溶解沉淀后,碘离子被氧化析出与溶解氧量相当的游离碘。以淀

粉为指示剂,标准硫代硫酸钠溶液滴定,计算溶解氧的含量。反应如下: 三、实验仪器 1、250~300mL溶解氧瓶; 2、250mL碘量瓶或锥形瓶。 3、25mL酸式滴定管 4、1mL、2mL定量吸管 5、100mL移液管 四、实验试剂 1、硫酸锰溶液 2、碱性碘化钾溶液 3、1+5硫酸溶液(标定硫代硫酸钠用) 4、0、5%淀粉溶液 5、硫代硫酸钠溶液 6、0、025mol/L重铬酸钾标准溶液 五、实验步骤 1、硫代硫酸钠溶液的标定:在250mL的碘量瓶中加入100mL 水、1、0gKI、5、00mL 0、0250mol/L重铬酸钾标准溶液和 5mL3mol/L硫酸,摇匀,加塞后置于暗处5min,用待标定的硫代硫酸钠溶液滴定至浅黄色,然后加入1%淀粉溶液 1、0mL,继续滴定至蓝色刚好消失,记录用量。平行做3份。

化工原理流体综合实验报告

流体综合实验 实验目的 1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图; 2)能进行离心泵特性曲线测定实验,测出扬程与流量、功率与流量以及离心泵效率与流量的关系曲线图; 3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作; 离心泵特性测定实验 一、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: (1-1)由于两截面间的管子较短,通常可忽略阻力项fhΣ,速度平方差也很小,故也可忽略,则有 (1-2)式中:H=Z2-Z1,表示泵出口和进口间的位差,m; ρ——流体密度,kg/m3 ; g——重力加速度m/s2; p 1、p 2 ——分别为泵进、出口的真空度和表压,Pa;

H 1、H 2 ——分别为泵进、出口的真空度和表压对应的压头,m; u 1、u 2 ——分别为泵进、出口的流速,m/s; z 1、z 2 ——分别为真空表、压力表的安装高度,m。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N的测量与计算 N=N电×k (W)(1-3) 其中,N 电 为电功率表显示值,k代表电机传动效率,可取k=0.95 3.效率η的计算 泵的效率η是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne可用下式计算: N e=HQρg (1-4)故泵效率为 (1-5)四、实验步骤及注意事项 (一)实验步骤: 1.实验准备: (1)实验用水准备:清洗水箱,并加装实验用水。 (2)离心泵排气:通过灌泵漏斗给离心泵灌水,排出泵内气体。 2、开始实验: (1)仪表自检情况,打开泵进口阀,关闭泵出口阀,试开离心泵,检查电机运转时声音是否正常,,离心泵运转的方向是否正确。 (2)开启离心泵,当泵的转速达到额定转速后,打开出口阀。 (3)实验时,通过组态软件或仪表逐渐改变出口流量调节阀的开度,使泵出口流量从1000L/h 逐渐增大到4000L/h,每次增加500L/h。在每一个流量下,待系统稳定流动5分钟后,读 取相应数据。离心泵特性实验主要需获取的实验数据为:流量Q、泵进口压力p 1 、泵出

官洲河水质监测报告模板.doc

官洲河水质监测报告

目录 官洲河水质监测报告 . ........................................... 错误 ! 未定义书签。一.实验目的 . ................................................. 错误 ! 未定义书签。二.监测方案背景资料 . ......................................... 错误 ! 未定义书签。 1. 官洲河资料搜集 . ....................................... 错误 ! 未定义书签。 2. 水域功能与水域标准 . ................................... 错误 ! 未定义书签。 3. 各河涌污染情况 . ....................................... 错误 ! 未定义书签。三.监测项目说明 . ............................................. 错误 ! 未定义书签。四.监测断面和采样点布设 . ..................................... 错误 ! 未定义书签。五.采样时间及频率 . ........................................... 错误 ! 未定义书签。六.样品采集与保存 . ........................................... 错误 ! 未定义书签。 1. 采样计划 . ............................................... 错误 ! 未定义书签。 2. 样品保存 . ............................................... 错误 ! 未定义书签。七.质量控制和质量保证 . ....................................... 错误 ! 未定义书签。八.单项数据分析 . ............................................. 错误 ! 未定义书签。 1. 水温和 pH ............................................... 错误 ! 未定义书签。 2. 悬浮物( SS) . ........................................... 错误 ! 未定义书签。 3. 溶解氧( DO) . ........................................... 错误 ! 未定义书签。 4. 化学需氧量( COD) . ...................................... 错误 ! 未定义书签。 5. 高锰酸盐指数( I Mn) ----- 水样未经稀释 . .................... 错误 ! 未定义书签。 6. 生化需氧量( BOD) . ...................................... 错误 ! 未定义书签。 7. 挥发酚 . ................................................. 错误 ! 未定义书签。 8. 六价铬 . ................................................. 错误 ! 未定义书签。 9. 总磷 . ................................................... 错误 ! 未定义书签。 10. 氨氮 . .................................................. 错误 ! 未定义书签。九.水质综合分析 . ............................................. 错误 ! 未定义书签。十.参考文献 . ................................................. 错误 ! 未定义书签。

水质检测报告

水 质 检 测 报 告 报告编号:S-1908AJ144 采样日期:2019年08月 06日 采样地点:建华水厂 收样日期:2019年08月 06日 签发日期:2019年08月 常规检测项目 计量单位 限值标准GB5749-2006 检测结果 单项结论 微 生物指标 总大肠菌群 MPN/100mL 不得检出 未检出 符合 或 CFU/100mL 耐热大肠菌群 MPN/100mL 不得检出 未检出 符合 或 CFU/100mL 大肠埃希氏菌 MPN/100mL 不得检出 未检出 符合 或 CFU/100mL 菌落总数 CFU/mL ≤100 0 符合 毒 理指标 砷 mg/L ≤0.01 <0.001 符合 铬(六价) mg/L ≤0.05 <0.004 符合 汞 mg/L ≤0.001 <0.0001 符合 硒 mg/L ≤0.01 <0.0004 符合 氰化物 mg/L ≤0.05 <0.002 符合 氟化物 mg/L ≤1.0 0.30 符合 硝酸盐氮 mg/L ≤10(地下水源限制时为20) 0.35 符合 三氯甲烷 mg/L ≤0.06 <0.0002 符合 四氯化碳 mg/L ≤0.002 <0.0001 符合 亚氯酸盐(使用二氧化氯消毒时) mg/L ≤0.7 0.20 符合 氯酸盐(使用复合二氧化氯消毒时) mg/L ≤0.7 <0.23 符合 感官性 状和一般化 学指标 色 度 度 ≤15 8 符合 浑浊度 NTU ≤1(水源与净水设计条件限 0.56 符合 制为3) 臭和味 / 无异臭异味 0 符合 肉眼可见物 / 无 无 符合 pH / 6.5-8.5 6.9 符合

官洲河水质监测实验报告

官洲河水质监测实验报告 一.明确监测目的: 熟悉水质监测方案的制定及实施,掌握监测项目的测定方法 了解官洲河水质的现状,提高环保的意识 复习相关的知识,以便对专业有更深的认识 培养发现问题,解决问题的能力,提高团队合作能力 二、水污染状况调查 1、基础资料的收集 官洲河的地理气候、水文、地质和地貌资料 气候:官洲水道位于珠江三角洲的广州片网河区,受上游径流及下游南海潮汐动力的共同作用。河流走向为西南-东北,其上游为南河道,下游是广州出海水道即珠江正干至伶仃洋的组成部分,处于北纬 22°26′~23°05、东经113°14′~113°42′之间。属于南亚热带季风性海洋气候,温暖、多雨、湿润,夏长冬短,年平均雨量1646.9毫米,4-9月为雨季,10-3月为干季。 水文:官洲水道的径流来源主要由两部分组成:一部分来自于北江和西江的径流,经三水水文站由平洲水道的沙洛围、大石河、花地涌进入广州片网河,这是主要的径流来源;另一部分来自流溪河、白坭河以及洪水期北江芦苞水闸和西南水闸的分洪流量,这一部分流量经老鸦岗从西航道汇入广州片网河。由于本水道下连伶仃洋喇叭型湾顶,潮汐作用强,多年平均涨潮量2288亿m3,多年平均山潮比为0.26,在珠江八大口门中潮汐作用最强,属潮流作用为主的河口。 据三水水文站(1951~1997 年)统计表明,多年最大平均流量为8030m3/s,多年平均流量为1373m3/s,历年最大流量为16200m3/s(1994.6.20),多年平均迳流量为433.10 亿m3。马口水文站(1951~1997 年)统计结果为多年最大平均流量为27967m3/s,多年平均流量为7405m3/s,多年平均迳流量为2338.56亿m3。流溪河的多年平均迳流量为27.66

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验指导书袁守利编 汽车工程学院 2005年9月

前言 1.实验总体目标、任务与要求 1)学生在学习了《流体力学》基本理论的基础上,通过伯努利方程实验、动量方程实 验,实现对基本理论的验证。 2)通过实验,使学生对水柱(水银柱)、U型压差计、毕托管、孔板流量计、文丘里流量计等流体力学常用的测压、测流量装置的结构、原理和使用有基本认识。 2.适用专业 热能与动力工程 3.先修课程 《流体力学》相关章节。 4.实验项目与学时分配 5. 实验改革与特色 根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。

实验一伯努利方程实验 1.观察流体流经实验管段时的能量转化关系,了解特定截面上的总水头、测压管水头、压强水头、速度水头和位置水头间的关系,从而加深对伯努利方程的理解和认识。 2.掌握各种水头的测试方法和压强的测试方法。 3.掌握流量、流速的测量方法,了解毕托管测速的原理。 二、实验条件 伯努利方程实验仪 三、实验原理 1.实验装置: 图一伯努利方程实验台 1.水箱及潜水泵 2.上水管 3.电源 4.溢流管 5.整流栅 6.溢流板 7.定压水箱 8.实验 细管9. 实验粗管10.测压管11.调节阀12.接水箱13.量杯14回水管15.实验桌 2.工作原理 定压水箱7靠溢流来维持其恒定的水位,在水箱下部装接水平放置的实验细管8,水经实验细管以恒定流流出,并通过调节阀11调节其出水流量。通过布置在实验管四个截面上的四组测压孔及测压管,可以测量到相应截面上的各种水头的大小,从而可以分析管路中恒定流动的各种能量形式、大小及相互转化关系。各个测量截面上的一组测压管都相当于一组毕托管,所以也可以用来测管中某点的流速。 电测流量装置由回水箱、计量水箱和电测流量装置(由浮子、光栅计量尺和光电子

城乡河道水质改善监测-南京蓝洁环保科技有限公司

众所周知,生活在城市里面,每天都有很多垃圾和工业废水流进河道,河边总能闻到一股恶臭,面对越来越严重的水资源污染问题,水质监测尤为重要。水是万物生命的泉源,跟人类健康、社会安全和经济发展息息相关。据统计,全世界有11亿人口没有足够的洁净饮用水,26亿人因缺水而没有基本卫生设施。 21世纪之前,我国的水质监测分析设备基本是从国外进口的,随着行业的不断发展,我国不断引进、吸收新的技术,国产设备逐渐增加,相应的水质分析仪器种类也越来越齐全。水质采样器、水质分析仪、离子检测仪、悬浮物测定仪、水质在线监测设备等仪器均在水质监测工作中发挥了重要作用。 水质采样器是采集水质样品的一种装置,分为水质人工采样器和水质自动采样器两种。水质自动采样器是适合与流量成比例的库斗式采样器,它是一种智能化、多功能、吸入式的水样分瓶采样装置。它可以实现多种采样方式(定量采样、定时定量采样、定时流量比例采样、定流定量采样和远程控制采样)及多种装瓶方式(每瓶单次采样既单采和每瓶多次采样既混采)。是对江、河、湖泊、企业排放等水源实现科学监测的理想采样工具。

除了水质采样器以外,水质监测还有一个重要的设备是水质在线监测系统设备。水质在线监测系统设备出现的时间最晚,但是成长迅速。设备可以通过现场实时操作,实现从水样采集到数据输出的快速分析。不仅如此,还具有自动诊断、自动校准、自动清洗、故障报警等功能,在保证分析结果准确度的同时,能够实现无人值守自动运行。因其“自动、连续、实时”的特点,水质在线监测系统设备器除了应用于优化水处理领域,在分析特定污染物浓度和评估水质安全方面也有着巨大的优势。 水质在线监测站UWF-100主要用于河道水域沿岸的水质监测,可与主流的水质监测分析仪(如HACH Probest等)配套使用,自动监测目标水域中的水质状况,形成河道水质监测趋势网格化后,有助于形成健全的河道长效管理机制。 科技改变生活,水质监测领域也离不开高新技术的帮助。如今,大多水质监测系统都同步建立采样器信息管理平台,既保存水质自动采样的留样记录和开关门记录,也实现了对水质分析仪器和水质在线监测系统设备的远程设置及控制。 南京蓝洁环保科技有限公司是一家环保全产业链的综合服务业,以南京地区

相关主题
文本预览
相关文档 最新文档